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REGULAR FUNCTIONS FOR DIFFERENT KINDS OF

CONJUGATIONS IN THE BICOMPLEX NUMBER FIELD

Han Ul Kang, Sangsu Jung, and Kwang Ho Shon*

Abstract. In this paper, using three types of conjugations in a bicomplex

number filed T , we provide some basic definitions of bicomplex number

and definitions of regular functions for each differential operators. And
we investigate the corresponding Cauchy-Riemann systems and the corre-

sponding Cauchy theorems in T in Clifford analysis.

1. Introduction

In 1971, Naser [8] researched properties of hyperholomorphic functions. Naser
[8] gave some results for harmonicity of hyperholomorphic functions, integral
formulas, et cetera in a quaternion field A as a noncommutative extension of
the complex numbers.

Rochon and Shapiro [9] studied about basic definitions and algebraic prop-
erties of bicomplex and hyperbolic numbers in 2004. Rochon and Shapiro [9]
specified some moduli using three types of bicomplex conjugation and alge-
braic structures in Clifford algebras. In 2012, Luna-Elizarrarás and Shapiro [7]
described how to define functions in bicomplex number field T . And Luna-
Elizarrarás and Shapiro [7] showed properties and generalizations of the theory
of bicomplex functions.

Lim and Shon [4] have researched some properties of hyperholomorphic func-
tions on A×A. Lim and Shon [6] represented hyperholomorphy on octonionic
functions in Clifford analysis in 2013. Lim and Shon [6] researched properties of
hyperholomorphic functions and hyper-conjugate harmonic functions in octo-
nion field. Lim and Shon [5] have studied some properties on regular functions
and given applications of the extension problem in dual quaternion field.
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In 2013, Jung and Shon [1] showed several properties of hyperholomorphic
functions valued ternary numbers. And Jung and Shon [1] investigated some
properties and theorems on dual reduced quaternion in Clifford analysis.

Kang and Shon [2] defined and provided some properties of left regular func-
tions in the quaternion field A and generalized quaternion in 2015. In the same
year, Kim and Shon [3] researched a corresponding Cauchy-Riemann system and
a Cauchy theorem on bicomplex numbers in Clifford analysis using a bicomplex
differential operator.

2. Preliminaries

2.1. Notations of bicomplex numbers

We consider the following matrices:

e1 =

(
i 0
0 i

)
, e2 =

(
0 i
i 0

)
,

where i is an usual complex number. Then we know the matrices satisfy the
followings:

e1e2 =

(
i 0
0 i

)(
0 i
i 0

)
=

(
0 −1
−1 0

)
=

(
0 i
i 0

)(
i 0
0 i

)
= e2e1,

and ke2 = e2k (k ∈ R). Then we defined a bicomplex number z as an extension
of the complex number,

z := z0 + e2z1,

where z0 and z1 are usual complex numbers. Putting z0 = x0 + e1x1, z1 =
x2 + e1x3 with xi ∈ R (i = 0, 1, 2, 3), we have

z = (x0 + e1x1) + e2(x2 + e1x3)

= x0 + e1x1 + e2x2 + e2e1x3.

We set e3 := e1e2 = e2e1. And we denote z as follows:

z = x0 + e1x1 + e2x2 + e3x3.

Let T be a bicomplex number field. Then the field T is a four dimensional
commutative field over R,

T = {z0 + e2z1 | z0, z1 ∈ C} = {z | z =

3∑
0

ejxj , xj ∈ R},

identified with R4 and C2. The field T is generated by e0, e1, e2 and e3
satisfying the followings:

e0 = id., e21 = e22 = −1, e23 = 1,

e1e3 = e3e1 = −e2,
e2e3 = e3e2 = −e1.
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Let z and w be bicomplex numbers and each z and w are denoted by z =
z0 +e2z1 = e0x0 +e1x1 +e2x2 +e3x3, w = z2 +e2z3 = e0y0 +e1y1 +e2y2 +e3y3
for zt ∈ C (t = 0, 1, 2, 3) and xt, yt ∈ R (t = 0, 1, 2, 3). Then the field T is
closed by the addition and the multiplication. By direct computations,

z + w = e0(x0 + y0) + e1(x1 + y1) + e2(x2 + y2) + e3(x3 + y3) = w + z,

zw = e0(x0y0 − x1y1 − x2y2 + x3y3) + e1(x0y1 + x1y0 − x2y3 − x3y2)

+e2(x0y2 − x1y3 + x2y0 − x3y1) + e3(x0y3 + x1y2 + x2y1 + x3y0) = wz.

