DOI QR코드

DOI QR Code

Group Decision Making for New Professor Selection Using Fuzzy TOPSIS

퍼지 TOPSIS를 이용한 신임교수선택을 위한 집단의사결정

  • Kim, Ki-Yoon (Dept. of Business Administration, Kwangwoon University) ;
  • Yang, Dong-Gu (Dept. of Business Administration, Kwangwoon University)
  • Received : 2016.07.27
  • Accepted : 2016.09.20
  • Published : 2016.09.28

Abstract

The aim of this paper is to extend the TOPSIS(Technique for Order Performance by Similarity to Ideal Solution) to the fuzzy environment for solving the new professor selection problem in a university. In order to achieve the goal, the rating of each candidate and the weight of each criterion are described by linguistic terms which can be expressed in trapezoidal fuzzy numbers. In this paper, a vertex method is proposed to calculate the distance between two trapezoidal fuzzy numbers. According to the concept of the TOPSIS, a closeness coefficient is defined to determine the ranking order of all candidates. This research derived; 1) 4 evaluation criteria(research results, education and research competency, personality, major suitability) for new professor selection, 2) the 5 step procedure of the proposed fuzzy TOPSIS method for the group decision, 3) priorities of 4 candidates in the new professor selection case. The results of this paper will be useful to practical expert who is interested in analyzing fuzzy data and its multi-criteria decision-making tool for personal selection problem in personal management. Finally, the theoretical and practical implications of the findings were discussed and the directions for future research were suggested.

본 논문의 목적은 대학의 신임교수선택 문제를 해결하기 위해서, TOPSIS 방법을 퍼지 환경에 적용시키는 것이다. 이를 위해서, 본 논문에서 각 후보자에 대한 평가와 평가기준에 대한 가중치는 사다리꼴 퍼지 수로 표현되는 언어적 용어로 기술된다. 여기서 두 사다리꼴 퍼지 수들 간의 거리는 vertex 방법으로 측정한다. 그리고 TOPSIS 개념에 따라서, 근접계수를 구해서 모든 후보자들의 우선순위를 결정한다. 본 연구에서는 1) 신임교수선택을 위한 4 개 평가기준(연구실적, 교육연구역량, 인성, 전공 적합성), 2) 집단의사결정을 위한 퍼지 TOPSIS 방법의 5단계 절차, 3) 신임교수선택 사례를 통해서 4명 후보자들의 우선순위를 도출했다. 본 논문의 결론은 퍼지 자료를 분석하려는 전문가에게 활용될 수 있고, 또한 인사관리에서 직원선택문제를 해결하는 다기준 의사결정 도구로도 유용하게 사용될 수 있다. 끝으로 이와 같은 연구결과가 갖는 이론적 및 실천적 함의를 논의했고, 향후 연구방향을 제시했다.

