East Asian Math. J.
Vol. 32 (2016), No. 5, pp. 641-649
http://dx.doi.org/10.7858/eamj.2016.044

REGULAR FUNCTIONS FOR DIFFERENT KINDS OF CONJUGATIONS IN THE BICOMPLEX NUMBER FIELD

Han Ul Kang, Sangsu Jung, and Kwang Ho Shon*

Abstract

In this paper, using three types of conjugations in a bicomplex number filed \mathcal{T}, we provide some basic definitions of bicomplex number and definitions of regular functions for each differential operators. And we investigate the corresponding Cauchy-Riemann systems and the corresponding Cauchy theorems in \mathcal{T} in Clifford analysis.

1. Introduction

In 1971, Naser [8] researched properties of hyperholomorphic functions. Naser [8] gave some results for harmonicity of hyperholomorphic functions, integral formulas, et cetera in a quaternion field \mathcal{A} as a noncommutative extension of the complex numbers.

Rochon and Shapiro [9] studied about basic definitions and algebraic properties of bicomplex and hyperbolic numbers in 2004. Rochon and Shapiro [9] specified some moduli using three types of bicomplex conjugation and algebraic structures in Clifford algebras. In 2012, Luna-Elizarrarás and Shapiro [7] described how to define functions in bicomplex number field \mathcal{T}. And LunaElizarrarás and Shapiro [7] showed properties and generalizations of the theory of bicomplex functions.

Lim and Shon [4] have researched some properties of hyperholomorphic functions on $\mathcal{A} \times \mathcal{A}$. Lim and Shon [6] represented hyperholomorphy on octonionic functions in Clifford analysis in 2013. Lim and Shon [6] researched properties of hyperholomorphic functions and hyper-conjugate harmonic functions in octonion field. Lim and Shon [5] have studied some properties on regular functions and given applications of the extension problem in dual quaternion field.

[^0]In 2013, Jung and Shon [1] showed several properties of hyperholomorphic functions valued ternary numbers. And Jung and Shon [1] investigated some properties and theorems on dual reduced quaternion in Clifford analysis.

Kang and Shon [2] defined and provided some properties of left regular functions in the quaternion field \mathcal{A} and generalized quaternion in 2015. In the same year, Kim and Shon [3] researched a corresponding Cauchy-Riemann system and a Cauchy theorem on bicomplex numbers in Clifford analysis using a bicomplex differential operator.

2. Preliminaries

2.1. Notations of bicomplex numbers

We consider the following matrices:

$$
e_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right), e_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right),
$$

where i is an usual complex number. Then we know the matrices satisfy the followings:

$$
e_{1} e_{2}=\left(\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right)=e_{2} e_{1}
$$

and $k e_{2}=e_{2} k(k \in \mathbb{R})$. Then we defined a bicomplex number z as an extension of the complex number,

$$
z:=z_{0}+e_{2} z_{1}
$$

where z_{0} and z_{1} are usual complex numbers. Putting $z_{0}=x_{0}+e_{1} x_{1}, z_{1}=$ $x_{2}+e_{1} x_{3}$ with $x_{i} \in \mathbb{R}(i=0,1,2,3)$, we have

$$
\begin{aligned}
z & =\left(x_{0}+e_{1} x_{1}\right)+e_{2}\left(x_{2}+e_{1} x_{3}\right) \\
& =x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{2} e_{1} x_{3}
\end{aligned}
$$

We set $e_{3}:=e_{1} e_{2}=e_{2} e_{1}$. And we denote z as follows:

$$
z=x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3}
$$

Let \mathcal{T} be a bicomplex number field. Then the field \mathcal{T} is a four dimensional commutative field over \mathbb{R},

$$
\mathcal{T}=\left\{z_{0}+e_{2} z_{1} \mid z_{0}, z_{1} \in \mathbb{C}\right\}=\left\{z \mid z=\sum_{0}^{3} e_{j} x_{j}, x_{j} \in \mathbb{R}\right\}
$$

identified with \mathbb{R}^{4} and \mathbb{C}^{2}. The field \mathcal{T} is generated by e_{0}, e_{1}, e_{2} and e_{3} satisfying the followings:

$$
\begin{aligned}
e_{0} & =i d ., e_{1}^{2}=e_{2}^{2}=-1, e_{3}^{2}=1, \\
e_{1} e_{3} & =e_{3} e_{1}=-e_{2}, \\
e_{2} e_{3} & =e_{3} e_{2}=-e_{1} .
\end{aligned}
$$

