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Abstract
Large frequency limiting distributions of two errors in realized covariance are investigated under noisy and

non-synchronous high frequency sampling situations. The first distribution characterizes increased variance of
the realized covariance due to noise for large frequency and the second distribution characterizes decreased
variance of the realized covariance due to discretization for large frequency. The distribution of the combined
error enables us to determine the sampling frequency which depends on a nuisance parameter. A consistent
estimator of the nuisance parameter is proposed.
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1. Introduction

During the recent decades there have been active research on statistical inference for integrated volatil-
ities of financial asset returns using high-frequency data sets. Ultra-high frequency samples are known
to be subject to market microstructure noises due to irregular trading, discreteness of prices, bid/ask
bounce. The presence of market microstructure noise complicates volatility estimation, which causes
some statistically serious problems such as inefficiency, bias, and inconsistency. Various methods for
integrated volatilities under high frequency sampling were developed by Aı̈t-Sahalia et al. (2005),
Zhang et al. (2005) and Bandi and Russell (2008), and others.

Recent literature indicates significant efforts to estimate the integrated covariance of multiple as-
sets. Barndorff-Nielsen and Shephard (2004) developed a general asymptotic theory for realized co-
variations such as covariance, regression coefficient, and correlation coefficient under fixed sampling
and no-noise. Under high frequency sampling (in addition to noise) there is another factor of nonsyn-
chronous trading which makes the efficient estimation of integrated covariance difficult as pointed out
indicated by Hayashi and Yoshida (2005). Various attempts have been made to overcome the difficulty
from the two factors of noise and nonsynchronousity as well as construct consistent and efficient real-
ized covariances by Voev and Lunde (2007) for a subsampling method; Aı̈t-Sahalia et al. (2010) via
quasi-maximum likelihood estimator; Griffin and Oomen (2011) for comparison of several methods;
Bibinger (2011a, 2012) via a generalized multi-scale method; Barndorff-Nielsen et al. (2011) via a
multivariate realized kernel; Dovonon et al. (2013) via the i.i.d. bootstrapping, and Hwang and Shin
(2016) via the stationary bootstrapping.
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In this paper, we develop asymptotic distributions for approximation errors in the realized covari-
ance in the presence of noise and nonsynchronousity. First, we formulate two approximations for
errors in the realized covariance as an estimator of the quadratic covariance: one due to the noise
and the other due to the discretization error of the latent process. Second, we develop a normal ap-
proximation of the realized covariance to the target integrated covariance from the approximations of
the two errors. The normal approximation enables us to investigate a trade-off between two errors
to reduce the variance that causes the inefficiency problem. The sample frequency will be optimized
by minimizing the variance of the total error which depends on a nuisance parameter. We provide a
consistent estimator for the nuisance parameter.

The remainder of the paper is organized as follows. In Section 2 we describe the preliminary
setup and assumptions. Asymptotic results and optimal sampling are presented in Section 3 and the
estimation for the asymptotic variance which determines the optimal sampling is discussed in Section
4. Proofs are given in Section 5.

2. Preliminary setup

This section describes a realized covariance based on high frequency bivariate nonsynchronous noisy
samples from a two-dimensional diffusion for a couple of asset prices X(t) = {(X1(t), X2(t))′ : t ≥ 0}.
The latent log-price is assumed to follow a continuous-time diffusion model

dX(t) = µ(t)dt + σ(t)dB(t), (2.1)

where µ(t) = (µ1(t), µ2(t))′ is the drift vector, σ(t) = [σ11(t) σ12(t)
σ21(t) σ22(t)] is 2 × 2 volatility matrix, and B(t) =

(B1(t), B2(t))′ is the standard 2-dimensional Brownian motions. Let Y(t) = {(Y1(t),Y2(t))′ : t ≥ 0}
denote the observable log-price process.

