DOI QR코드

DOI QR Code

Effect of Low Temperature Storage on Proteolytic and Antioxidant Activities of Fresh Pineapple and Kiwi Juices Extracted by Slow-Speed Masticating Household Juicer

저속압착방식으로 착즙한 파인애플 및 키위 주스의 저온저장 조건에 따른 단백질분해효소 및 항산화 활성

  • Park, Shin-Young (Department of Food and Life Science, Inje University) ;
  • Kim, Min-Ju (Bio-Food Research Center, Hurom Co., Ltd.) ;
  • Park, Ji-In (Department of Food and Life Science, Inje University) ;
  • Kim, Jung-In (Department of Food and Life Science, Inje University) ;
  • Kim, Myo-Jeong (Department of Food and Life Science, Inje University)
  • 박신영 (인제대학교 식품생명과학부) ;
  • 김민주 ((주)휴롬 바이오식품연구소) ;
  • 박지인 (인제대학교 식품생명과학부) ;
  • 김정인 (인제대학교 식품생명과학부) ;
  • 김묘정 (인제대학교 식품생명과학부)
  • Received : 2016.05.04
  • Accepted : 2016.07.20
  • Published : 2016.09.30

Abstract

The aim of this study was to evaluate proteolytic and antioxidant activities of fresh pineapple and kiwi juices extracted using a slow-speed masticating household juicer during low temperature storage. While over 90% of vitamin C and total polyphenols in both juices were retained after storage for 30 days at $-20^{\circ}C$, reduction of 56.8% for vitamin C and 31.9% for total polyphenols in pineapple juice were detected after storage at $4^{\circ}C$. In the case of kiwi juice, 32.9% of vitamin C and 22.4% of total polyphenols were lost. A high initial content of vitamin C in kiwi juice resulted in a slower reduction rate than that for pineapple juice. A similar result was obtained for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Proteolytic activities of both juices were maintained efficiently with less than 10% loss during storage for 30 days at $-20^{\circ}C$. Protease stability of pineapple juice was better than that of kiwi juice during storage at $4^{\circ}C$, and the same result was obtained when boiled chicken breast was used as a substrate. From these results, when storing pineapple and kiwi juices, which are widely used as a natural meat tenderizer and digestive aid, cold storage at $-20^{\circ}C$ seemed to be more suitable for maintaining antioxidant and proteolytic activities than cold storage at $4^{\circ}C$.

저속압착방식의 주서기를 이용하여 착즙한 파인애플 주스와 키위 주스를 냉장($4^{\circ}C$) 및 냉동온도($-20^{\circ}C$)에서 30일 동안 저장하면서 저장조건이 주스의 항산화 활성 및 단백질 분해효소 활성에 미치는 영향을 확인하였다. 비타민 C 함량 및 총폴리페놀 함량은 파인애플 주스, 키위 주스 모두 냉동저장에서는 30일까지 90% 이상이 유지되었으나 냉장저장에서 비타민 C 함량은 각각 56.8% 및 32.9%, 총폴리페놀 함량은 각각 31.9% 및 22.4%가 감소하였으며, DPPH 라디칼 소거능도 냉동조건보다는 냉장조건에서 활성 감소율이 크게 나타나 유사한 결과를 보였다. 활성 감소율은 초기 비타민 C의 함량이 파인애플 주스보다 1.7배 더 높은 키위주스에서 낮게 나타났다. 파인애플 주스와 키위 주스의 단백질분해효소 활성은 냉동저장 30일까지 모두 초기 활성의 90% 이상으로 높게 유지되었으며 냉장저장 30일 후 파인애플 주스는 초기 활성의 88.4%를 유지하였지만 키위 주스는 초기 효소 활성의 34.5%만이 남아있어 서로 다른 양상을 나타내었다. 이러한 결과는 단백질분해효소 활성을 육안으로 직접 확인하기 위해 진행한 닭 가슴살 단백질분해 활성 측정 결과에서도 확인할 수 있었다. 이상의 결과로부터 천연 연육제 또는 소화보조제로 널리 이용되는 파인애플 및 키위주스의 보관 시 냉장저장보다는 냉동저장이 항산화 활성 및 단백질분해효소 활성의 유지 측면에서 바람직한 것으로 사료된다.

