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Abstract
The stress-strength models have been intensively investigated in the literature in regards of estimating the

reliability θ = P (X > Y) using parametric and nonparametric approaches under different sampling schemes when
X and Y are independent random variables. In this paper, we consider the problem of estimating θ when (X, Y)
are dependent random variables with a bivariate underlying distribution. The empirical and kernel estimates of
θ = P (X > Y), based on bivariate ranked set sampling (BVRSS) are considered, when (X,Y) are paired dependent
continuous random variables. The estimators obtained are compared to their counterpart, bivariate simple random
sampling (BVSRS), via the bias and mean square error (MSE). We demonstrate that the suggested estimators
based on BVRSS are more efficient than those based on BVSRS. A simulation study is conducted to gain insight
into the performance of the proposed estimators. A real data example is provided to illustrate the process.

Keywords: bivariate simple random sampling, bivariate ranked set sampling, empirical and kernel
estimation, reliability, bias, mean square error

1. Introduction

In the literature, inference about θ = P (X > Y) has been extensively studied. In the area of reliability
for a system with strength X and stress Y , inference about θ = P (X > Y) as a measure of compo-
nent reliability is crucial (Kotz et al., 2003). In medicine, the parameter θ can be interpreted as the
effectiveness of treatment Y if X and Y are the outcomes of a control and an experimental treatment,
respectively (Ventura and Racugno, 2011). This quantity is also related to the Receiver Operating
Characteristic (ROC) curves, where θ is interpreted as an index of accuracy (Zhou, 2008). Therefore,
the estimation of θ = P (X > Y) has a wide range of applications in the literature.

This problem has been investigated from different points of views. For parametric inference,
assuming X and Y have independent exponential distributions, see Enis and Geisser (1971), Awad
et al. (1981), Tong (1974), and Johnson (1975). Moreover, Li et al. (1999) studied the problem of
estimating θ = P (X > c) based on simple random sampling (SRS) and ranked set sampling (RSS).
They showed that the estimators of θ = P (X > c) based on RSS were more efficient than those based
on SRS in terms of the variances.

In many situations the parameter θ may not be available in a closed form. This makes it difficult (if
at all feasible) to find a reparameterization involving θ to use any classical approaches. In particular,
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the use of the profile likelihood may be difficult if this reparameterization is not available (Dı́az-
Francés and Montoya, 2013). Alternative inferential approaches that overcome this difficulty are
Bayesian inference, nonparametric estimation and the use of bootstrap methods, which can be used
for obtaining confidence and credible intervals for the parameter of interest (AL-Hussaini et al., 1997;
Baklizi and Abu-Dayyeh, 2003; Baklizi and Eidous, 2006; Rubio and Steel, 2013; Zhou, 2008).

Currently, many authors have tried to estimate θ in the case where X and Y are dependent random
variables. For example Barbiero (2012) assumed that (X,Y) are jointly normally distributed; Rubio
and Steel (2013) assumed that X and Y are marginally distributed as a skewed scale mixture of normal
and constructed the corresponding joint distribution using a Gaussian copula; Domma and Giordano
(2013) constructed the joint distribution of (X, Y) using a Farlie-Gumbel-Morgenstern copula with
marginal distributions belonging to the Burr system; Domma and Giordano (2012) considered Dagum
distributed marginals and constructed their joint distribution using a Frank copula; among others
(Gupta et al., 2013; Nadarajah, 2005). In these papers, the importance of taking the assumption of
dependence between X and Y into consideration is illustrated using simulated and real data sets.

In most cases SRS is considered for estimating θ, however, some variations of RSS and SRS
with concomitant variable were considered for estimating θ, see for example Sengupta and Mukhuti
(2008) and Muttlak et al. (2010). RSS has been applied in many fields, including but not limited to
agricultural, environmental studies and recently in human populations. The motivation for using RSS
is that in some cases quantification (the actual measurement) of a sampling unit can be more costly
than the physical acquisition of the unit. For example, as stated by Samawi and Al-Sagheer (2001),
the level of bilirubin in the blood of infants can be ranked visually by observing: i) color of the face,
ii) color of the chest, iii) color of lower part of the body, iv) color of terminal parts of the whole body.
As the level of bilirubin in the blood increases, the yellowish discoloration goes from i) to iv) (Samawi
and Al-Sagheer, 2001). Also, in some circumstances, considerable cost savings can be achieved if the
number of measured sampling units are only a small fraction of the number of available units, but
all units contribute to the information content of the measured units, which is the case for RSS. RSS
was first introduced by McIntyre (1952). RSS has been shown to be superior to the standard SRS for
estimating some population parameters. More details about RSS and its variations are available in
Kaur et al. (1995), Patil et al. (1999), Samawi et al. (1996) and Samawi and Muttlak (1996, 2001).
However, all variations of RSS sampling methods, preformed their ranking on one and only one of
the study variables.