In ultra high-frequency sampling, two log-prices are observed asynchronously with market mi-
crostructure noise. During time interval [0,T ], the ith asset is observed at times tiℓ, ℓ = 1, 2, . . . ,Ni,
where Ni is the sample size of the ith asset data set, i = 1, 2. Due to the non-synchronicity, typically
{t1ℓ} , {t2ℓ}. Usually the high-frequency data are contaminated with noise:

Yi(tiℓ) = Xi(tiℓ) + ϵi(tiℓ), ℓ = 1, . . . ,Ni, i = 1, 2. (2.2)

The noise processes are assumed to satisfy the following assumptions:

(A1) For i = 1, 2, the noises {ϵi(tiℓ), ℓ = 1, . . . ,Ni} are i.i.d. random variables with mean zero, finite
variance Eϵ2

i < ∞, finite fourth moment Eϵ4
i < ∞. The noise processes {ϵi(t)}, i = 1, 2 are

independent of each other and independent of the processes {Xi(·), i = 1, 2}.

The integrated covariance over a fixed time interval [0,T ] is defined by

⟨X1, X2⟩T =
∫ T

0
Σ12(t)dt, Σ12(t) = (σ(t)σ(t)′)12.

Note that Σ12(t) = σ11(t)σ21(t)+σ12(t)σ22(t) = ρ(t)σ1(t)σ2(t) whereσ2
i (t) = Σii(t) = (σ(t)σ(t)′)ii =

σ2
i1(t) + σ2

i2(t), i = 1, 2 and ρ(t) = Σ12(t)/
√
Σ11Σ22(t).

As an estimator of the integrated covariance, a realized covariance is constructed from a non-
synchronous sample. To handle the asynchronous observations of the two assets, we consider the
synchronizing way of Barndorff-Nielsen et al. (2011), called the refresh time. The refresh times equal
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to the closest synchronous approximation of Bibinger (2012, p.2418). See Figure 1 of Barndorff-
Nielsen et al. (2011) for an illustration of refresh times.

Refresh time is described briefly. The first refresh time τ1 is the first time t before which both
asset prices are observed; for each k = 1, 2, . . . , the (k + 1)th refresh time τk+1 is the first time after
τk before which both asset prices are observed. More formal definition follows. For i = 1, 2, let Ni(t)
be the number of observations in the ith asset made up to time t ∈ [0,T ]. Now we define the refresh
time as: the first refresh time τ1 is defined as τ1 = max(t11, t21), and then subsequent refresh times are
defined as, for k = 1, 2, . . . , τk+1 = max(t1,N1(τk)+1, t2,N2(τk)+1). Denote the resulting refresh time sample
size by N, and assume N = Op((N1 + N2)/2)→ ∞ as (N1 + N2)/2→ ∞.

We rewrite the refresh times with N as {τN,1, τN,2, . . . , τN,N}. For each j, we denote the observed
log-price observation at refresh time τN, j by Y(τN, j) ≡ (Y1(τN, j),Y2(τN, j))′ which consists of new price
at the refresh time τN, j, say, Y1(τN, j), and of other price, say, Y2(τN, j) defined by the last observation
of Y2(·) traded in time interval (τN, j−1, τN, j]. The refresh time is subject to “stale pricing errors” in
that only Y1(τN, j), say, is observed and the other Y2(τN, j) is refreshed rather than observed: Y2(τN, j) is
a stale price rather than an observed price. According to Barndorff-Nielsen et al. (2011), under their
assumptions of (A2) below, these stale pricing errors have no impact on the asymptotic distribution of
estimators. We adopt the conditions of Barndorff-Nielsen et al. (2011).

Note that N is random. Let ∆N, j := τN, j − τN, j−1, DN, j := N∆N, j, for j = 1, . . . ,N, and let Ft

be some filtration so that X = (X1, X2)′ is defined on some filtered probability space (Ω,F , (Ft), P).
Denote ⌊x⌋ by integer part of x. We assume

(A2) (i) E(Dr
N,⌊tN⌋|FτN,⌊tN⌋−1 )

p
−→ κr(t), 0 < r ≤ 2 as N → ∞ where κr(t) are strictly positive cádlág

processes adopted {Ft}; (ii) max j∈{i+1,...,i+R} DN, j = op(R1/2) for any i; (iii) τN,0 = 0 and τN,N+1 ≥
T .

