DOI QR코드

DOI QR Code

Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs

  • Kim, Dai Hyun (Department of Anatomy, Korea University College of Medicine) ;
  • Ahn, Hyo Hyun (Department of Dermatology, Korea University College of Medicine) ;
  • Sun, Woong (Department of Anatomy, Korea University College of Medicine) ;
  • Rhyu, Im Joo (Department of Anatomy, Korea University College of Medicine)
  • Received : 2016.09.06
  • Accepted : 2016.09.21
  • Published : 2016.09.30

Abstract

Detailed structural and molecular imaging of intact organs has incurred academic interest because the associated technique is expected to provide innovative information for biological investigation and pathological diagnosis. The conventional methods for volume imaging include reconstruction of images obtained from serially sectioned tissues. This approach requires intense manual work which involves inevitable uncertainty and much time to assemble the whole image of a target organ. Recently, effective tissue clearing techniques including CLARITY and ACT-PRESTO have been reported that enables visualization of molecularly labeled structures within intact organs in three dimensions. The central principle of the methods is transformation of intact tissue into an optically transpicuous and macromolecule permeable state without loss of intrinsic structural integrity. The rapidly evolving protocols enable morphological analysis and molecular labeling of normal and pathological characteristics in large assembled biological systems with single-cell resolution. The deep tissue volume imaging will provide fundamental information about mutual interaction among adjacent structures such as connectivity of neural circuits; meso-connectome and clinically significant structural alterations according to pathologic mechanisms or treatment procedures.

Keywords

References

  1. Chung K, Wallace J, Kim S Y, Kalyanasundaram S, Andalman A S, Davidson T J, Mirzabekov J J, Zalocusky K A, Mattis J, Denisin A K, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, and Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497, 332-337. https://doi.org/10.1038/nature12107
  2. Gong H, Zeng S, Yan C, Lv X, Yang Z, Xu T, Feng Z, Ding W, Qi X, Li A, Wu J, and Luo Q (2013) Continuously tracing brain-wide long distance axonal projections in mice at a one-micron voxel resolution. Neuroimage 74, 87-98. https://doi.org/10.1016/j.neuroimage.2013.02.005
  3. Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A, and Miyawaki A (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481-1488. https://doi.org/10.1038/nn.2928
  4. Helmchen F and Denk W (2005) Deep tissue two-photon microscopy. Nat. Methods 12, 932-940.
  5. Kanda T, Tsujino N, Kuramoto E, Koyama Y, Susaki E A, Chikahisa S, and Funato H (2016) Sleep as a biological problem: an overview of frontiers in sleep research. J. Physiol. Sci. 66, 1-13. https://doi.org/10.1007/s12576-015-0414-3
  6. Kim S Y, Cho J H, Murray E, Bakh N, Choi H, Ohn K, Ruelas L, Hubbert A, McCue M, Vassallo S L, Keller P J, and Chung K (2015) Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. U S A 112, E6274-E6283. https://doi.org/10.1073/pnas.1510133112
  7. Ke M T, Fujimoto S, and Imai T (2013) SeeDB: a simple and morphologypreserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16, 1154-1161. https://doi.org/10.1038/nn.3447
  8. Kim H W, Kim D S, and Rhyu I J (2014) Electron tomography and synapse study. Appl. Microsc. 44, 83-87. https://doi.org/10.9729/AM.2014.44.3.83
  9. Kurihara D, Mizuta Y, Sato Y, and Higashiyama T (2015) ClaerSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Dev. Camb. Engl. 142, 4168-4179.
  10. Lee E, Choi J, Jo Y, Kim J Y, Jang Y J, Lee H M, Kim S Y, Lee H J, Cho K, Jung N, Hur E M, Jeong S J, Moon C, Choe Y, Rhyu I J, Kim H, and Sun W (2016a) ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631. https://doi.org/10.1038/srep18631
  11. Lee E, Kim H J, and Sun W (2016b) See-through technology for biological tissue: 3-dimensional visualization of macromolecules. Int. Neurourol. J. 20, S15-S22. https://doi.org/10.5213/inj.1632630.315
  12. Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, Liu Q, Zeng S, and Luo Q (2010) Micro-optical sectioning tomography to obtain a highresolution atlas of the mouse brain. Science 330, 1404-1408. https://doi.org/10.1126/science.1191776
  13. Liebmann T, Renier N, Bettayeb K, Greengard P, Tessier-Lavigne M, and Flajolet M (2016) Three-dimensional study of Alzheimer's disease hallmarks using the iDISCO clearing method. Cell Rep. 26, 1138-1152.
  14. Murray E, Cho J H, Goodwin D, Ku T, Swaney J, Kim S Y, Choi H, Park Y G, Park J Y, Hubbert A, McCue M, Vassallo S, Bakh N, Frosch M P, Wedeen V J, Seung H S, and Chung K (2015) Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500-1514. https://doi.org/10.1016/j.cell.2015.11.025
  15. Palmer W M, Martin A P, Flynn J R, Reed S L, White R G, Furbank R T, and Grof C P L (2015) PEA-CLARITY: 3D molecular imaging of whole plant organs. Sci. Rep. 5, 13492. https://doi.org/10.1038/srep13492
  16. Renier N, Wu Z, Simon D J, Yang J, Ariel P, and Tessier-Lavigne M (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896-910. https://doi.org/10.1016/j.cell.2014.10.010
  17. Seo J, Choe M, and Kim S Y (2016) Clearing and labeling techniques for large-scale biological tissues. Mol. Cells 39, 439-446. https://doi.org/10.14348/molcells.2016.0088
  18. Susaki E A, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe T M, Yokoyama C, Onoe H, Eguchi M, Yamaguchi S, Abe T, Kiyonari H, Shimizu Y, Miyawaki A, Yokota H, and Ueda H R (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726-739. https://doi.org/10.1016/j.cell.2014.03.042
  19. Tainaka K, Kubota S I, Suyama T Q, Susaki E A, Perrin D, Ukai-Tadenuma M, Ukai H, and Ueda H R (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159, 911-924. https://doi.org/10.1016/j.cell.2014.10.034
  20. Tang J, Germain R N, and Cui M (2012) Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. U S A 109, 8434-8439. https://doi.org/10.1073/pnas.1119590109
  21. Tomer R, Ye L, Hsueh B, and Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682-1697. https://doi.org/10.1038/nprot.2014.123
  22. Yang B, Treweek J B, Kulkarni R P, Deverman B E, Chen C K, Lubeck E, Shah S, Cai L, and Gradinaru V (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945-958. https://doi.org/10.1016/j.cell.2014.07.017