For multiple characteristics estimation, few authors worked in this area such as Patil et al. (1993,
1994) and Norris et al. (1995). They used a bivariate ranked set sampling procedure by ranking only
on one of the characteristics (X or Y). However, bivariate ranked set sampling (BVRSS) by ranking
on both characteristics (X and Y) was introduced by Al-Saleh and Zheng (2002). They indicated that
BVRSS procedure could easily be extended to a multivariate one. The focus of this paper is to show
that the use of BVRSS will substantially improve the performance of the empirical and the kernel
estimators for θ analytically and by simulation. Section 2 discusses the empirical estimator of θ and
its properties, while Section 3 discusses the kernel estimator and its properties. Section 4 provides the
simulation study. In Section 5 we illustrated the procedure using a real data set. Section 6 provides
the final remarks.

2. Empirical estimation of θ = P(X > Y)θ = P(X > Y)θ = P(X > Y)

2.1. Empirical estimation using BVSRS

First we consider the estimation of [θ = P(X > Y)] empirically, where (X,Y) is a bivariate random
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variable with joint probability density function (p.d.f.) fX,Y (x, y). Thus

θ =

∫ ∞

−∞

∫ x

−∞
fX,Y (x, y) dydx. (2.1)

An alternative approach is to set W = X − Y and then we have

θ = P(W > 0) =
∫ ∞

0
fW (w) dw = 1 − FW (0) = S W (0), (2.2)

where fW (w), FW (0) and S W (0) are the density, cumulative distribution function (c.d.f.), and the sur-
vival function of W, respectively. Let {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)} be an independent BVSRS from
fX,Y (x, y). The empirical estimator of θ based on these BVSRS for equation (2.1) is:

θ̂BVS RS =

∑n
i=1 I(Yi < Xi)

n
(2.3)

and for equation (2.2) is

θ̂BVS RS (W) =

∑n
i=1 I(Wi > 0)

n
. (2.4)

Note that both estimators are unbiased and with variances θ(1 − θ)/n and S W (0)(1 − S W (0))/n, respec-
tively. Moreover, θ̂BVS RS and θ̂BVS RS (W) are strongly consistent estimators of θ, or θ̂BVS RS

a.s.−−→ θ and

θ̂BVS RS (W)
a.s.−−→ θ, and are also asymptotically normally distributed, implying that

√
n(θ̂BVS RS − θ)

d−→
N(0, θ(1 − θ)) and

√
n(θ̂BVS RS (W) − θ)

d−→ N(0, S W (0)(1 − S W (0))), as n → ∞, as shown by Montoya
and Rubio (2014).

2.2. Empirical estimation using BVRSS

Based on Al-Saleh and Zheng (2002) description, a BVRSS can be obtained as follows: suppose
(X,Y) is a bivariate random vector with the joint p.d.f. f (x, y).

Step 1. A random sample of size r4 is identified from the population and randomly allocated into r4

pools of size r4 each so that each pool is a square matrix with r rows and r columns.

Step 2. In the first pool, rank each set (row) by a suitable method of ranking with respect to (w.r.t.)
the first characteristic (X). Then from each row identify the unit with the smallest rank w.r.t.
X.

Step 3. Rank the r minima obtained in Step 2, in a similar manner but w.r.t. the second characteristic
(Y). Then identify and measure the unit with the smallest rank w.r.t. Y . This pair of mea-
surements (x, y), which is resembled by the label (1, 1), is the first element of the BVRSS
sample.

Step 4. Repeat Steps 2 and 3 for the second pool, but in Step 3, the pair that corresponds to the
second smallest rank w.r.t. the second characteristic (Y) is chosen for actual measurement
(quantification). This pair is resembled by the label (1, 2).