Let G := {τN,0, τN,1, τN,2, . . . , τN,N}, with τN,0 = 0, be the full grid of time points that have been
synchronized by the refresh time and H ⊆ G be a subgrid denoted by H = {t0, t1, . . . , tn} where n is
the number of time increments (t j, t j+1] with t j, t j+1 ∈ H and n < N, satisfying

max
t j,t j+1∈H

(
t j+1 − t j

)
= O

(
1
n

)
. (2.3)

We investigate the limiting distribution of the errors in realized covariance based on samples on
H as an estimator of the integrated covariance for large n in Section 3 below. The asymptotic result
is useful to determine n, as shown in Section 3 and Section 4. Once n is determined, then the set of
subsample time pointsH = {t0, t1, . . . , tn} is constructed as follows. Let q = ⌊N/n⌋, the integer part of
N/n. Each element t j inH is chosen as t j = τN,q j for j = 1, 2, . . . , n, with t0 = 0.

Realized covariance based on the subgridH is defined as the quadratic covariation:

[Y1,Y2]T ≡ [Y1, Y2](H)
T :=

n−1∑
j=0

(
Y1(t j+1) − Y1(t j)

) (
Y2(t j+1) − Y2(t j)

)
.

The quadratic covariations like [X1, X2]T , [ϵ1, ϵ2]T , [Xi, ϵ j]T , i, j = 1, 2, are defined in the same way.
Now for the discretization of X-process, we describe the quadratic variation of time. Let H(t) be

the asymptotic quadratic variation of time, as discussed by Mykland and Zhang (2002),

H(t) = lim
n→∞

n
T

∑
t j,t j+1∈H ,t j+1≤t

(
t j+1 − t j

)2
.
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H(·) is well-defined under conditions of (2.3) above and of (A3) below, according to Proposition 1 on
p. 1399, of Zhang et al. (2005, Section 2.3), (A3) below states a technical condition on the filtration
(Ft)0≤t≤T to which X(t) and µ(t) are assumed to be adapted. We assume

(A3) (Description of the filtration) There is a continuous multidimensional P-local martingale X =
(X(1), . . . ,X(p)) for any p, so that Ft is the smallest σ-field containing σ{Xs, s ≤ t} andN , where
N contains all of the null sets in σ{Xs, s ≤ T }. For example, X can be a collection of Brownian
motion.

3. Asymptotic results

We investigate the distributions of two errors in the realized covariance. The first error is associated
with market microstructure noise and the second error is related with discretization. The error distri-
bution in Lemma 1 below shows the increased variance of the realized covariance due to the noise for
large n. The error distribution in Lemma 2 below reveals decreased error variance due to discretaza-
tion for large n. From the two lemmas, we develop a normal approximation of the realized covariance
to the target integrated covariance in Theorem 1 below. The theorem shows that a trade-off between
two errors is needed to reduce variance of the realized covariance.

Lemma 1. (Noise error) We consider model (2.1) with noise (2.2) and assume (A1)–(A3) above.
Then as n→ ∞ we have

[Y1,Y2]T = [X1, X2]T +ϖnZnoise + en + Op

(
1
√

n

)
,

where

en := ϵ1(t0)ϵ2(t0) + ϵ1(tn)ϵ2(tn),

ϖn :=
(
6nEϵ2

1 Eϵ2
2 + 2Eϵ2

1 [X2, X2]T + 2Eϵ2
2 [X1, X1]T

) 1
2

and Znoise is a standard normal random variable.

According to Lemma 1, we see that the error due to the noise, [Y1,Y2]T − [X1, X2]T , is composed
of two terms ϖnZnoise and en. The first term corresponds to inflated variance due to noise. The second
term is the bias due to noises for the first and the last observations for the subgrid H . Note that

en = Op(
√

Eϵ2
1 Eϵ2

2 ) and is not related with sampling schemes. It is interesting to compare this order-