Let z and w be bicomplex numbers and each z and w are denoted by $z=$ $z_{0}+e_{2} z_{1}=e_{0} x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3}, w=z_{2}+e_{2} z_{3}=e_{0} y_{0}+e_{1} y_{1}+e_{2} y_{2}+e_{3} y_{3}$ for $z_{t} \in \mathbb{C}(t=0,1,2,3)$ and $x_{t}, y_{t} \in \mathbb{R}(t=0,1,2,3)$. Then the field \mathcal{T} is closed by the addition and the multiplication. By direct computations,

$$
\begin{array}{r}
z+w=e_{0}\left(x_{0}+y_{0}\right)+e_{1}\left(x_{1}+y_{1}\right)+e_{2}\left(x_{2}+y_{2}\right)+e_{3}\left(x_{3}+y_{3}\right)=w+z \\
\quad z w=e_{0}\left(x_{0} y_{0}-x_{1} y_{1}-x_{2} y_{2}+x_{3} y_{3}\right)+e_{1}\left(x_{0} y_{1}+x_{1} y_{0}-x_{2} y_{3}-x_{3} y_{2}\right) \\
+e_{2}\left(x_{0} y_{2}-x_{1} y_{3}+x_{2} y_{0}-x_{3} y_{1}\right)+e_{3}\left(x_{0} y_{3}+x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{0}\right)=w z
\end{array}
$$

Thus, $z+w=w+z \in \mathcal{T}$ and $z w=w z \in \mathcal{T}$.
We know that there are several conjugations in the field \mathcal{T} with respect to e_{1}, e_{2} or both of them.

2.2. $z^{\#}$: The 1st kind of conjugation with respect to e_{2}

The 1st kind of conjugation $z^{\#}$ is determined by the formula:

$$
z^{\#}=\left(z_{0}+e_{2} z_{1}\right)^{\#}:=z_{0}-e_{2} z_{1} \text { for all } z_{0}, z_{1} \in \mathbb{C} .
$$

Remark 1. (Properties of the 1st bicomplex conjugation $z^{\#}$)
For any $z, w \in \mathcal{T}$, the following properties are satisfied:
(a) $(z+w)^{\#}=z^{\#}+w^{\#}$.
(b) $(z-w)^{\#}=z^{\#}-w^{\#}$.
(c) $(z \cdot w)^{\#}=z^{\#} \cdot w^{\#}$.
(d) $\left(z^{\#}\right)^{\#}=z$.
(e) The absolute value by using the 1st kind of conjugation $z^{\#}$ is defined by

$$
\begin{aligned}
|z|_{\#}^{2}:=z \cdot z^{\#} & =\left(z_{0}+e_{2} z_{1}\right)\left(z_{0}-e_{2} z_{1}\right) \\
& =z_{0}^{2}+z_{1}^{2}
\end{aligned}
$$

(f) The bicomplex number z has the unique inverse for $z^{\#}$:

$$
z^{-1}=\frac{z^{\#}}{|z|_{\#}^{2}}(|z| \# \neq 0)
$$

In the field \mathcal{T}, we consider three kinds of conjugation of bicomplex number z with respect to e_{1}, e_{2} or both of them. The 1 st kind of conjugation $z^{\#}$ is a conjugation of z with respect to e_{2}. Then we know other conjugations of z as follows:

2.3. The 2 nd and 3 rd kinds of conjugation

The 2 nd kind of conjugation z^{*} with respect to e_{1} is determined by the formula:

$$
z^{*}=\left(z_{0}+e_{2} z_{1}\right)^{*}:=\overline{z_{0}}+e_{2} \overline{z_{1}} \text { for all } z_{0}, z_{1} \in \mathbb{C}
$$