Thus, z + w = w + z ∈ T and zw = wz ∈ T .
We know that there are several conjugations in the field T with respect to

e1, e2 or both of them.

2.2. z#: The 1st kind of conjugation with respect to e2

The 1st kind of conjugation z# is determined by the formula:

z# = (z0 + e2z1)# := z0 − e2z1 for all z0, z1 ∈ C.

Remark 1. (Properties of the 1st bicomplex conjugation z#)
For any z, w ∈ T , the following properties are satisfied:

(a) (z + w)# = z# + w#.
(b) (z − w)# = z# − w#.
(c) (z · w)# = z# · w#.
(d) (z#)# = z.
(e) The absolute value by using the 1st kind of conjugation z# is defined

by

|z|2# := z · z# = (z0 + e2z1)(z0 − e2z1)

= z20 + z21 .

(f) The bicomplex number z has the unique inverse for z#:

z−1 =
z#

|z|2#
(|z|# 6= 0).

In the field T , we consider three kinds of conjugation of bicomplex number
z with respect to e1, e2 or both of them. The 1st kind of conjugation z# is a
conjugation of z with respect to e2. Then we know other conjugations of z as
follows:

2.3. The 2nd and 3rd kinds of conjugation

The 2nd kind of conjugation z∗ with respect to e1 is determined by the
formula:

z∗ = (z0 + e2z1)∗ := z̄0 + e2z̄1 for all z0, z1 ∈ C.
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As the composition for e1 and e2 of the above two conjugations z# and z∗, the
3rd kind of conjugation z† is determined by the formula:

z† = (z0 + e2z1)† := ((z0 + e2z1)∗)# = ((z0 + e2z1)#)∗ = z̄0 + e2z̄1

for all z0, z1 ∈ C.

Remark 2. (Properties of the 2nd and 3rd bicomplex conjugations)
For any z, w ∈ T , the following properties for z∗ (z†) are satisfied:

(a) (z + w)∗ = z∗ + w∗ ((z + w)† = z† + w†).
(b) (z − w)∗ = z∗ − w∗ ((z − w)† = z† − w†).
(c) (z · w)∗ = z∗ · w∗ ((z · w)† = z† · w†).
(d) (z∗)∗ = z ((z†)† = z).
(e) The absolute values by using the 2nd and 3rd bicomplex conjugation

z∗ and z† are defined by

|z|2∗ := z · z∗ = (z0 + e2z1)(z̄0 + e2z̄1)

= z0z̄0 + e2(z0z̄1 + z1z̄0)− z1z̄1

= |z0|2−|z1|2 + e2{2Re(z0z̄1)}
and

|z|2† := z · z† = (z0 + e2z1)(z̄0 + e2z̄1)

= z0z̄0 + e2(z0z̄1 + z1z̄0)− z1z̄1

= |z0|2+|z1|2 − e2{2Im(z0z̄1)}.
(f) The bicomplex number z has the unique inverse for z†:

z−1 =
z†

|z|2†
(|z|† 6= 0).

And the bicomplex number z has the unique inverse for z∗:

z−1 =
z∗

|z|2∗
(|z|∗ 6= 0).

Let Ω be a bounded open set in C2. A bicomplex function f : Ω → T is
defined by

f(z) = u0(x0, x1, x2, x3) + e1u1(x0, x1, x2, x3)

+e2u2(x0, x1, x2, x3) + e3u3(x0, x1, x2, x3)

= f0(z0, z1) + e2f1(z0, z1),

where ut (t = 0, 1, 2, 3) are real functions and f0, f1 are complex functions of
two complex variables z0 and z1.

We consider bicomplex differential operators as follows:

D :=
∂

∂z
=

1

2
(
∂

∂z0
− e2

∂

∂z1
),

D# =
∂

∂z#
=

1

2
(
∂

∂z0
+ e2

∂

∂z1
),
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where
∂

∂zt
(t = 0, 1) is an usual complex differential operator. In 2015, Kim

and Shon [3] have shown the corresponding Cauchy-Riemann system and the
Cauchy theorem in the field T . Now, we investigated new bicomplex differen-
tial operators and found the corresponding Cauchy-Riemann systems and the
Cauchy theorems for each differential operators in next sections.