1 bias en for realized covariance with the order n bias nEϵ2
1 of Zhang et al. (2005, Lemma 1) for the

error [Y1,Y1]T − [X1, X1]T of realized variance. The bias en is usually negligible because Eϵ2
i are small

in practice.
Therefore, [Y1,Y2]T almost unbiasedly estimates [X1, X2]T . The variance ϖn increases at order

of n as n increases. Lemma 1 implies that the smaller sample size makes the smaller error of the
approximation of the unbiased estimator [Y1,Y2]T to the quadratic co-variation [X1, X2]T , and thus the
optimal choice of n is to make it as small as possible to reduce the error if we consider only inflated
variance due to noise. However, we need to consider the inflated variance from the discretization error
as well which increases as n decreases as shown in Lemma 2.
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Lemma 2. (Discretization error) We consider the model (2.1) with the noise (2.2) and assume (A1)–
(A3) above. Then as n→ ∞ we have( n

T

) 1
2

([X1, X2]T − ⟨X1, X2⟩T )
d−→ ϑZdiscrete,

where

ϑ :=
(∫ T

0

[
1 + ρ2(t)

]
σ2

1(t)σ2
2(t)H′(t) dt

) 1
2

and Zdiscrete is a standard normal random variable.

Now we combine Lemma 1 with Lemma 2 to establish the approximation of the realized covari-
ance to the target integrated covariance. We see in Theorem 1 below that the total error [Y1,Y2]T −
⟨X1, X2⟩T of the realized covariance is given by the sum of two errors in Lemmas 1 and 2, of which
one is increasing and the other is decreasing as n→ ∞.

Theorem 1. We consider the model (2.1) with the noise (2.2) and assume (A1)–(A3) above. Then as
n→ ∞ we have

[Y1,Y2]T = ⟨X1, X2⟩T + υnZtotal + en + Op

(
1
√

n

)
,

where Ztotal is a standard normal random variable and υn := (ϖ2
n + (T/n)ϑ2)1/2, that is,

υ2
n = 6nEϵ2

1 Eϵ2
2 + 2Eϵ2

1 [X2, X2]T + 2Eϵ2
2 [X1, X1]T +

T
n

∫ T

0

[
1 + ρ2(t)

]
σ2

1(t)σ2
2(t)H′(t)dt.

Remark 1. (Optimal sampling frequency) An optimal sampling frequency can be obtained by
minimizing the total variance v2

n = (ϖ2
n + (T/n)ϑ2). The optimal trade-off can be obtained from

∂υ2
n/∂n = 0 as given by

n∗ =
 Tϑ2

6Eϵ2
1 Eϵ2

2

 1
2

. (3.1)

For this optimal n∗, the minimum variance is

υ2
min = 2

(
6T Eϵ2

1 Eϵ2
2ϑ

2
) 1

2
+ 2Eϵ2

1 [X2, X2]T + 2Eϵ2
2 [X1, X1]T .

Remark 2. (A feasible optimal sampling frequency) The optimal n∗ in (3.1) is not feasible be-
cause of nuisance parameters. For the nuisance parameters Eϵ2

i , i = 1, 2, we use

Êϵ2
i =

1
2N

[Yi,Yi](all), [Yi,Yi](all) =
∑
τ j∈G

(
Yi(τ j) − Yi(τ j−1)

)2
, i = 1, 2,

which are consistent according to Zhang et al. (2005, Section 2.2). A consistent estimator ϑ̂2 of the
remaining nuisance parameter ϑ2 is constructed in Section 4 below from which we construct a feasible
optimal sample size n̂∗ given by

n̂∗ =

 T ϑ̂2

6Êϵ2
1 Êϵ2

2


1
2

.
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4. A consistent estimator of ϑ2ϑ2ϑ2

In order to construct a consistent estimator of ϑ2, we follow a sub-grid method similar to Zhang
et al. (2005, Sections 5 and 6) and apply an asymptotic result of Hwang and Shin (2016). Let an
integer K depending on N be given. For k = 1, . . . ,K, let G(k) be nonoverlapping subgrids of the
full grid G with G = ∪K

k=1 G(k). A natural way to select G(k) can be seen in Section 3.2 of Zhang et
al. (2005) or in Section 2 of Hwang and Shin (2016), which is given by G(k) = {τN,( j−1)K+(k−1) : j =
1, . . . ,m} for k = 1, . . . ,K where m = [N/K]. For example, if N = 100, K = 20, then we have
m = 5, G(1) = {τ0, τ0.2N , τ0.4N , τ0.6N , τ0.8N , τN},G(2) = {τ1, τ0.2N+1, τ0.4N+1, τ0.6N+1, τ0.8N+1}, G(3) =