Step 5. The process continues until the label (r, r) is resembled from the r2-th (last) pool.
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The above procedure produces a quantified BVRSS of size r2. The procedure can be repeated
m times to obtain a sample of size n = mr2. In sampling notation, assume that a random sample
of size mr4 is identified (no measurements were taken) from a bivariate probability density function,
say fX,Y (x, y) : (x, y) ∈ R2, with means µx and µy, variances σ2

x and σ2
y and correlation coefficient ρ.

Following the Al-Saleh and Zheng (2002) definition of BVRSS, then [(X[i]( j)k,Y(i)[ j]k), i = 1, 2, . . . , r;
j = 1, 2, . . . , r; and k = 1, 2, . . . ,m] denotes the BVRSS. Now, let fX[i]( j),Y(i)[ j] (x, y) be the joint p.d.f. of
[(X[i]( j)k,Y(i)[ j]k), k = 1, 2, . . . ,m]. Al-Saleh and Zheng (2002), with m = 1, showed that

1
r2

r∑
j=1

r∑
i=1

f[i]( j),(i)[ j](x, y) = fX,Y (x, y). (2.5)

Then using these BVRSSs, for equation (2.1), we propose the following empirical estimators of θ:

θ̂BVRS S =

∑m
k=1

∑r
i=1

∑r
j=1 I

(
X[i]( j)k > Y(i)[ j]k

)
n

; n = mr2 (2.6)

and for equation (2.2)

θ̂BVRS S (W) =

∑m
k=1

∑r
i=1

∑r
j=1 I(Wi, j,k > 0)

n
, (2.7)

where Wi, j,k = X[i]( j)k − Y(i)[ j]k.
Using equation (2.5) we have the following results.

Theorem 1.

(a) θ̂BVRS S and θ̂BVRS S (W) are unbiased estimators of θ.

(b)

Var
(
θ̂BVRS S

)
=

1
n

θ(1 − θ) −
∑r

i=1
∑r

j=1(θi j − θ)2

r2


and

Var
(
θ̂BVRS S (W)

)
=

1
n

S W (0)(1 − S W (0)) −
∑r

i=1
∑r

j=1

(
S W(i, j)(0) − S W (0)

)2

r2

 ,
where θi j = P(X[i]( j) > Y(i)[ j]), and S W(i, j)(0) = P(X[i]( j) − Y(i)[ j] > 0), i = 1, 2, . . . , r, j = 1, 2, . . . , r.

Proof: The proof of Theorem 1 is straightforward and it is omitted from the paper. �
Note that it is clear that the empirical estimate based on BVRSS has smaller variance than using

BVSRS for estimating θ.

Theorem 2. For fixed r and as m→ ∞, and hence n→ ∞, we have

(a) θ̂BVRS S and θ̂BVRS S (W) are strongly consist estimators of θ, or θ̂BVRS S
a.s.−−→ θ and θ̂BVRS S (W)

a.s.−−→
θ.

(b)
√

n(θ̂BVRS S − θ)
d−→ N(0,G) and

√
n(θ̂BVRS S (W) − θ) d−→ N(0,GS ), where G = θ(1 − θ) −

{∑r
i=1

∑r
j=1(θi j − θ)2}/r2 and G = S W (0)(1 − S W (0)) − {∑r

i=1
∑r

j=1(S W(i, j)(0) − S W (0))2}/r2.

Proof: The proof follows by the law of large number and the central limit theorem. �
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3. Kernel estimation of θ = P(X > Y)θ = P(X > Y)θ = P(X > Y)

3.1. Kernel estimation using BVSRS

Montoya and Rubio (2014) proposed nonparametric kernel estimators for θ from equations (2.1) and
(2.2) as follows: Let H be a symmetric, positive definite, 2 × 2 bandwidth matrix and k2 be a two-
dimensional kernel function (Parzen, 1962). Define kH (t) = (det H)−1/2 k2

(
H1/2t

)
, t ∈ R2, where,

t = {t1 = x − X, t2 = y − Y}. Using kernel density estimation, then we will have the kernel estimations
for θ in equations (2.1) and (2.2) are defined as

