DOI QR코드

DOI QR Code

온도변화 삼축압축 실험을 이용한 Heating-Cooling 반복 작용시 화강풍화토의 비배수 거동

Undrained Behavior of Weathered Granite Soil of Heating-Cooling Repeated Acts Using Temperature Control Triaxial Test

  • Shin, Seung-Min (School of Civil and Environmental Engineering, Sungkyunkwan Univ. Natural Sciences Campus) ;
  • Sin, Chun-Won (School of Civil and Environmental Engineering, Sungkyunkwan Univ. Natural Sciences Campus) ;
  • Yoo, Chung-Sik (School of Civil and Environmental Engineering, Sungkyunkwan Univ. Natural Sciences Campus)
  • 투고 : 2016.01.01
  • 심사 : 2016.07.26
  • 발행 : 2016.09.30

초록

본 논문에서는 지열 활용시스템을 지반구조물에 적용시 발생하는 주변 지반에 부과되는 다양한 온도 및 온도변화 사이클이 흙의 역학적 특성에 미치는 영향에 대한 내용을 다루었다. 이를 위해 화강풍화토를 대상으로 다양한 온도변화 조건을 구현하고 이에 따른 흙의 입자구조 및 열전도특성 변화 경향을 고찰하였다. 아울러 다양한 OCR(over consolidation ratio)값을 가지는 시료를 제작하여 내부 온도를 $20^{\circ}C{\sim}70^{\circ}C$까지 변화시키며 온도상승과 가열-냉각 반복작용 횟수에 따른 흙에 미치는 영향을 분석하고자 온도계로 압축셀 내부 온도를 측정하였으며 비배수 실험을 통해 시료에 작용하는 축차응력 및 간극수압을 측정하여 온도변화가 화강풍화토에 미치는 영향을 분석하였다. 그 결과 온도상승과 가열-냉각 반복 작용으로 인해 간극수압이 증가하며 축차응력 또한 감소하는 것으로 관찰되었다.

In this study, the impact of sand and weathered granite soil is analyzed by changing the internal temperature from $20^{\circ}C{\sim}70^{\circ}C$C by installing a heating coil inside the triaxial cell. To check the effect on weathered granite soil due to increase of temperature and number of heating-coiling cycles are analyzed by measuring the temperature by using thermometer installed inside the triaxial cell and due to that deviator stress also occurred during the consolidated undrained test. To analyze the effect of weathered granite soil with change of temperature during undrained testing. The deviator stress and pore pressure is measured. As a result, pore pressure increases and the deviator stress decreases with rise of temperature.

키워드

참고문헌

  1. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Ramana. G.V. (2006), "Thermally induced volume change and excess pore water pressure of soft Bangkok clay", Engineering Geology, Vol.89, No.1-2.
  2. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Ramana. G.V. (2007), "Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling", Canadian Geotechnical Journal, Vol. 44, No.8, pp.942-956. https://doi.org/10.1139/t07-031
  3. Brandl, H. (2006), "Energy Foundations and other Thermo-Active Ground Structures", Geotechnique, Vol.56, No.2, pp.81-122. https://doi.org/10.1680/geot.2006.56.2.81
  4. Laloui, L. (2004), "A novel triaxial apparatus for thermomechanical testing of soil", Geotechnical Testing Journal, Vol.28, No.2.
  5. Laloui, L., Moreni, M. and Vulliet, L. (2003), "Comportement d'un Pieu Bi-Fonction, Fondation et ´Echangeur de Chaleur", Canadian Geotechnical Journal, Vol.40, No.2, pp.388-402. https://doi.org/10.1139/t02-117
  6. Laloui, L., Nuth, M. and Vulliet, L. (2006), "Experimental and numerical investigations of the behavior of a heat exchange pile", International Journal for Numerical and Analytical Methods in Geomechanics. Vol.30, pp.763-781. https://doi.org/10.1002/nag.499
  7. McCartney, J.S., HaHaise, D., LaHaise, T. and Rosenberg, J. (2010). "Application of Geoexchange Experience to Geothermal Foundations", GeoFlorida, 2010.
  8. Ooka, R., Sekine, K., Mutsumi, Y., Yoshiro, S. and SuckHo, H. (2007), "Development of a Ground Source Heat Pump System with Ground heat Exchanger Utilizing the Cast-in Place Concrete Pile Foundations of a Building", EcoStock 2007, pp.8.
  9. Yoo, C.S. and Shin, B.N., (2011), "Effect of Cyclic Freezing- Thawing on Compressive Strength of Decomposed Granite Soils", J. Korean Geosynthetics Society, Vol.10, No.1, pp.19-28.