{τ2, τ0.2N+2, τ0.4N+2, τ0.6N+2, τ0.8N+2}, . . . ,G(20) = {τ19, τ0.2N+19, τ0.4N+19, τ0.6N+19, τ0.8N+19}, where τN, j

is denoted as τ j. Note that G(k) consists of every Kth point of G starting with the kth point.
Let

[Y1,Y2](k)
t =

∑
t j,t j,+∈G(k),t j,+≤t

(
Y1(t j,+) − Y1(t j)

) (
Y2(t j,+) − Y2(t j)

)
,

where t j,+ is the following element of t j in G(k). Then [Y1,Y2](k)
t is the realized covariance on the grid

G(k) up to time t. Let [Y1,Y2](avg)
T = (1/K)

∑K
k=1[Y1,Y2](k)

T . By Theorem 3.1 of Hwang and Shin (2016),
if K = cN2/3 then we have

N
1
6

(
[Y1,Y2](avg)

T − ⟨X1, X2⟩T
) d−→ N

(
0, ς2

)
, (4.1)

where

ς2 =
6
c2 Eϵ2

1 Eϵ2
2 + cTϑ2. (4.2)

The second term ϑ2 of the asymptotic variance has been explicitly computed in Proposition A.1 of
Bibinger (2011b).

As in Section 6 of Zhang et al. (2005), we consider a partition [0, T1], (T1,T2], . . . , (TM−1,TM] of
[0,T ] for some M. Note that ⟨X1, X2⟩Tm − ⟨X1, X2⟩Tm−1 =

∫ Tm

Tm−1
Σ12(t)dt for m = 1, 2, . . . , M, and its

estimator is [Y1,Y2](avg)
Tm
− [Y1,Y2](avg)

Tm−1
.

For m = 1, 2, . . . , M, let Tm = (m/M)T . First we focus on the mth time period [Tm−1,Tm] and apply
the normality of (4.1) to this time interval. Let Nm be the number of points in the mth time interval;
N =

∑M
m=1 Nm. We may assume Nm → ∞ as N → ∞ for each m. Then, if Km = cmN2/3

m , we have

N
1
6

m

(
[Y1,Y2](avg)

Tm
− [Y1,Y2](avg)

Tm−1
−

∫ Tm

Tm−1

Σ12(t)dt
)

d−→ N
(
0, ς2

m

)
, (4.3)

where

ς2
m =

6
c2

m
Eϵ2

1 Eϵ2
2 + cm

T
M

∫ Tm

Tm−1

[
1 + ρ2(t)

]
σ2

1(t)σ2
2(t)H′(t)dt. (4.4)

The asymptotic results (4.3)–(4.4) enable us to construct a consistent estimator of ϑ2 as follows.
Similarly to G = ∪K

k=1 G(k), for each k = 1, . . . ,K, nonoverlapping subgrids of G(k) are constructed by
G(k) =

∪I
i=1 G(k,i) for some number I, (which is less than the number of elements in G(k)), where G(k,i)

contains every Ith point of G(k), starting with the ith point. Then

G =
K∪

k=1

G(k) =

K∪
k=1

I∪
i=1

G(k,i). (4.5)
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In order to define the estimator, we need a sequence of positive numbers {b j : j = 1, 2, . . . } such
that limN→∞ (1/N)

∑N
j=1 b j = 1 for which we choose b j = ( j2 − 1)/ j2. Let K(1)

m, j = b jM1/2N2/3
m ,

K(2)
m, j = M1/2K(1)

m, j = b jMN2/3
m , and Im = M1/2. Let

[Y1,Y2](k)
(m) =

∑
t j,t j,+∈G(k)∩[Tm−1,Tm]

(
Y1(t j,+) − Y1(t j)

) (
Y2(t j,+) − Y2(t j)

)
for k = 1, . . . ,K(1)

m , and

[Y1,Y2](k,i)
(m) =

∑
t j,t j,+∈G(k,i)∩[Tm−1,Tm]

(
Y1(t j,+) − Y1(t j)

) (
Y2(t j,+) − Y2(t j)

)
for k = 1, 2, . . . ,K(1)

m , i = 1, . . . , Im.
Define

Ŝ 2
m, j = N

1
3

m

 1

K(1)
m, j

K(1)
m, j∑

k=1

[Y1,Y2](k)
(m) −

1

K(2)
m, j

Im∑
i=1

K(1)
m, j∑

k=1

[Y1, Y2](k,i)
(m)


2

.