As the composition for e_{1} and e_{2} of the above two conjugations $z^{\#}$ and z^{*}, the 3rd kind of conjugation z^{\dagger} is determined by the formula:

$$
z^{\dagger}=\left(z_{0}+e_{2} z_{1}\right)^{\dagger}:=\left(\left(z_{0}+e_{2} z_{1}\right)^{*}\right)^{\#}=\left(\left(z_{0}+e_{2} z_{1}\right)^{\#}\right)^{*}=\overline{z_{0}}+e_{2} \overline{z_{1}}
$$

for all $z_{0}, z_{1} \in \mathbb{C}$.
Remark 2. (Properties of the 2nd and 3rd bicomplex conjugations)
For any $z, w \in \mathcal{T}$, the following properties for $z^{*}\left(z^{\dagger}\right)$ are satisfied:
(a) $(z+w)^{*}=z^{*}+w^{*}\left((z+w)^{\dagger}=z^{\dagger}+w^{\dagger}\right)$.
(b) $(z-w)^{*}=z^{*}-w^{*}\left((z-w)^{\dagger}=z^{\dagger}-w^{\dagger}\right)$.
(c) $(z \cdot w)^{*}=z^{*} \cdot w^{*}\left((z \cdot w)^{\dagger}=z^{\dagger} \cdot w^{\dagger}\right)$.
(d) $\left(z^{*}\right)^{*}=z\left(\left(z^{\dagger}\right)^{\dagger}=z\right)$.
(e) The absolute values by using the 2nd and 3rd bicomplex conjugation z^{*} and z^{\dagger} are defined by

$$
\begin{aligned}
|z|_{*}^{2}:=z \cdot z^{*} & =\left(z_{0}+e_{2} z_{1}\right)\left(\overline{z_{0}}+e_{2} \overline{z_{1}}\right) \\
& =z_{0} \overline{z_{0}}+e_{2}\left(z_{0} \overline{z_{1}}+z_{1} \overline{z_{0}}\right)-z_{1} \overline{z_{1}} \\
& =\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}+e_{2}\left\{2 \operatorname{Re}\left(z_{0} \overline{z_{1}}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
|z|_{\dagger}^{2}:=z \cdot z^{\dagger} & =\left(z_{0}+e_{2} z_{1}\right)\left(\overline{z_{0}}+e_{2} \overline{z_{1}}\right) \\
& =z_{0} \overline{0_{0}}+e_{2}\left(z_{0} \overline{z_{1}}+z_{1} \overline{z_{0}}\right)-z_{1} \overline{z_{1}} \\
& =\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}-e_{2}\left\{2 \operatorname{Im}\left(z_{0} \overline{z_{1}}\right)\right\} .
\end{aligned}
$$

(f) The bicomplex number z has the unique inverse for z^{\dagger} :

$$
z^{-1}=\frac{z^{\dagger}}{|z|_{\dagger}^{2}}\left(|z|_{\dagger} \neq 0\right)
$$

And the bicomplex number z has the unique inverse for z^{*} :

$$
z^{-1}=\frac{z^{*}}{|z|_{*}^{2}}\left(|z|_{*} \neq 0\right)
$$

Let Ω be a bounded open set in \mathbb{C}^{2}. A bicomplex function $f: \Omega \rightarrow \mathcal{T}$ is defined by

$$
\begin{aligned}
f(z)= & u_{0}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+e_{1} u_{1}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& +e_{2} u_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+e_{3} u_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
= & f_{0}\left(z_{0}, z_{1}\right)+e_{2} f_{1}\left(z_{0}, z_{1}\right)
\end{aligned}
$$

where $u_{t}(t=0,1,2,3)$ are real functions and f_{0}, f_{1} are complex functions of two complex variables z_{0} and z_{1}.

We consider bicomplex differential operators as follows:

$$
\begin{aligned}
& D:=\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial z_{0}}-e_{2} \frac{\partial}{\partial z_{1}}\right), \\
& D^{\#}=\frac{\partial}{\partial z^{\#}}=\frac{1}{2}\left(\frac{\partial}{\partial z_{0}}+e_{2} \frac{\partial}{\partial z_{1}}\right),
\end{aligned}
$$

where $\frac{\partial}{\partial z_{t}}(t=0,1)$ is an usual complex differential operator. In 2015, Kim and Shon [3] have shown the corresponding Cauchy-Riemann system and the Cauchy theorem in the field \mathcal{T}. Now, we investigated new bicomplex differential operators and found the corresponding Cauchy-Riemann systems and the Cauchy theorems for each differential operators in next sections.

3. The corresponding Cauchy-Riemann systems

Let Ω be a bounded open set in \mathbb{C}^{2}. A function $f(z)=f_{0}(z)+e_{2} f_{1}(z)$ is said to be a regular function in Ω if
(a) $f \in C^{1}(\Omega)$,
(b) $D^{\#} f=0$ in Ω.