Keywords

References

  1. G. Kim, C. S. Park, and K. P. Yoon, "Identifying Investment Opportunities for Advanced Manufacturing Systems with Comparative -Integrated Performance measurement", International Journal of Production Economics, Vol.50, pp.23-33, 1997. https://doi.org/10.1016/S0925-5273(97)00014-5
  2. Y. J. Kim, S. H. Jin, and S. T. Lee, "A Theoretical Framework of Strategic Decision Making Supporting System", Journal of Digital Policy & Management, Vol.10, No.10, pp.97-106, 2012. 11.
  3. L. A. Zadeh, Fuzzy Sets, Information Control, pp. 338-353, 1965.
  4. V. Belton and T. J. Stewart, Multiple Criteria Decision Analysis: An Integrated Approach, Boston: Kluwer Academic Publications, 2002.
  5. R. L. Keeney and H. Raiffa, Decision with Multiple Objectives: Preference and Value Trade Offs, John Wiley and Sons, 1976.
  6. D. H. Byun, "Evaluating Usability of E-government Web Sites Using the AHP", Journal of Digital Policy & Management, Vol.8, No.3, pp.19-37, 2010, 9.
  7. D. H. Byun, "Selecting a Mobile Using the Analytic Hierarchhy Process", Journal of Digital Policy & Management, Vol.9, No.4, pp.1-8, 2011, 8.
  8. H. G. Hong, "Weight Analysis of Critical Sucess Factors for Business Intelligence System", Journal of Digital Convergence, Vol.10, No.2, pp. 93-98. 2012. 8. https://doi.org/10.14400/JDPM.2012.10.2.093
  9. H. I, Kwon and Y. B. Na, "Research on ebook Market Activation Factor in the Viewpoint of CPND Ecosystem: Focused in the Publisher AHP", Journal of Digital Convergence, Vol.13, No.4, pp.51-59, 2015, 4. https://doi.org/10.14400/JDC.2015.13.4.51
  10. Y. J. Ham, C. W. Ahn, K. H. Kim, G. B. Park, K. J. Kim, D. Y. Lee, and S. M. Park, "A Study on Policy Priorities for Implementing Big Data Analytics in the Social Security Sector: Adopting AHP Methodology", Journal of Digital Policy & Management, Vol.12, N0.8, pp.49-60, 2014, 8.
  11. Y. K, Lee and K. H. Youn, "Search Role of Government for Promoting IoT Industry: Utilizing Importance of Individual Sub-Policies Using AHP", Journal of Digital Convergence, Vol.14, No.5, pp.47-55, 2016, 5. https://doi.org/10.14400/JDC.2016.14.5.47
  12. A. Kelemenis, K. Ergazakis, and D. Askounis, "Support Managers' Selection Using an Extension of Fuzzy TOPSIS", Expert Systems with Applications, Vol 38, pp.2774-2782, 2011. https://doi.org/10.1016/j.eswa.2010.08.068
  13. C. T. Chen, "Extension of the TOPSIS for Group Decision-making under Fuzzy Environment", Fuzzy Sets and Systems, Vol.114, pp.1-9, 2000. https://doi.org/10.1016/S0165-0114(97)00377-1
  14. D-F Li, "Compromise Ratio Method for Fuzzy Multi-attribute Group Decision Making", Applied Soft Computing , Vol.7, pp.807-817, 2007. https://doi.org/10.1016/j.asoc.2006.02.003
  15. I., N. Mahdavi, A. Mahdavi-Amiri, A. Heidarzade, and R. Nourifar, "Designing a Model of Fuzzy TOPSIS in Multiple Criteria Decision Making", Applied Mathematics and Computation, Vol.206, pp.607-617, 2008. https://doi.org/10.1016/j.amc.2008.05.047
  16. B. F. Ashtiani, A. M. Haghighirad, and G. Montazer, "Extension of Fuzzy TOPSIS Method Based on Interval-Valued Fuzzy Sets", Applied Soft Computing, pp.457-461, 2009.
  17. X. Sang, X. Liu, and J. Qin, "An Analytical Solution to Fuzzy TOPSIS and its Application in Personnel Selection for Knowledge-Intensive Enterprise", Applied Soft Computing, Vol.30, pp.190-204, 2015. https://doi.org/10.1016/j.asoc.2015.01.002
  18. H.-S. Shih, H.-J. Shyur, and E. S. Lee, "An Extension of TOPSIS for Group Decision Making", Mathematical and Computer Modeling, Vol.45, pp.801-813, 2007. https://doi.org/10.1016/j.mcm.2006.03.023
  19. M. Izadikhah, "Using the Hamming ditance to extended TOPSIS in a fuzzy environment", Journal of Computational and Applied Mathematics, Vol.231, pp.200-207, 2009. https://doi.org/10.1016/j.cam.2009.02.102
  20. M. Saremi, S. F. Mousavi, and A. Sanayei, "TQM Consultant Selection in SMEs with TOPSIS under Fuzzy Environment", Expert Systems with Application, Vol.36, pp.2742-2749, 2009. https://doi.org/10.1016/j.eswa.2008.01.034
  21. Z.-P. Fan and B. Feng, "A Multiple Attributes Decision Making Method Using Individual and Collaborative Attribute Data in a Fuzzy Environment", Information Science, Vol.179, pp.3603-3618, 2009. https://doi.org/10.1016/j.ins.2009.06.037
  22. A. Kelemenis, and D. Askounis, "A New TOPSISased Multi-Criteria Approach to Personnel Selection", Expert Systems with Applications, Vol 37, pp.4999-5008, 2010. https://doi.org/10.1016/j.eswa.2009.12.013
  23. M. Dursun and E. E. Karsak, "A Fuzzy MCDM Approach for Personnel Selection", Expert Systems with Applications, Vol.37, pp.4324-4330, 2010. https://doi.org/10.1016/j.eswa.2009.11.067
  24. C. L. Hwang and K. Yoon, Multiple Attributes Decision Making Methods and Applications, Springer, Berlin Heidelberg, 1981.
  25. S. H. Amin and J. Razmi, "An Integrated Fuzzy Model for Supplier Management: A Case Study of ISP Selection and Evaluation", Expert Systems with Applications, Vol.36, pp.8639-8648, 2009. https://doi.org/10.1016/j.eswa.2008.10.012
  26. C.-T. Chen, C.-T. Lin, and S.-F. Huang, "A Fuzzy Approach for Supplier Evaluation and Selection in Supply Chain Management", International Journal of Production Economics, Vol.102, pp.289-301, 2006 https://doi.org/10.1016/j.ijpe.2005.03.009
  27. L. S. Kim, "Convergence of Information Technology and Corporate Strategy", Journal of the Korea Convergence Society, Vol.6, No.6, pp.17-26, 2015. https://doi.org/10.15207/JKCS.2015.6.6.017
  28. Y. J. Kim, "Convergence of Business Information System Process using Knowledge-based Method", Journal of the Korea Convergence Society, Vol.6, No. 4, pp.65-71, 2015. https://doi.org/10.15207/JKCS.2015.6.4.065