DOI QR코드

DOI QR Code

Entrainer Enhanced Reactive Distillation for Production of Butyl Acetate: Experimental Investigation in Pilot-Scale

부틸 아세테이트 생산을 위한 외부 공비제 첨가 반응증류: 파일럿 규모 실험을 통한 연구

  • Yang, Jeongin (Department of Chemical Engineering, Chungnam National University) ;
  • Lim, Honggyu (Department of Chemical Engineering, Chungnam National University) ;
  • Lim, Sungkyu (Department of Chemical Engineering, Chungnam National University) ;
  • Baek, Gayoung (Department of Chemical Engineering, Chungnam National University) ;
  • Han, Myungwan (Department of Chemical Engineering, Chungnam National University)
  • Received : 2015.12.03
  • Accepted : 2016.08.17
  • Published : 2016.10.01

Abstract

Butyl acetate is produced from acetic acid and butanol via an esterification reaction in reactive distillation (RD). The product, butyl acetate, has been used as an internal entrainer until now. In this case, butyl acetate and water are removed at the top of column and separated into two different phases (organic and aqueous phases) after condensation, and butyl acetate rich organic phase is refluxed into the RD. This method makes butyl acetate remain high at the reactive zone, leading to lower equilibrium conversion and product yield. We introduced an extraneous entrainer to solve the problem. The extraneous entrainer forms a new azeotrope with water. The proposed process provides lower concentration of butyl acetate in the reactive zone than conventional RD processes using an internal entrainer. We compared the yield and production rate of butyl acetate between the proposed and conventional processes through pilot-scale experiments. Experimental and simulation results showed that the proposed process was more efficient than conventional process using internal entrainer.

부틸 아세테이트는 반응증류탑에서 초산과 부탄올의 에스테르 교환반응에 의해 제조된다. 기존의 반응증류 공정은 생성물인 부틸 아세테이트가 내부 공비첨가제로 사용되는데, 이 경우 부틸 아세테이트가 물과 함께 탑상으로 제거된 후 상 분리를 거쳐 반응증류탑으로 환류된다. 이는 생성물인 부틸 아세테이트가 반응영역에 많이 분포하게 하여 반응의 평형 전환율이 낮아지고 이에 따라 생성물의 수율이 저하되는 단점이 있다. 이러한 문제를 외부 공비첨가제를 사용하여 해결하였다. 외부 공비첨가제는 물과 새로운 공비를 형성하여 기존 공정에 비해 탑의 반응영역에서 부틸 아세테이트의 농도를 낮게한다. 본 연구에서는 싸이클로헥산을 외부 공비첨가제로 사용하였을 때와 내부 공비첨가제를 사용하였을 때 부틸 아세테이트의 수율과 생성 속도를 실험과 모사를 통하여 비교하였다. 이를 위하여 파일럿 규모의 반응증류탑으로 실험을 진행하였으며, 실험 및 모사 결과를 통하여 외부 공비첨가제를 사용한 공정이 내부 공비첨가제를 사용한 경우보다 같은 에너지에서 보다 높은 부틸 아세테이트 수율을 나타냄을 보였다.