We obtain a result by direct computation of above equation (b) as follows:

$$
D^{\#} f=\frac{1}{2}\left\{\left(\frac{\partial f_{0}}{\partial z_{0}}-\frac{\partial f_{1}}{\partial z_{1}}\right)+e_{2}\left(\frac{\partial f_{1}}{\partial z_{0}}+\frac{\partial f_{0}}{\partial z_{1}}\right)\right\}=0 .
$$

Thus, the equation (b) is equivalent to the following system:

$$
\begin{equation*}
\frac{\partial f_{0}}{\partial z_{0}}=\frac{\partial f_{1}}{\partial z_{1}} \quad \text { and } \quad \frac{\partial f_{1}}{\partial z_{0}}=-\frac{\partial f_{0}}{\partial z_{1}} \tag{1}
\end{equation*}
$$

The system (1) is called a corresponding Cauchy-Riemmann system in \mathcal{T}.
We know three kinds of conjugations for bicomplex number z. Similarly, we obtain other differential operators respected to each conjugation. Now, we consider the following bicomplex differential operators:

$$
\begin{aligned}
D^{*} & =\frac{\partial}{\partial z^{*}}=\frac{1}{2}\left(\frac{\partial}{\partial \bar{z}_{0}}-e_{2} \frac{\partial}{\partial \bar{z}_{1}}\right), \\
D^{\dagger} & =\frac{\partial}{\partial z^{\dagger}}=\frac{1}{2}\left(\frac{\partial}{\partial \overline{z_{0}}}+e_{2} \frac{\partial}{\partial \bar{z}_{1}}\right) .
\end{aligned}
$$

Since D^{*} is the conjugation of D respected to e_{1}, we call this operator as the 2 nd conjugation of D. Similarly, the operator D^{\dagger} is called as the 3rd conjugation of D.

Definition 1. (The regular function by the 2nd conjugation)
Let Ω be a bounded open set in \mathbb{C}^{2}. A function f is said to be the 2 nd regular function in Ω if
(a) $f \in C^{1}(\Omega)$,
(b) $D^{*} f=0$ in Ω.

By simple computations, we show the result of the equation (b) of Definition 1 as follows.

$$
\begin{aligned}
D^{*} f & =\frac{1}{2}\left(\frac{\partial}{\partial \overline{z_{0}}}-e_{2} \frac{\partial}{\partial \overline{z_{1}}}\right)\left(f_{0}+e_{2} f_{1}\right) \\
& =\frac{1}{2}\left\{\left(\frac{\partial f_{0}}{\partial \bar{z}_{0}}+\frac{\partial f_{1}}{\partial \bar{z}_{1}}\right)+e_{2}\left(\frac{\partial f_{1}}{\partial \bar{z}_{0}}-\frac{\partial f_{0}}{\partial \bar{z}_{1}}\right)\right\}=0 .
\end{aligned}
$$

Thus, $D^{*} f=0$ is equivalent to the following system:

$$
\begin{equation*}
\frac{\partial f_{0}}{\partial \bar{z}_{0}}=-\frac{\partial f_{1}}{\partial \bar{z}_{1}} \quad \text { and } \quad \frac{\partial f_{1}}{\partial \bar{z}_{0}}=\frac{\partial f_{0}}{\partial \bar{z}_{1}} \tag{2}
\end{equation*}
$$

Similarly in the case of the regular function, the system (2) is called by the 2nd corresponding Cauchy-Riemann system. For convenience, we call the differential operator $D^{\#}$ as the 1 st conjugation of D. So, a bicomplex function f satisfying the corresponding Cauchy-Riemann system (1) is regarded as the 1st regular function in Ω. And that system (1) is called as the 1st corresponding CauchyRiemann system.

Definition 2. (The regular function by the 3rd conjugation)
Let Ω be a bounded open set in \mathbb{C}^{2}. A function f is said to be the 3rd regular function in Ω if
(a) $f \in C^{1}(\Omega)$,
(b) $D^{\dagger} f=0$ in Ω.