The following theorem gives a consistent estimator of ϑ2 by means of Ŝ 2
m, j.

Theorem 2. Assume (A1)–(A3). If we take M = MN → ∞ with M1/4/N1/3
m → 0 for each m, then

ϑ̂2 :=
1

NT

M∑
m=1

N∑
j=1

Ŝ 2
m, j =

1
NT

M∑
m=1

N∑
j=1

N
1
3

m

 1

K(1)
m, j

K(1)
m, j∑

k=1

[Y1,Y2](k)
(m) −

1

K(2)
m, j

Im∑
i=1

K(1)
m, j∑

k=1

[Y1,Y2](k,i)
(m)


2

(4.6)

is a consistent estimator of ϑ2.

5. Proofs

Denote ∆A(t j) = A(t j+1) − A(t j) for A ∈ {Xi,Yi, ϵi, i = 1, 2}. In this section, Zi, i = 1, 2, 3, denote
standard normal random variables.

Proof of Lemma 1: We observe

[Y1,Y2]T = [X1, X2]T + [ϵ1, ϵ2]T + [X1, ϵ2]T + [ϵ1, X2]T .

First, for the asymptotic behavior of [ϵ1, ϵ2]T , we write

[ϵ1, ϵ2]T =

n−1∑
j=0

∆ϵ1(t j)∆ϵ2(t j)

= 2
n−1∑
j=1

ϵ1(t j)ϵ2(t j) + [ϵ1(t0)ϵ2(t0) + ϵ1(tn)ϵ2(tn)] −
n−1∑
j=0

ϵ1(t j+1)ϵ2(t j) −
n−1∑
j=0

ϵ1(t j)ϵ2(t j+1)
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and

1
√

n
[ϵ1, ϵ2]T = ξ1,n + ξ2,n − ξ3,n − ξ4,n,

where

ξ1,n :=
2
√

n

n−1∑
j=1

ϵ1(t j)ϵ2(t j), ξ2,n :=
1
√

n
[ϵ1(t0)ϵ2(t0) + ϵ1(tn)ϵ2(tn)]

ξ3,n :=
1
√

n

n−1∑
j=0

ϵ1(t j+1)ϵ2(t j), ξ4,n :=
1
√

n

n−1∑
j=0

ϵ1(t j)ϵ2(t j+1).

It is clear that E[ξ2
2,n] = Var[ξ2,n] = O(Eϵ2

1 Eϵ2
2/n) and thus ξ2,n = Op((Eϵ2

1 Eϵ2
2 )1/2/

√
n)

p
−→ 0. To

see the asymptotic behavior of ξ1,n, we observe

Var
(
ξ1,n

)
=

4
n

n−1∑
j=1

Var
(
ϵ1(t j)ϵ2(t j)

)
=

4
n

n−1∑
j=1

E
(
ϵ2

1 (t j)
)

E
(
ϵ2

2 (t j)
)
→ 4Eϵ2

1 Eϵ2
2 .

By the central limit theorem of i.i.d. sequences, ξ1,n
d−→ N(0, 4Eϵ2

1 Eϵ2
2 ). Similarly, it can be shown

that ξ3,n and ξ4,n follow asymptotically N(0, Eϵ2
1 Eϵ2

2 ). Since ϵis are independent, so are ξ1,n, ξ3,n and
ξ4,n. Hence we have the normality result:

1
√

n
[ϵ1, ϵ2]T

d−→ N
(
0, 6Eϵ2

1 Eϵ2
2

)
,

and furthermore we have

[ϵ1, ϵ2]T =
(
6nEϵ2

1 Eϵ2
2

) 1
2 Z1 + ϵ1(t0)ϵ2(t0) + ϵ1(tn)ϵ2(tn) =

(
6nEϵ2

1 Eϵ2
2

) 1
2 Z1 + Op

((
Eϵ2

1 Eϵ2
2

) 1
2
)
. (5.1)

Secondly, we observe

[X1, ϵ2]T =

n−1∑
j=0

∆X1(t j)∆ϵ2(t j) =
n−1∑
j=0

∆X1(t j)
(
ϵ2(t j+1) − ϵ2(t j)

)
=

n−1∑
j=1

[
∆X1(t j−1) − ∆X1(t j)

]
ϵ2(t j) + ∆X1(tn−1)ϵ2(tn) − ∆X1(t0)ϵ2(t0) =: ζ1,n + ζ2,n,

where

ζ1,n :=
n−1∑
j=1

[
∆X1(t j−1) − ∆X1(t j)

]
ϵ2(t j), ζ2,n := ∆X1(tn−1)ϵ2(tn) − ∆X1(t0)ϵ2(t0).

It is clear that Var(ζ2,n) = Op(1/n), and thus ζ2,n = Op(1/
√

n). Note that ζ1,n is the sum of a martingale
triangular array with increment [∆X1(t j−1)−∆X1(t j)]ϵ2(t j). By (A2) and by the martingale central limit
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theorem (Hall and Heyde, 1980, Chapter 3), ζ1,n is asymptotically normal with mean zero, condition-
ally on the X1 process. Now we find the asymptotic (conditional) variance of ζ1,n, i.e., the asymptotic
(conditional) variance of [X1, ϵ2]T . Observe

Var ([X1, ϵ2]T |X1) = Var

 n−1∑
j=0

∆X1(t j)∆ϵ2(t j)

∣∣∣∣∣∣∣∣ X1

 = n−1∑
j=0

(
∆X1(t j)

)2
Var

(
∆ϵ2(t j)|X1

)
= [X1, X1]T 2Eϵ2

2 .

The asymptotic behavior of [ϵ1, X2]T follows in the same way. Therefore, we have

[X1, ϵ2]T =
(
2Eϵ2

2 [X1, X1]T

) 1
2 Z2 + Op

(
1
√

n

)
, (5.2)

[ϵ1, X2]T =
(
2Eϵ2

1 [X2, X2]T

) 1
2 Z3 + Op

(
1
√

n

)
. (5.3)

It is clear that [X1, ϵ2]T and [ϵ1, X2]T are independent and it can be easily shown that Cov([ϵ1, ϵ2]T ,
[X1, ϵ2]T ) = 0. Hence by (5.1)–(5.3), the desired asymptotic result in Lemma 1 is completed. �

Proof of Lemma 2: The proof can be seen in Bibinger (2011b, pp. 20–23) whose Proposition A.1
presented the asymptotic normality of the discrete error of the closest synchronous approximation
that equals to the refresh time (Bibinger, 2012, p.2418). Thus we omit the detailed proof. �

Proof of Theorem 1: Since the noises are independent of X-processes, the proof is straightforward
from Lemmas 1 and 2. �

Proof of Theorem 2: By (4.3) and (4.4), we have

Ŝ 2
m, j =

(
ςm,1, jZm,1, j − ςm,2, jZm,2, j

)2
+ op(1), (5.4)

where Zm,i, j, i = 1, 2, are standard normal random variables and

ς2
m,1, j =

6
b2

j M
Eϵ2

1 Eϵ2
2 + b jM

1
2

T
M

∫ Tm

Tm−1

[
1 + ρ2(t)

]
σ2

1(t)σ2
2(t)H′(t)dt,

ς2
m,2. j =

6
b2

j M
2

Eϵ2
1 Eϵ2

2 + b jM
T
M

∫ Tm

Tm−1

[
1 + ρ2(t)