θ̂K(BVS RS ) =

∫ ∞

−∞

∫ x

−∞

1
n

n∑
i=1

kH (x − Xi, y − Yi) dydx

=

∫ ∞

−∞

∫ t1

−∞

1
n

f̂BVS RS (t1, t2) dt1dt2 (3.1)

and

θ̂K(BVS RS (W)) =
1
nh

n∑
i=1

∫ ∞

0
k1

(w −Wi

h

)
dw

= 1 − 1
n

n∑
i=1

K1

(Wi

h

)
=

∫ ∞

0
f̂BVS RS (W) (w) dw

= 1 − F̂BVS RS (0) , (3.2)

where, K1(w/h) = (1/h)
∫ ∞

0 k1(w/h)dw, k1 is one-dimensional kernel function with a bandwidth h > 0.
One of the most common choices of kernel functions for one or two-dimensional kernels are the
univariate and the bivariate normal densities, respectively. For the choice of the bandwidth matrix h
and H we refer to Montoya and Rubio (2014) for full discussion. Moreover, they showed that, under

some regularity conditions, θ̂K(BVS RS )
P−→ θ (weakly consistent estimator) and θ̂K(BVS RS (W))

a.s.−→ θ
(strong consistent estimator).

3.2. Kernel estimation using BVRSS

Again, let [(X[i]( j)k,Y(i)[ j]k), i = 1, 2, . . . , r; j = 1, 2, . . . , r; and k = 1, 2, . . . ,m] be a BVRSS from
(X,Y) with f (x, y). Similarly, define kH(t) = (det H)−1/2k2(H1/2t), t ∈ R2. Then using the BVRSS
samples, we propose the following kernel estimators of θ:

θ̂K(BVRS S ) =

∑m
k=1

∑r
i=1

∑r
j=1

∫ ∞
−∞

∫ x
−∞ kH

(
x − X[i]( j)k, y − Y(i)[ j]k

)
dydx

n

=

∫ ∞

−∞

∫ x

−∞
f̂BVRS S (t1, t2) dt1dt2; n = mr2, (3.3)



390 Hani M. Samawi, Amal Helu, Haresh D. Rochani, Jingjing Yin, Daniel Linder

for equation (2.1) and

θ̂K(BVRS S (W)) =

∑m
k=1

∑r
i=1

∑r
j=1

∫ ∞
0 K1

(w−Wi j

h

)
dw

nh

= 1 − 1
n

m∑
k=1

r∑
i=1

r∑
j=1

K1

(
w −Wi j

h

)
=

∫ ∞

0
f̂BVRS S (W)(w)dw

= 1 − F̂BVRS S (0) (3.4)

for equation (2.2), where Wi jk = X[i]( j)k − Y(i)[ j]k.

Theorem 3.

(a) E
(
θ̂K(BVRS S )

)
= E

(
θ̂K(BVS RS )

)
, E

(
θ̂K(BVRS S (W))

)
= E

(
θ̂K(BVS RS (W))

)
,

(b) Var
(
θ̂K(BVRS S )

)
=

Var
(
θ̂K(BVS RS )

)
− 1

nr2

r∑
i=1

r∑
j=1

(
Ei j − E

)2
 = V1,

(c) Var
(
θ̂K(BVRS S (W))

)
=

Var
(
θ̂K(BVS RS (W))

)
− 1

nr2

r∑
i=1

r∑
j=1

(
Di j − D

)2
 = V2,

where,

Ei j = EX[i]( j),Y(i)[ j]

[∫ ∞

−∞

∫ u

−∞
KH

(
u−X[i]( j), ν−Y(i)[ j]

)
dνdu

]
, E = EX,Y

[∫ ∞

−∞

∫ u

−∞
KH (u−X, ν−Y) dνdu

]
,

Di j = EWi j

[∫ ∞

0

1
h

k1

(
w −Wi j

h

)
dw

]
, and D = EW

[∫ ∞

0

1
h

k1

(w −W
h

)
dw

]
.

Proof:

(a) E
(
θ̂K(BVRS S )

)
= E


∑m

k=1
∑r

i=1
∑r

j=1

∫ ∞
−∞

∫ u
−∞ KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dνdu

n


= E


∑r

i=1
∑r

j=1

∫ ∞
−∞

∫ u
−∞ KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dνdu

r2


=

1
r2

∫ ∞

−∞

∫ ∞

−∞

 r∑
i=1

r∑
j=1

∫ ∞

−∞

∫ u

−∞
KH

(
u−X[i]( j)k, ν−Y(i)[ j]k

)
dνdu

 f[i]( j),(i)[ j](x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ u

−∞
KH (u − x, ν − y) dudν

]
1
r2

r∑
i=1

r∑
j=1

f[i]( j),(i)[ j](x, y)dxdy,

then by using (2.5), we have

E
(
θ̂K(BVRS S )

)
=

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞

∫ u

−∞
KH (u − x, ν − y) dudν

)
f (x, y)dxdy

= E
(
θ̂K(BVS RS )

)
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Similarly, we can show that E(θ̂K(BVRS S (W))) =E(θ̂K(BVS RS (W))).