3. The corresponding Cauchy-Riemann systems

Let Ω be a bounded open set in C2. A function f(z) = f0(z) + e2f1(z)
is said to be a regular function in Ω if

(a) f ∈ C1(Ω),
(b) D#f = 0 in Ω.

We obtain a result by direct computation of above equation (b) as follows:

D#f =
1

2

{(
∂f0
∂z0
− ∂f1

∂z1

)
+ e2

(
∂f1
∂z0

+
∂f0
∂z1

)}
= 0.

Thus, the equation (b) is equivalent to the following system:

∂f0
∂z0

=
∂f1
∂z1

and
∂f1
∂z0

= −∂f0
∂z1

. (1)

The system (1) is called a corresponding Cauchy-Riemmann system in T .
We know three kinds of conjugations for bicomplex number z. Similarly,

we obtain other differential operators respected to each conjugation. Now, we
consider the following bicomplex differential operators:

D∗ =
∂

∂z∗
=

1

2
(
∂

∂z̄0
− e2

∂

∂z̄1
),

D† =
∂

∂z†
=

1

2
(
∂

∂z̄0
+ e2

∂

∂z̄1
).

Since D∗ is the conjugation of D respected to e1, we call this operator as the 2nd
conjugation of D. Similarly, the operator D† is called as the 3rd conjugation of
D.

Definition 1. (The regular function by the 2nd conjugation)
Let Ω be a bounded open set in C2. A function f is said to be the 2nd regular
function in Ω if

(a) f ∈ C1(Ω),
(b) D∗f = 0 in Ω.
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By simple computations, we show the result of the equation (b) of Definition
1 as follows.

D∗f =
1

2

(
∂

∂z̄0
− e2

∂

∂z̄1

)
(f0 + e2f1)

=
1

2

{(
∂f0
∂z̄0

+
∂f1
∂z̄1

)
+ e2

(
∂f1
∂z̄0
− ∂f0

∂z̄1

)}
= 0.

Thus, D∗f = 0 is equivalent to the following system:

∂f0
∂z̄0

= −∂f1
∂z̄1

and
∂f1
∂z̄0

=
∂f0
∂z̄1

. (2)

Similarly in the case of the regular function, the system (2) is called by the 2nd
corresponding Cauchy-Riemann system. For convenience, we call the differential
operator D# as the 1st conjugation of D. So, a bicomplex function f satisfying
the corresponding Cauchy-Riemann system (1) is regarded as the 1st regular
function in Ω. And that system (1) is called as the 1st corresponding Cauchy-
Riemann system.

Definition 2. (The regular function by the 3rd conjugation)
Let Ω be a bounded open set in C2. A function f is said to be the 3rd regular
function in Ω if

(a) f ∈ C1(Ω),
(b) D†f = 0 in Ω.

Similarly, in the cases of the 1st regular function and the 2nd regular function,

D†f =
1

2

(
∂

∂z̄0
+ e2

∂

∂z̄1

)
(f0 + e2f1)

=
1

2

{(
∂f0
∂z̄0
− ∂f1

∂z̄1

)
+ e2

(
∂f1
∂z̄0

+
∂f0
∂z̄1

)}
= 0.

The equation D†f = 0 is equivalent to

∂f0
∂z̄0

=
∂f1
∂z̄1

and
∂f1
∂z̄0

= −∂f0
∂z̄1

. (3)

This system (3) is called the 3rd corresponding Cauchy-Riemann system in the
bicomplex number field.

In next section, we show some properties of the each regular function (the
1st, 2nd and 3rd) in bicomplex number.

4. The corresponding Cauchy theorems

Kim and Shon [3] have shown the following theorem.
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Theorem 4.1. (The 1st corresponding Cauchy theorem)
Let Ω be a open set in C2. If f = f0 + e2f1 is a 1st regular function in Ω, then
for a domain D ⊂ Ω with smooth boundary ∂D,∫

∂D

ω#f = 0,

where ω# = dz0 ∧ dz̄0 ∧ dz̄1 + e2dz1 ∧ dz̄0 ∧ dz̄1.

Now, we call ω# as a kernel for the 1st corresponding Cauchy theorem.
Since we know the other types of the conjugation of differential operator, we
find kernels of the 2nd and 3rd corresponding Cauchy theorem. So we obtain
the following theorems.