Similarly, in the cases of the 1st regular function and the 2 nd regular function,

$$
\begin{aligned}
D^{\dagger} f & =\frac{1}{2}\left(\frac{\partial}{\partial \overline{z_{0}}}+e_{2} \frac{\partial}{\partial \overline{z_{1}}}\right)\left(f_{0}+e_{2} f_{1}\right) \\
& =\frac{1}{2}\left\{\left(\frac{\partial f_{0}}{\partial \overline{z_{0}}}-\frac{\partial f_{1}}{\partial \overline{z_{1}}}\right)+e_{2}\left(\frac{\partial f_{1}}{\partial \bar{z}_{0}}+\frac{\partial f_{0}}{\partial \bar{z}_{1}}\right)\right\}=0 .
\end{aligned}
$$

The equation $D^{\dagger} f=0$ is equivalent to

$$
\begin{equation*}
\frac{\partial f_{0}}{\partial \bar{z}_{0}}=\frac{\partial f_{1}}{\partial \bar{z}_{1}} \quad \text { and } \quad \frac{\partial f_{1}}{\partial \bar{z}_{0}}=-\frac{\partial f_{0}}{\partial \bar{z}_{1}} \tag{3}
\end{equation*}
$$

This system (3) is called the 3rd corresponding Cauchy-Riemann system in the bicomplex number field.

In next section, we show some properties of the each regular function (the 1 st, 2 nd and 3 rd) in bicomplex number.

4. The corresponding Cauchy theorems

Kim and Shon [3] have shown the following theorem.

Theorem 4.1. (The 1st corresponding Cauchy theorem)
Let Ω be a open set in \mathbb{C}^{2}. If $f=f_{0}+e_{2} f_{1}$ is a 1 st regular function in Ω, then for a domain $D \subset \Omega$ with smooth boundary ∂D,

$$
\int_{\partial D} \omega^{\#} f=0
$$

where $\omega^{\#}=d z_{0} \wedge d \overline{z_{0}} \wedge d \bar{z}_{1}+e_{2} d z_{1} \wedge d \overline{z_{0}} \wedge d \overline{z_{1}}$.
Now, we call $\omega^{\#}$ as a kernel for the 1st corresponding Cauchy theorem. Since we know the other types of the conjugation of differential operator, we find kernels of the 2nd and 3rd corresponding Cauchy theorem. So we obtain the following theorems.
Theorem 4.2. (The 2nd corresponding Cauchy theorem)
Let Ω be a open set in \mathbb{C}^{2}. If $f=f_{0}+e_{2} f_{1}$ is the 2nd regular function in Ω, then for a domain $D \subset \Omega$ with smooth boundary ∂D,

$$
\int_{\partial D} \omega^{*} f=0
$$

where $\omega^{*}=d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}+e_{2} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}$.
Proof. Similarly in a case of the 1st corresponding Cauchy theorem, we obtain the following by the simple multiplication:

$$
\begin{aligned}
\omega^{*} f= & \left(d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}+e_{2} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}\right)\left(f_{0}+e_{2} f_{1}\right) \\
= & f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}-f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}} \\
& +e_{2}\left(f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}+f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
d\left(\omega^{*} f\right)= & \left(\frac{\partial}{\partial z_{0}} d z_{0}+\frac{\partial}{\partial z_{1}} d z_{1}+\frac{\partial}{\partial \bar{z}_{0}} d \overline{z_{0}}+\frac{\partial}{\partial \overline{z_{1}}} d \overline{z_{1}}\right) \\
& \left\{f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}-f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}\right. \\
& \left.+e_{2}\left(f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}+f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}\right)\right\} \\
= & \left(\frac{\partial f_{0}}{\partial \overline{z_{0}}}+\frac{\partial f_{1}}{\partial \overline{z_{1}}}\right) d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}} \wedge d \overline{z_{1}} \\
& +e_{2}\left(\frac{\partial f_{1}}{\partial \overline{z_{0}}}-\frac{\partial f_{0}}{\partial \overline{z_{1}}}\right) d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}} \wedge d \overline{z_{1}} \\
= & \left\{-\left(\frac{\partial f_{1}}{\partial z_{0}}+\frac{\partial f_{0}}{\partial z_{1}}\right)+e_{2}\left(\frac{\partial f_{0}}{\partial z_{0}}-\frac{\partial f_{1}}{\partial z_{1}}\right)\right\} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}} \wedge d \overline{z_{1}} .
\end{aligned}
$$