Keywords

References

  1. Lee HR, Jung BR, Park JY, Hwang IW, Kim SK, Choi JU, Lee SH, Chung SK. 2008. Antioxidant activity and total phenolic contents of grape juice products in the Korean market. Korean J Food Preserv 15: 445-449.
  2. Jeong SM, Son MH, Lee SC. 2003. A survey on contents of phenolic compounds of market fruit and vegetables juices. J Basic Sci 18: 117-123.
  3. Lee MH, Kim MS, Shin HG, Sohn HY. 2011. Evaluation of antimicrobial, antioxidant, and antithrombin activity of domestic fruit and vegetable juice. Korean J Microbiol Biotechnol 39: 146-152.
  4. Klimczak I, Malecka M, Szlachta M, Gliszczynska-Swiglo A. 2007. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J Food Compos Anal 20: 313-322. https://doi.org/10.1016/j.jfca.2006.02.012
  5. Hinman WF, Brush MK, Halliday EG. 1944. The nutritive value of canned foods: VI. effect of large-scale preparation for serving on the ascorbic acid, thiamin, and riboflavin content of commercially-canned vegetables. J Am Diet Assoc 20: 752-756.
  6. Park S, Kim S, Yoo Y. 1995. Effect of blanching time, blanching water and power settings on minerals retention in microwave blanched vegetables. Korean J Soc Food Sci 11: 98-103.
  7. Yeom HW, Streaker CB, Zhang QH, Min DB. 2000. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J Agric Food Chem 48: 4597-4605. https://doi.org/10.1021/jf000306p
  8. Kim MJ, Kim JI, Kang MJ, Kwon B, Jun JG, Choi JH, Kim MJ. 2015. Quality evaluation of fresh tomato juices prepared using high-speed centrifugal and low-speed masticating household juicers. Food Sci Biotechnol 24: 61-66. https://doi.org/10.1007/s10068-015-0010-6
  9. Bae YH, Lee JS, Lee KA, Yoon JD, Kang DH, Lee JS. 2002. The effect of Sarcodon aspratus fruitbody on the cooking quality of beef steak. J East Asian Soc Diet Life 12: 326-333.
  10. Ketnawa S, Chaiwut P, Rawdkuen S. 2012. Pineapple wastes: A potential source for bromelain extraction. Food Bioprod Process 90: 385-391. https://doi.org/10.1016/j.fbp.2011.12.006
  11. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62: 597-635.
  12. Gaspani L, Limiroli E, Ferrario P, Bianchi M. 2002. In vivo and in vitro effects of bromelain on $PGE_2$ and SP concentrations in the inflammatory exudate in rats. Pharmacology 65: 83-86. https://doi.org/10.1159/000056191
  13. Engwerda CR, Andrew D, Ladhams A, Mynott TL. 2001. Bromelain modulates T cell and B cell immune responses in vitro and in vivo. Cell Immunol 210: 66-75. https://doi.org/10.1006/cimm.2001.1807
  14. Manhart N, Akomeah R, Bergmeister H, Spittler A, Ploner M, Roth E. 2002. Administration of proteolytic enzymes bromelain and trypsin diminish the number of CD4+ cells and the interferon-${\gamma}$ response in Peyer's patches and spleen in endotoxemic balb/c mice. Cell Immunol 215: 113-119. https://doi.org/10.1016/S0008-8749(02)00019-9
  15. Kelly GS. 1996. Bromelain: a literature review and discussion of its therapeutic applications. Alt Med Rev 1: 243-257.
  16. Kaur L, Rutherfurd SM, Moughan PJ, Drummond L, Boland MJ. 2010. Actinidin enhances protein digestion in the small intestine as assessed using an in vitro digestion model. J Agric Food Chem 58: 5074-5080. https://doi.org/10.1021/jf903835g
  17. Kaur L, Rutherfurd SM, Moughan PJ, Drummond L, Boland MJ. 2010. Actinidin enhances gastric protein digestion as assessed using an in vitro gastric digestion model. J Agric Food Chem 58: 5068-5073. https://doi.org/10.1021/jf903332a
  18. Soda I, Kaneko M, Sato T, Nakagawa H, Ogura N. 1987. Studies on utilization of kiwifruit protease-Studies on utilization of kiwifruit Part II. Nippon Shokuhin Kogyo Gakkaishi 34: 36-41. https://doi.org/10.3136/nskkk1962.34.36
  19. Furusawa N. 2001. Rapid high-performance liquid chromatographic identification/quantification of total vitamin C in fruit drinks. Food Control 12: 27-29. https://doi.org/10.1016/S0956-7135(00)00021-9
  20. Wolfe K, Wu X, Liu RH. 2003. Antioxidant activity of apple peels. J Agric Food Chem 51: 609-614. https://doi.org/10.1021/jf020782a
  21. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  22. Kunitz M. 1947. Crystalline soybean trypsin inhibitor: II. general properties. J Gen Physiol 30: 291-310. https://doi.org/10.1085/jgp.30.4.291
  23. Gabriel AA, Usero JMCL, Rodriguez KJ, Diaz AR, Tiangson-Bayaga CLP. 2015. Estimation of ascorbic acid reduction in heated simulated fruit juice systems using predictive model equations. LWT-Food Sci Technol 64: 1163-1170. https://doi.org/10.1016/j.lwt.2015.07.041
  24. Valente A, Albuquerque TG, Sanches-Silva A, Costa HS. 2011. Ascorbic acid content in exotic fruits: A contribution to produce quality data for food composition databases. Food Res Int 44: 2237-2242. https://doi.org/10.1016/j.foodres.2011.02.012
  25. Lee HE, Lim CI, Do KR. 2007. Changes of characteristics in red pepper by various freezing and thawing methods. Korean J Food Preserv 14: 227-232.
  26. Park WB, Kim DS. 1995. Changes of contents of ${\beta}$-carotene and vitamin C and antioxidative activities of juice of Angelica keiskei Koidz stored at different conditions. Korean J Food Sci Technol 27: 375-379.
  27. Minoggio M, Bramati L, Simonetti P, Gardana C, Iemoli L, Santangelo E, Mauri PL, Spigno P, Soressi GP, Pietta PG. 2003. Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann Nutr Metab 47: 64-69. https://doi.org/10.1159/000069277
  28. Patthamakanokporn O, Puwastien P, Nitithamyong A, Sirichakwal PP. 2008. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J Food Compos Anal 21: 241-248. https://doi.org/10.1016/j.jfca.2007.10.002
  29. Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I. 1997. A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9: 29-35. https://doi.org/10.1023/A:1007935218120
  30. Chaurasiya RS, Hebbar HU. 2013. Extraction of bromelain from pineapple core and purification by RME and precipitation methods. Sep Purif Technol 111: 90-97. https://doi.org/10.1016/j.seppur.2013.03.029

Cited by

  1. LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과 vol.28, pp.5, 2016, https://doi.org/10.5352/jls.2018.28.5.569