(b) Var
(
θ̂K(BVRS S )

)
= Var

 1
mr2

m∑
k=1

r∑
i=1

r∑
j=1

∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dνdu


=

1
mr4 Var

 r∑
i=1

r∑
j=1

∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dνdu


=

1
mr4

 r∑
i=1

r∑
j=1

Var
[∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dνdu

]
=

1
mr4

r∑
i=1

r∑
j=1

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dudν − Ei j

]2

f[i]( j),(i)[ j](x, y)dxdy,

where,

Ei j = EX[i]( j),Y(i)[ j]

(∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j), ν − Y(i)[ j]

)
dudν

)
then,

Var
(̂
θK(BVRS S )

)
=

1
mr4

 r∑
i=1

r
∑
j=1

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dudν−Ei j ± E

]2

f[i]( j),(i)[ j](x, y)dxdy


=

1
mr4

r∑
i=1

r∑
j=1


∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dudν − E

]2

f[i]( j),(i)[ j](x, y)dxdy

− 2
(
Ei j − E

) ∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ u

−∞
KH

(
u − X[i]( j)k, ν − Y(i)[ j]k

)
dudν − E

]
f[i]( j),(i)[ j](x, y)dxdy

+
(
Ei j − E

)2
}

=
1

mr4

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ u

−∞
KH (u − x, ν − y) dudν − E

]2 1
r2

r∑
i=1

r∑
j=1

f[i]( j),(i)[ j] (x, y) dxdy


− 1

mr4

r∑
i=1

r∑
j=1

(
Ei j − E

)2
,

where, E = EX,Y (
∫ ∞
−∞

∫ u
−∞ KH (u − X, ν − Y) dudν).

Using (2.5) again, we have

Var
(
θ̂K(BVRS S )

)
=

Var
(
θ̂K(BVS RS )

)
−

(
1

mr4

) r∑
i=1

r∑
j=1

(
Ei j − E

)2
 .
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(c) Can be proved similarly. �

As in Montoya and Rubio (2014), and under the same assumptions, we need to show that θ̂K(BVS RS )

and θ̂K(BVS RS (w)) consistent estimators for θ.

Theorem 4. Assume that the two-dimensional kernel function k2 is bounded on R2 and the one-
dimensional kernel function k1 is bounded on R with respect to L2 and L1 the distances

L2 (u) = sup
∥t∥≥u

k2 (t) and L1 (u) = sup
|t|≥u

k1 (t) ,

for u ≥ 0. Let the bandwidth satisfy h > 0, h −→ 0, n = mr2, nh2 −→ ∞ as n −→ ∞, and hence as
m −→ ∞. For the bivariate case, define the bandwidth matrix H = diag (h). Assuming that the same
bandwidth is used in both f̂BVRS S (x, y) and f̂BVS RS (x, y) and in both f̂BVRS S (W) (w) and f̂BVS RS (W) (w) ,
then if one of the following conditions stated by Montoya and Rubio (2014), Silverman (1986) and
Wand and Jones (1995), holds

1. | t | k1 (t) −→ 0 as | t | −→ ∞; ∥ t ∥2 k2 (t) −→ 0 as ∥ t ∥ −→ ∞ and fX,Y and fW are almost surely
continuous.

2. fW is bounded; fX,Y is bounded.

3.
∫ ∞

0 L1 (u) du < ∞;
∫ ∞

0 uL2 (u) du < ∞.

We have θ̂K(BVRS S )
p
−→ θ and θ̂K(BVRS S (W))

p
−→ θ.

Proof: First, we note that

MSE
(
θ̂K(BVRS S )

)
= E

[∣∣∣θ̂K(BVRS S ) − θ
∣∣∣2] = Bias

(
θ̂K(BVRS S )

)2
+ Var

(
θ̂K(BVRS S )

)
and

MSE
(
θ̂K(BVRS S )(W)

)
= E

[∣∣∣θ̂K(BVRS S )(W) − θ
∣∣∣2] = Bias

(
θ̂K(BVRS S )(W)

)2
+ Var

(
θ̂K(BVRS S )(W)

)
.

