DOI QR코드

DOI QR Code

Characteristics of Biocellulose by Gluconobacter uchimurae GYS15

Gluconobacter uchimurae GYS15 균주로부터 생산되는 Biocellulose의 특성 확인

  • 이영선 ((주)지에프씨 생명과학연구원) ;
  • 김재영 ((주)지에프씨 생명과학연구원) ;
  • 차미연 ((주)지에프씨 생명과학연구원) ;
  • 강희철 ((주)지에프씨 생명과학연구원)
  • Received : 2016.07.18
  • Accepted : 2016.09.22
  • Published : 2016.09.30

Abstract

In order to select a strain that forms a Biocellulose (BC), strain producing acetic acid was selected from commercially available kombucha. Through SM broth it was confirmed that the strain is a gram negative bacteria in the form of rods having no motility through a phase contrast microscope. The result of phylogenetic inference analysis based on 16S rDNA sequence analysis for the identification of strains was most closely related to Gluconobacter uchimurae (G. uchimurae) and was named G. uchimurae GYS15 strain. The strain showed the highest degree of growth when cultured for 14 days under the conditions of pH 5 and $25^{\circ}C$. Moreover, it showed the highest degree of growth in a Glucose addition disaccharide as the optimum carbon source sucrose and fructose. Also, 0.5% NaCl, upon the addition of Malto extract, showed the highest degree of growth. Based on investigation by the optimum growth conditions to confirm the physical properties of BC obtained by culturing G. uchimurae GYS15 strains. The surface structure was observed through an scanning electron microscope (SEM) showed a high networks structure. It until $8.6{\pm}0.38$ times when the water holding capacity is re-absorbed and re-absorbed holding oil up to $6.6{\pm}0.51$ times confirmed. In conclusion, using these material properties, it was possible to confirm the possibility of a variety of cosmetic materials and mask pack materials.

화장품 소재로서 천연고분자 물질인 Biocellulose (BC)를 형성하는 균주를 선발하여 초산생성 균주를 선발하였다. SM 배지를 통하여 초산 생성 균주 1종을 선발하고 형태학적인 분석을 통하여 간균형태의 그람음성균임을 확인하였다. 또한 균주의 동정을 위하여 16S rDNA 유전자 분석을 통하여 계통도를 분석한 결과 Gluconobacter uchimurae (G. uchimurae)와 높은 상동성을 나타내어 G. uchimurae GYS15 균주로 명명하였다. 선발된 균주는 pH 5, $25^{\circ}C$ 조건의 환경적 요인에서 14일간 배양하였을 때 가장 높은 생육을 나타내었다. 또한 탄소원으로 glucose 이외에 이당류인 sucrose와 fructose를 첨가 하였을 때 가장 높은 생육활성을 보였고 최적의 염농도와 질소원은 0.5% NaCl과 malto extract로 확인하였다. 확인된 조건 하에서 G. uchimurae GYS15 균주를 배양하여 얻어진 BC의 물성을 확인하였다. 전자 주사현미경을 통하여 확인된 표면구조는 높은 표면적을 갖는 초미세망상구조로서 다공성 구조를 나타내었다. 이로 인해 수분의 경우 $8.6{\pm}0.38$배, 유분의 경우 $6.6{\pm}0.51$배까지 재흡수 되는 것으로 확인하였다. 따라서 BC의 이러한 구조적 특성을 이용하여 마스크팩 등의 다양한 화장품 소재로 활용 가능성을 확인하였다.