Since the function f is the 2 nd regular function in Ω, f satisfies (2). Thus,

$$
d\left(\omega^{*} f\right)=0
$$

By Stokes theorem,

$$
\int_{D} d\left(\omega^{*} f\right)=\int_{\partial D} \omega^{*} f=0
$$

Theorem 4.3. (The 3rd corresponding Cauchy theorem)
Let Ω be a open set in \mathbb{C}^{2}. If a function $f=f_{0}+e_{2} f_{1}$ is the 3rd regular in Ω, then for a domain $D \subset \Omega$ with smooth boundary ∂D,

$$
\int_{\partial D} \omega^{\dagger} f=0
$$

where $\omega^{\dagger}=d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}+e_{2} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}$.
Proof. By the direct computation,

$$
\begin{aligned}
\omega^{\dagger} f= & \left(d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}+e_{2} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}\right)\left(f_{0}+e_{2} f_{1}\right) \\
= & f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}-f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}} \\
& +e_{2}\left(f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}+f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}\right)
\end{aligned}
$$

And we have

$$
\begin{aligned}
d\left(\omega^{\dagger} f\right)= & \left(\frac{\partial}{\partial z_{0}} d z_{0}+\frac{\partial}{\partial z_{1}} d z_{1}+\frac{\partial}{\partial \overline{z_{0}}} d \overline{z_{0}}+\frac{\partial}{\partial \overline{z_{1}}} d \overline{z_{1}}\right) \\
& \left\{f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}-f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}\right. \\
& \left.+e_{2}\left(f_{0} d z_{0} \wedge d z_{1} \wedge d \overline{z_{1}}+f_{1} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}}\right)\right\} \\
= & \left\{-\left(\frac{\partial f_{1}}{\partial \overline{z_{0}}}+\frac{\partial f_{0}}{\partial \overline{z_{1}}}\right)+e_{2}\left(\frac{\partial f_{0}}{\partial \overline{z_{0}}}-\frac{\partial f_{1}}{\partial \overline{z_{1}}}\right)\right\} d z_{0} \wedge d z_{1} \wedge d \overline{z_{0}} \wedge d \overline{z_{1}} .
\end{aligned}
$$

Since the function f is the 3rd regular function in Ω, f satisfies (3). Then,

$$
d\left(\omega^{\dagger} f\right)=0
$$

By Stokes theorem,

$$
\int_{D} d\left(\omega^{\dagger} f\right)=\int_{\partial D} \omega^{\dagger} f=0
$$

The proof is done.
We call ω^{*} (and ω^{\dagger}) the kernel for the 1st (and 3rd) corresponding Cauchy theorem likewise the 2 nd corresponding Cauchy theorem.

References

[1] H. S. Jung and K. H. Shon, Functions and Differential Operators in The Dual Reduced Quaternion Field, East Asian Math. J. 29 (2013), 293-302.
[2] H. U. Kang and K. H. Shon, Relations of L-regular Functions on Quaternions in Clifford Analysis, East Asian Math. J. 20 (2013), 667-675.
[3] J. E. Kim and K. H. Shon, Properties of Regular Functions with Values in Bicomplex Numbers, Bull. Korean Math. Soc. Preprint.
[4] S. J. Lim and K. H. Shon, Dual Quaternion Functions and Its Applications, East Asian Math. J. 28 (2012), 553-559.
[5] , Dual Quaternion Functions and Its Applications, J. of Applied Mathematics Art. ID 583813 (2013), 6 pages.
[6] _ Hyperholomorphic Functions and Hyper-conjugate Harmonic Functions of Octonion Variables, J. of Inequalities and Applications 77 (2013), 8 pages.
[7] M. E. Luna-Elizarrarás and M. Shapiro, Bicomplex Numbers and their Elementary Functions, CUBO A Mathematical J. 14 (2012), 61-80.
[8] M. Naser, Hyperholomorphic functions, Siberian Math. J. 12 (1971), 959-968.
[9] D. Rochon and M. Shapiro, On Algebraic Properties of Bicomplex and Hyperbolic Numbers, Anal. Univ. Oradea (2004), 28 pages.

Han Ul Kang
Department of Mathematics, Pusan National University, Busan 46241, Korea
E-mail address: hukang@pusan.ac.kr
Sangsu Jung
Department of Mathematics, Pusan National University, Busan 46241, Korea E-mail address: jssken@hanmail.net

Kwang Ho Shon*
Department of Mathematics, Pusan National University, Busan 46241, Korea
E-mail address: khshon@pusan.ac.kr

[^0]: Received April 6, 2016; Accepted August 18, 2016.
 2010 Mathematics Subject Classification. 32A99, 30G35, 11E88.
 Key words and phrases. Clifford analysis, bicomplex number, bicomplex conjugation, bicomplex differential operators, corresponding Cauchy-Riemann system, corresponding Cauchy theorem.

 * Corresponding author.