However, by Theorem 3 we have

Bias
(
θ̂K(BVRS S )

)
= Bias

(
θ̂K(BVS RS )

)
, Bias

(
θ̂K(BVRS S )(W)

)
= Bias

(
θ̂K(BVS RS )(W)

)
,

and

Var
(
θ̂K(BVRS S )

)
< Var

(
θ̂K(BVS RS )

)
, Var

(
θ̂K(BVRS S )(W)

)
< Var

(
θ̂K(BVS RS )(W)

)
.

Montoya and Rubio (2014) showed that,

MSE
(
θ̂K(BVRS S )

)
−→ 0 and MSE

(
θ̂K(BVRS S (W))

)
−→ 0

and then

θ̂K(BVS RS )
p
−→ θ and θ̂K(BVS RS (W))

p
−→ θ.
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However,

MSE
(
θ̂K(BVRS S )

)
< MSE

(
θ̂K(BVS RS )

)
−→ 0

and

MSE
(
θ̂K(BVRS S (W))

)
< MSE

(
θ̂K(BVS RS (W))

)
−→ 0.

Therefore,

θ̂K(BVRS S )
p
−→ θ and θ̂K(BVRS S (W))

p
−→ θ.

Moreover, by the central limit theorem, we have
√

n
(
θ̂K(BVRS S ) − θ

) d−→ N (0, nV1)

and
√

n
(
θ̂K(BVRS S (W)) − θ

) d−→ N (0, nV2) .

�

4. Simulation studies

We conduct a computer simulations to gain insight into the efficiency of estimating θ. Placketts class of
bivariate distribution with fixed marginal distribution functions F(x) and G(x) are used to investigate
the performance of the proposed estimators. The Placketts joint c.d.f is given by

H(x, y) =


S (x, y) −

[
S 2(x, y) − 4ψ (ψ − 1) F(x)G(y)

] 1
2

2 (ψ − 1)
, if ψ , 1,

F(x)G(y), if ψ = 1,

where S (x, y) = 1 + (ψ − 1)
[
F(x) +G(y)

]
and the parameter ψ governs the dependence between X

and Y . The reason for choosing this class of bivariate distributions is that it covers the full range of
dependency. For example, in case of U(0, 1) marginal distributions, we have the following:

(a) ψ→ 0⇒ X = 1 − Y, (b) ψ = 1⇒ X and Y are independent, (c) ψ→ ∞⇒ X = Y.

For more detailed description of Placketts distribution and its random generation, see Johnson (1987).
Four types of dependencies from strongly negative to strongly positive corresponding to ψ =

0.1, 1.0, 2.0, 10.0 and two marginal distributions, exponential with mean (µ) = 0.5 or 1.0, and gamma
with scale parameter β = 1 or 2 and shape parameter λ = 3 are considered. The performance of the
estimators of θ is investigated for r = 2, 3, 4 and m = 20, therefore the sample sizes used are n =
80, 180 and 320. However, we present the results of only set sizes r = 3 and 4 to reduce the number
of tables in our simulation, since the other cases provide similar results. Using 5,000 replications,
we estimate the bias and mean square errors (MSE) for the estimators of θ. The bound on the error
of estimation (using 95% confidence level) is approximately ±0.013. The relative efficiency of using
BVRSS relative to using BVSRS for estimating θ is defined by REF = MSE(BVSRS)/MSE (BVRSS).

Our simulation indicates that using BVRSS for estimating θ is at least more efficient for all pre-
sented cases in Tables 1 and 2. The relative efficiency is ranging from 1.02 to 2.28 depending on the
strength and the direction of the dependency between X and Y and the underlying marginal distribu-
tions. However, increasing the set size r increases the efficiency. However, increasing the cycle size
m has no effect on the efficiency of the proposed estimators but it decreases the absolute bias of the
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Table 1: Performance of empirical and kernel estimators for two exponential marginal distribution and m = 20

r
Parameters Empirical estimation Kernal estimation

µx µy ψ θ
BVSRS BVRSS REF BVSRS BVSRS BVRSS BVRSS REFvariance variance |Bias| MSE |Bias| MSE