]
σ2

1(t)σ2
2(t)H′(t)dt

with cm = b jM1/2 and b jM in (4.4), respectively. Note that in (5.4), op(1) = Op(1/N1/3
m ) by the proof

of Theorem 3.1 of Hwang and Shin (2016). Now we take M = MN → ∞ with M1/4/N1/3
m → 0 for

each m as N → ∞, then

Ŝ 2
m, j = ς

2
m, jZ

2
m, j + op(1),

where Zm, j are standard normal random variables and ς2
m, j = ς

2
m,1, j + ς

2
m,2, j − 2ςm,1, jςm,2, j, which tends

to b jT
∫ Tm

Tm−1
[1 + ρ2(t)]σ2

1(t)σ2
2(t)H′(t)dt. Furthermore, we can express

ς2
m, j = b j fm

(
1 + Op

(
M−

1
4

))
,
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where fm := T
∫ Tm

Tm−1
[1 + ρ2(t)]σ2

1(t)σ2
2(t)H′(t)dt and Op(M−1/4)-term comes from ςm,1, jςm,2, j: Indeed,

ςm,1, jςm,2, j can be expressed as b j fmM−1/4 + op(M−1/4). Thus, we can express

Ŝ 2
m, j = b j fmZ2

m, j

(
1 + Op

(
M−

1
4

))
.

Write

1
N

N∑
j=1

Ŝ 2
m, j =

 1
N

N∑
j=1

(b j − b̄)Z2
m, j +

1
N

N∑
j=1

b̄Z2
m, j

 fm
(
1 + Op

(
M−

1
4

))
, (5.5)

where b̄ = (1/N)
∑N

j=1 b j. In the first term of the right-hand side of (5.5), (1/N)
∑N

j=1(b j− b̄)Z2
m, j can be

easily shown to converges to 0 in probability and in the second term, (1/N)
∑N

j=1 b̄Z2
m, j

p
−→ b̄E[Z2

m, j] =
b̄. Thus, we have

1
N

N∑
j=1

Ŝ 2
m, j

p
−→ fmb̄

(
1 + Op

(
M−

1
4

))
,

and also since we choose b j such that b̄→ 1, we have

1
N

N∑
j=1

Ŝ 2
m, j

p
−→ fm

(
1 + Op

(
M−

1
4

))
.

Hence, we obtain

1
NT

M∑
m=1

N∑
j=1

Ŝ 2
m, j

p
−→

M∑
m=1

fm
T

(
1 + Op

(
M−

1
4

))
=

 M∑
m=1

∫ Tm

Tm−1

[
1 + ρ2(t)

]
σ2

1(t)σ2
2(t)H′(t)dt

 (1 + Op

(
M−

1
4

))
= ϑ2

(
1 + Op

(
M−

1
4

))
which goes to ϑ2 as M → ∞. Therefore ϑ̂2 in (4.6) is a consistent estimator of ϑ2. �
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cesses with noise: Asymptotic distribution theory, Stochastic Processes and their Applications,
122, 2411–2453.

Dovonon P, Goncalves S, and Meddahi N (2013). Bootstrapping realized multivariate volatility mea-
sures, Journal of Econometrics, 172, 49–65.

Griffin JE and Oomen RCA (2011). Covariance measurement in the presence of non-synchronous
trading and market microstructure noise, Journal of Econometrics, 160, 58–68.

Hall P and Heyde CC (1980). Martingale Limit Theory and Its Application, Academic Press, New
York.

Hayashi T and Yoshida N (2005). On covariance estimation of non-synchronously observed diffusion
processes, Bernoulli, 11, 359–379.

Hwang E and Shin DW (2016). Two-stage stationary bootstrapping for bivariate average realized
volatility matrix under market microstructure noise and asynchronicity, Manuscript submitted.

Mykland PA and Zhang L (2002). ANOVA for diffusions (technical report), University of Chicago.
Voev V and Lunde A (2007). Integrated covariance estimation using high-frequency data in the pres-

ence of noise, Journal of Financial Econometrics, 5, 68–104.
Zhang L, Mykland PA, and Aı̈t-Sahalia Y (2005). A tale of two time scales: determining integrated

volatility with noisy high-frequency data, Journal of the American Statistical Association, 100,
1394–1411.

Received July 22, 2016; Revised September 2, 2016; Accepted September 2, 2016