Theorem 4.2. (The 2nd corresponding Cauchy theorem)
Let Ω be a open set in C2. If f = f0 + e2f1 is the 2nd regular function in Ω,
then for a domain D ⊂ Ω with smooth boundary ∂D,∫

∂D

ω∗f = 0,

where ω∗ = dz0 ∧ dz1 ∧ dz̄1 + e2dz0 ∧ dz1 ∧ dz̄0.

Proof. Similarly in a case of the 1st corresponding Cauchy theorem, we obtain
the following by the simple multiplication:

ω∗f = (dz0 ∧ dz1 ∧ dz̄1 + e2dz0 ∧ dz1 ∧ dz̄0)(f0 + e2f1)

= f0dz0 ∧ dz1 ∧ dz̄1 − f1dz0 ∧ dz1 ∧ dz̄0

+e2(f0dz0 ∧ dz1 ∧ dz̄0 + f1dz0 ∧ dz1 ∧ dz̄1).

Then,

d(ω∗f) =

(
∂

∂z0
dz0 +

∂

∂z1
dz1 +

∂

∂z̄0
dz̄0 +

∂

∂z̄1
dz̄1

)
·

{f0dz0 ∧ dz1 ∧ dz̄1 − f1dz0 ∧ dz1 ∧ dz̄0

+e2 (f0dz0 ∧ dz1 ∧ dz̄0 + f1dz0 ∧ dz1 ∧ dz̄1)}

=

(
∂f0
∂z̄0

+
∂f1
∂z̄1

)
dz0 ∧ dz1 ∧ dz̄0 ∧ dz̄1

+e2

(
∂f1
∂z̄0
− ∂f0

∂z̄1

)
dz0 ∧ dz1 ∧ dz̄0 ∧ dz̄1

=

{
−
(
∂f1
∂z0

+
∂f0
∂z1

)
+ e2

(
∂f0
∂z0
− ∂f1

∂z1

)}
dz0 ∧ dz1 ∧ dz̄0 ∧ dz̄1.

Since the function f is the 2nd regular function in Ω, f satisfies (2). Thus,

d(ω∗f) = 0.
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By Stokes theorem, ∫
D

d(ω∗f) =

∫
∂D

ω∗f = 0.

�

Theorem 4.3. (The 3rd corresponding Cauchy theorem)
Let Ω be a open set in C2. If a function f = f0 + e2f1 is the 3rd regular in Ω,
then for a domain D ⊂ Ω with smooth boundary ∂D,∫

∂D

ω†f = 0,

where ω† = dz0 ∧ dz1 ∧ dz̄0 + e2dz0 ∧ dz1 ∧ dz̄1.

Proof. By the direct computation,

ω†f = (dz0 ∧ dz1 ∧ dz̄0 + e2dz0 ∧ dz1 ∧ dz̄1)(f0 + e2f1)

= f0dz0 ∧ dz1 ∧ dz̄0 − f1dz0 ∧ dz1 ∧ dz̄1

+e2(f0dz0 ∧ dz1 ∧ dz̄1 + f1dz0 ∧ dz1 ∧ dz̄0).

And we have

d(ω†f) =

(
∂

∂z0
dz0 +

∂

∂z1
dz1 +

∂

∂z̄0
dz̄0 +

∂

∂z̄1
dz̄1

)
·

{f0dz0 ∧ dz1 ∧ dz̄0 − f1dz0 ∧ dz1 ∧ dz̄1

+e2(f0dz0 ∧ dz1 ∧ dz̄1 + f1dz0 ∧ dz1 ∧ dz̄0)}

=

{
−
(
∂f1
∂z̄0

+
∂f0
∂z̄1

)
+ e2

(
∂f0
∂z̄0
− ∂f1

∂z̄1

)}
dz0 ∧ dz1 ∧ dz̄0 ∧ dz̄1.

Since the function f is the 3rd regular function in Ω, f satisfies (3). Then,

d(ω†f) = 0.

By Stokes theorem, ∫
D

d(ω†f) =

∫
∂D

ω†f = 0.

The proof is done. �

We call ω∗ (and ω†) the kernel for the 1st (and 3rd) corresponding Cauchy
theorem likewise the 2nd corresponding Cauchy theorem.
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