Keywords

References

  1. A. J. Brown, XL III. - On an acetic ferment which forms cellulose, J. Chem. Soc. Trans., 49, 432 (1886). https://doi.org/10.1039/CT8864900432
  2. S. M. Santos, J. M. Carbajo, E. Quintana, D. Ibarra, N. Gomez, M. Ladero, M. E. Eugenio, and J. C. Villar, Characterization of purified bacterial cellulose focused on its use on paper restoration, Carbohyd. Polym., 116, 173 (2015). https://doi.org/10.1016/j.carbpol.2014.03.064
  3. W. Williams and R. Cannon, Alternative environmental roles for cellulose produced by Acetobacter Xylinum, Appl. Environ. Microbiol., 55(10), 2448 (1989).
  4. W. Czaja, D. Romanovicz, and R. M. Brown, Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose, 11(3-4), 403 (2004). https://doi.org/10.1023/B:CELL.0000046412.11983.61
  5. I. F. Almeida, T. Pereira, N. Silva, and F. P. Gomes, Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study, Eur. J. Pharm. Biopharm., 86(3), 332 (2014). https://doi.org/10.1016/j.ejpb.2013.08.008
  6. D. P. Deborah, Cellulose biosynthesis: exciting times for a difficult field of study, Annu. Rev. Plant Biol., 50(1), 245 (1999). https://doi.org/10.1146/annurev.arplant.50.1.245
  7. P. Ross, H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger-Ohana, R. Mayer, S. Braun, E. D. Vroom, G. A. Van Der Marel, J. H. Van Boom, and M. Benaiman, Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid, Nature, 325, 279 (1987). https://doi.org/10.1038/325279a0
  8. S. Hestrin and M. Schramm, Synthesis of cellulose by Acetobacter xylinum. 2. preparation of freeze-dried cells capable of polymerizing glucose to cellulose, Biochem. J, 58(2), 345 (1954). https://doi.org/10.1042/bj0580345
  9. C. Prust, M. Hoffmeister, H. Liesegang, A. Wiezer, W. F. Fricke, A. Ehrenreich, G. Gottschalk, and U. Deppenmeier, Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans, Nat. Biotechnol,, 23(2), 195 (2005). https://doi.org/10.1038/nbt1062
  10. D. Moonmangmee, O. Adachi, Y. Ano, E. Shinagawa, H. Toyama, G. Theeragool, N. Lotong, and K. Matsushita, Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures, Biosci. Biotechnol. Biochem., 64(11), 2306 (2000). https://doi.org/10.1271/bbb.64.2306
  11. G. N. Qazi, R. Parshad, V. Verma, C. L. Chopra, R. Buse, M. Trager, and U. Onken, Diketo-gluconate fermentation by Gluconobacter oxydans, Enzyme Microb. Technol., 13(6), 504 (1991). https://doi.org/10.1016/0141-0229(91)90010-8
  12. A. Retegi, N. Gabilondo, C. Pena, R. Zuluaga, C. Castro, P. Ganan, K. de la Caba, and I. Mondragon, Bacterial cellulose films with controlled microstructure- mechanical property relationships, Cellulose, 17(3), 661 (2010). https://doi.org/10.1007/s10570-009-9389-7
  13. R. Wu, S. Du, Z. Li, X. Xing, D. Shao, Y. Fan, B. Li, X. Zhang, and L. Bu, Optimization of bacterial cellulose fermentation medium and observation of bacterial cellulose ultra-micro-structure, Chin. J. Agric. Biotechol. 24(6), 1068 (2008).
  14. S. W. Lee, J. H. Kwon, S. R. Yoon, S. I. Woo, S. Y. Jang, S. H. Yeo, J. H. Choi, and Y. J. Jeong, Quality characteristics of brown rice vinegar by different yeasts and fermentation condition, Prev. Nutr. Food Sci. 39(9), 1366 (2010).
  15. S. W. Kim, J. H. Park, and H. K. Jun, Analysis of optimum condition for production of an onionic vinegar by tow-step fermentation, J. Life Sci., 18(10), 1410 (2008). https://doi.org/10.5352/JLS.2008.18.10.1410
  16. C. Dufresne and E. Farnworth, Tea, kombucha, and health : a review, Food Res. Int., 33(6), 409 (2000). https://doi.org/10.1016/S0963-9969(00)00067-3
  17. K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Genome Biol. Evol., 30(12), 2725 (2013). https://doi.org/10.1093/molbev/mst197
  18. E. A. Hassan, H. M. Abdelhady, S. S. Abd El-Salam, and S. M. Abdullah, The characterization of bacterial cellulose produced by Acetobacter xylinum and Komgataeibacter saccharovorans under optimized fermentation conditions, Br. Microbiol. Res. J., 9, 3 (2015).
  19. D. A. Wharton, Freeze-substitution techniques for reparing nematodes for scanning electron microscopy, Microsc., 164(3), 187 (1991). https://doi.org/10.1111/j.1365-2818.1991.tb03207.x
  20. R. S. Bhatty, Physiochemical and functional (breadmaking) properties of hull-less barley fractions, Cereal. Chem., 63(1), 31 (1986).
  21. G. Miguel, Nuria, and O. Martin-Belloso, Characterization of dietary fiber from orange juice extraction, Food Res. Int., 31(5), 355 (1998). https://doi.org/10.1016/S0963-9969(98)00087-8
  22. S. Tanasupawat, J. Kommanee, P, Yukphan, D. Moonmangmee, Y. Muramatsu, Y. Nakagawa, and Y. Yamada, Gluconobacter uchimurae sp. nov., an acetic acid bacterium in the $\alpha$-Proteobacteria, J. Gen. Appl. Microbiol., 57(5), 293 (2011). https://doi.org/10.2323/jgam.57.293
  23. K. W. Lee, J. M. Sim, K. M. Kim, J. H. Shin, and J. H. Kim, Isolation and characterization of Acetobacter species from a traditionally prepared vinegar, J. Microbiol. Biotechnol., 43(3), 220 (2015).
  24. D. Raghunathan, Production of microbial cellulose from the new bacterial strain isolated from temple wash waters, Int. J. Curr. Microbiol. App. Sci., 2(12), 275 (2013).
  25. D. Geoffrey and S. I. Duchesne, Revealing the surface ultrastrucure of spruce pulp fibers using field emission-SEM, Swedish University of Agricultural Science (1998).
  26. Y. Dahman, Optically transparent nanocomposites reinforced with modified Biocellulose nanofibers, J. Appl. Polym. Sci., 126(S1), E188 (2012).
  27. E. Embuscado, N. BeMiller, and S. Marks, Isolation and partial characterization of cellulose produced by Acetobacter xylinum, Food Hydrocoll., 10(1), 75 (1996) https://doi.org/10.1016/S0268-005X(96)80057-9
  28. E. Lenselink and A. Andriessen, A cohort study on the efficacy of a polyhexanide-containing Biocellulose dressing in the treatment of biofilms in wounds, J. Wound Care, 20(11), 534 (2011). https://doi.org/10.12968/jowc.2011.20.11.534
  29. U.S. Patent 13/881,967 (2012).