3 1.0 0.5 0.1 0.627 0.0013 0.0009 1.44 0.0056 0.0008 0.0054 0.0005 1.60
3 1.0 0.5 1.0 0.667 0.0012 0.0008 1.50 0.0166 0.0010 0.0166 0.0008 1.25
3 1.0 0.5 2.0 0.695 0.0012 0.0009 1.33 0.0275 0.0015 0.0269 0.0014 1.07
3 1.0 0.5 10.0 0.797 0.0009 0.0006 1.50 0.0793 0.0074 0.0779 0.0071 1.04
3 1.0 1.0 0.1 0.500 0.0015 0.0009 1.67 0.0011 0.0009 0.0012 0.0005 1.80
3 1.0 1.0 1.0 0.500 0.0014 0.0009 1.56 0.0028 0.0009 0.0031 0.0005 1.80
3 1.0 1.0 2.0 0.500 0.0013 0.0009 1.44 0.0104 0.0010 0.0087 0.0006 1.67
3 1.0 1.0 10.0 0.500 0.0013 0.0008 1.63 0.0855 0.0091 0.0855 0.0090 1.01
4 1.0 0.5 0.1 0.627 0.0007 0.0004 1.75 0.0060 0.0005 0.0057 0.0003 1.67
4 1.0 0.5 1.0 0.667 0.0007 0.0004 1.75 0.0131 0.0007 0.0134 0.0005 1.40
4 1.0 0.5 2.0 0.695 0.0007 0.0004 1.75 0.0199 0.0010 0.0202 0.0009 1.11
4 1.0 0.5 10.0 0.797 0.0005 0.0003 1.67 0.0666 0.0052 0.0657 0.0051 1.02
4 1.0 1.0 0.1 0.500 0.0008 0.0004 2.00 0.0003 0.0005 0.0000 0.0002 2.50
4 1.0 1.0 1.0 0.500 0.0008 0.0004 2.00 0.0038 0.0005 0.0036 0.0003 1.67
4 1.0 1.0 2.0 0.500 0.0008 0.0005 1.60 0.0123 0.0007 0.0124 0.0005 1.40
4 1.0 1.0 10.0 0.500 0.0008 0.0005 1.60 0.0904 0.0092 0.0908 0.0091 1.01
BVRSS = bivariate ranked set sampling; BVSRS = bivariate simple random sampling; MSE = mean square error.

Table 2: Performance of empirical and kernel estimators for two gamma marginal distributions with (λx = 3 and
λy = 3) and m = 20

r
Parameters Empirical estimation Kernal estimation

µx µy ψ θ
BVSRS BVRSS REF BVSRS BVSRS BVRSS BVRSS REFvariance variance |Bias| MSE |Bias| MSE

3 2.0 1.0 0.1 0.730 0.0011 0.0007 1.57 0.0099 0.0009 0.0093 0.0005 1.80
3 2.0 1.0 1.0 0.790 0.0009 0.0006 1.50 0.0132 0.0008 0.0129 0.0006 1.33
3 2.0 1.0 2.0 0.826 0.0008 0.0004 2.00 0.0183 0.0009 0.0185 0.0007 1.29
3 2.0 1.0 10.0 0.918 0.0004 0.0004 1.00 0.0251 0.0010 0.0251 0.0009 1.11
3 1.0 1.0 0.1 0.500 0.0013 0.0010 1.30 0.0001 0.0010 0.0004 0.0006 1.67
3 1.0 1.0 1.0 0.500 0.0014 0.0010 1.40 0.0000 0.0010 0.0010 0.0006 1.67
3 1.0 1.0 2.0 0.500 0.0014 0.0009 1.56 0.0007 0.0009 0.0011 0.0005 1.80
3 1.0 1.0 10.0 0.500 0.0014 0.0009 1.56 0.0007 0.0009 0.0002 0.0005 1.80
4 2.0 1.0 0.1 0.730 0.0006 0.0004 1.50 0.0072 0.0004 0.0073 0.0003 1.33
4 2.0 1.0 1.0 0.790 0.0006 0.0004 1.50 0.0121 0.0005 0.0115 0.0003 1.67
4 2.0 1.0 2.0 0.826 0.0005 0.0003 1.67 0.0155 0.0006 0.0154 0.0005 1.20
4 2.0 1.0 10.0 0.918 0.0002 0.0002 1.00 0.0211 0.0006 0.0212 0.0006 1.00
4 1.0 1.0 0.1 0.500 0.0008 0.0005 1.60 0.0013 0.0006 0.0005 0.0003 2.00
4 1.0 1.0 1.0 0.500 0.0008 0.0005 1.60 0.0014 0.0005 0.0007 0.0003 1.67
4 1.0 1.0 2.0 0.500 0.0008 0.0005 1.60 0.0007 0.0005 0.0006 0.0003 1.67
4 1.0 1.0 10.0 0.500 0.0007 0.0004 1.75 0.0005 0.0005 0.0007 0.0002 2.50
BVRSS = bivariate ranked set sampling; BVSRS = bivariate simple random sampling; MSE = mean square error.

kernel estimators so we omitted the tables with m = 10.