Keywords

References

  1. Janowsky, R., Groeble, M. and Knippenberg, U., "Nonlinear Dynamics in Reactive Distillations Phenomena and Their Technical Use," Bundesministerium fur Bildung und Forschung (BMBF) Project, 1997. (Funded by BMBF FKZ 03 D 0014 B0.)
  2. Hanika, J., Kolena, J. and Smejkal, Q., "Butyl Acetate via Reactive Distillations Modeling and Experiment," Chem. Eng. Sci.,, 54, 5205-5209(1999). https://doi.org/10.1016/S0009-2509(99)00241-9
  3. Venimadhavan, G., Malone, M. F. and Doherty, M. F., "A Novel Distillate Policy for Batch Reactive Distillation with Application to the Production of Butyl Acetate," Ind. Eng. Chem. Res., 38, 714-722(1999). https://doi.org/10.1021/ie9804273
  4. Zhicai, Y., Xianbao, C. and Jing, G., "Esterification-distillation of Butanol and Acetic Acid," Chem. Eng. Sci., 53, 2081-2088 (1998). https://doi.org/10.1016/S0009-2509(98)00020-7
  5. Bessling, B., Welker, R., Knab, J. W., Lohe, B. and Disteldorf, W., "Continuous Preparation of Esters and Apparatus Therefore," Ger. Offen., 6, Chem. Abstr. 2003, 130, 11832v(1999).
  6. Steinigeweg, S. and Gmehling, J., "n-Butyl Acetate Synthesis via Reactive Distillation: Thermodynamic Aspects, Reaction Kinetics, Pilot-Plant Experiments, and Simulation Studies," Ind. Eng. Chem. Res., 41, 5483-5490(2003).
  7. Gangadwala, J., Kienle, A., Stein, E. and Mahajani, S., "Production of Butyl Acetate by Catalytic Distillations Reaction Kinetics and Process Design Studies," In ISMR3-CCRE18: Joint Research Symposium of the 3rd International Symposium on Multifunctional Reactors and the 18th Colloquia on Chemical Reaction Engineering, 2003., pp 191-194. M. Tech. Dissertation, Indian Institute of Technology: Bombay, India(2002).
  8. Gangadwala, J., Mankar, S., Mahajani, S. M., Kienle, A. and Stein, E., "Synthesis of Butyl Acetate in the Presence of Ion-Exchange Resins as Catalysts," Ind. Eng. Chem. Res., 42(10), 2146-2155(2003). https://doi.org/10.1021/ie0204989
  9. Gangadwala, J., Kienle, A., Stein, E. and Mahajani, S., "Production of Butyl Acetate by Catalytic Distillation: Process Design Studies," Ind. Eng. Chem. Res., 43(1), 136-143(2004). https://doi.org/10.1021/ie021011z
  10. Cho, M., Jo, S., Kim, G. and Han, M., "Entrainer-Enhanced Reactive Distillation for the Production of Butyl Acetate," Ind. Eng. Chem. Res., 53, 8095-8105(2014). https://doi.org/10.1021/ie403049z
  11. Dimian, A. C., Omota, F. and Bliek, A., "Entrainer-Enhanced Reactive Distillation," Chem. Eng. Process., 43, 411-420(2004). https://doi.org/10.1016/S0255-2701(03)00125-9
  12. Wang, S. J. and Wong, D. S. H., "Design and Control of Entrainer-Added Reactive Distillation for Fatty Ester Production," Ind. Eng. Chem. Res., 45, 9042-9049(2006). https://doi.org/10.1021/ie060626j
  13. Suman, T., Srinivas, S. and Mahajani, S. M., "Entrainer Based Reactive Distillation for Esterification of Ethylene Glycol with Acetic Acid," Ind. Eng. Chem. Res., 48, 9461-9470(2009). https://doi.org/10.1021/ie801886q
  14. Hasabnis, A. C. and Mahajani, S. M., "Entrainer-Based Reactive Distillation for Esterification of Glycerol with Acetic Acid," Ind. Eng. Chem. Res., 49, 9058-9067(2010). https://doi.org/10.1021/ie100937p
  15. De Jong, M. C., Zondervan, E., Dimian, A. C. and de Haan, A. B., "Entrainer Selection for the Synthesis of Fatty Acid Esters by Entrainer-Based Reactive Distillation," Chem. Eng. Res. Des., 88, 34-44(2010). https://doi.org/10.1016/j.cherd.2009.06.015
  16. Hu, S., Zhang, B. J., Hou, X. Q., Li, D. L. and Chen, Q. L., "Design and Simulation of an Entrainer-enhanced Ethyl Acetate Reactive Distillation Process," Chem. Eng. Process., 50, 1252-1265(2011). https://doi.org/10.1016/j.cep.2011.07.012
  17. Zhang, B. J., Yang, W. S., Hu, S., Liang, Y. Z., Chen, Q. L., "A Reactive Distillation Process with a Sidedraw Stream to Enhance the Production of Isopropyl Acetate," Chem. Eng. Process., 70, 117-130(2013). https://doi.org/10.1016/j.cep.2013.04.011
  18. Wang, S. J. and Huang, H. P., "Design of Entrainer-enhanced Reactive Distillation for the Synthesis of Butyl Cellosolve Acetate," Chem. Eng. Process., 50, 709-717(2011). https://doi.org/10.1016/j.cep.2011.04.007
  19. Dortmund Data Bank, DDBST GmbH: Oldenburg, Germany, 2002 (www.ddbst.de).
  20. Singh, A., Hiwale, R., Mahajani, S. M. and Gudi, R. D., "Production of Butyl Acetate by Catalytic Distillation. Theoretical and Experimental Studies," Ind. Eng. Chem. Res., 44, 3042-3052(2005). https://doi.org/10.1021/ie049659u
  21. J. Gmehling, U. OnkenAll., DECHEMA Chemistry Data Series, Vapor-Liquid Equilibrium Data Collection : (a) Vol.1, Part 1b, p 254; (b) Vol. 1, Part 1, p 106; (c) Vol. 1, Part 1b, p 338; (d) Vol. 1, Part 2d, p 157; (e) Vol. 1, Part 2b, p 197; (f) Vol. 1, Part 5, p 147. Components: (1) water; (2) butanol; (3) acetic acid; (4) butyl acetate.