5. Real data analysis

In order to illustrate estimation of θ = P(X > Y) under two different sampling schemes, i.e., BVSRS
and BVRSS, the China Health and Nutrition Survey (CHNS) data set is used (Yan et al., 2012). During
the last several years, the clinicians have realized the importance of the lipid-transporting apolipopro-
teins, such as apoA and apoB which transport high-density lipoprotein (HDL, good) cholesterol and
low-density lipoprotein (LDL, bad) cholesterol particles, respectively (Walldius et al., 2004). It is
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Table 3: Kernel smoothed and empirical estimates of θ = P(X > Y) under two sampling schemes (BVSRS vs.
BVRSS)

Population θ θ̂BVS RS V̂ar
(
θ̂BVS RS

) θ̂BVS RS V̂ar
(
θ̂BVS RS

)
(N = 10187) (n = 60) (n = 60)

Kernal 0.7678 0.7572 0.0022 0.7553 0.0017
Empirical 0.7651 0.7661 0.0031 0.7650 0.0024

The estimates and variances are calculated based on 500 bootstrap samples.
BVRSS = bivariate ranked set sampling; BVSRS = bivariate simple random sampling.

expected that healthier individual should have larger apoA values than apoB, so they have less risk
for cardiovascular disease. These apolipoproteins can be applied as alternative biomarkers to the
traditional LDL and HDL biomarkers, which are sometimes more advantageous.

For example, compared to the traditional biomarker LDL-C and HDL-C, taking the measure-
ment of apoB/apoA-I ratio does not require fasting, and the measurement of apoB and apoA-I are
standardized and easy to compare across studies (Walldius and Jungner, 2006). Instead of the ratio
between apoA and apoB, alternatively, we can consider the probability of apoA being greater than
apoB, where both were from the same individual (i.e., θ = P(apoA > apoB)). If this probability is
significantly larger than 0.5, then we can say apoA is stochastically larger than apoB for the study
population, thus concluding the study population is relatively at low risk of cardiovascular disease.

The data set contains apoA and apoB biomarker values taken from 10,187 Chinese children and
adults (aged ≥ 7) in year 2009. By assuming the existing full data set as the study population, we
would want to collect a paired sub-sample of size 60 and each pair contains apoA and apoB values
from the same individual. Henceforth, two sub-samples are drawn based on BVSRS and BVRSS.
The kernel and empirical estimates and corresponding variances calculated by 500 resamples for
P(apoA > apoB) under the two sampling schemes are listed in Table 3. Note that the estimates of
the full data set are considered as the true value for the population parameter. For this data set, we
observed that both the kernel and the empirical estimates under the two sampling schemes are very
similar and are close to the true values, while BVRSS yields smaller estimated bootstrap variances.
Table 3 shows that the estimated P(apoA > apoB) is about 0.76 which is larger than 0.5. Therefore,
we can claim that the Chinese people (aged ≥ 7) are relatively at low risk of cardiovascular disease.

6. Final remarks and conclusions

The interest of drawing inferences about θ = P(X > Y) arises naturally in many areas of research,
including but not limited to the reliability for a system with strength X and stress Y , to medicine when
X and Y are the outcomes of a control and an experimental treatment where, the parameter θ can be
interpreted as the effectiveness of the treatment Y , and this quantity is also related to the Receiver
Operating Characteristic (ROC) curves, where θ is interpreted as an index of accuracy. Therefore, it
is of interest to find a sampling strategy which provides more structured and representative samples
to provide more efficient and reliable estimates of θ.

This paper shows that empirical and kernel estimates of θ based on BVRSS and BVSRS are
equivalent in terms of bias, with both methods have small biases. As expected, bias improves as the
sample size increases. However, using BVRSS is more efficient than using BVSRS in the case of
empirical and kernel estimation. If the ranking cost of the two variables is negligible compared with
that associated with taking their exact measurements, using BVRSS will result in reducing the number
of subjects in the study and hence the overall cost of the study.
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