DOI QR코드

DOI QR Code

Immobilization of Glucose Oxidase using Branched Polyethyleneimines of Various Molecular Weights for Glucose Based Biofuel Cell

글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화

  • Ahn, Yeonjoo (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Chung, Yongjin (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate School of Energy and Environment, Seoul National University of Science and Technology)
  • 안연주 (서울과학기술대학교 에너지환경대학원) ;
  • 정용진 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Received : 2016.05.16
  • Accepted : 2016.07.13
  • Published : 2016.10.01

Abstract

In this study, we fabricated the catalysts for enzymatic biofuel cell anode with carbon nanotube (CNT), glucose oxidase (GOx) and various molecular weights branched poly(ethyleneimine)(bPEI) and terephthalaldehyde (TPA) as cross-linker. In case of GOx/bPEI/CNT using only physical entrapments for immobilization, the molecular weights of bPEI didn't affect to electrochemical performances and long term stability. but that of the catalysts cross linked via TPA (TPA[GOx/bPEI/CNT]) improved and the mass transfer of glucose to FAD was interrupted as increasing of the bPEI's molecular weights. Furthermore, it was confirmed that the optimum molecular weight of PEI for TPA [GOx/bPEI/CNT]) structure is 750k that showed marvelous high performance (maximum power density of $0.995mW{\cdot}cm^{-2}$).

본 연구에서는 탄소나노튜브(CNT), 글루코스 산화효소(Glucose oxidase, GOx) 및 다양한 분자량의 가지달린 폴리에틸렌이민(Polyethyleneimine, branched, bPEI)을 물리적으로 결합하여 GOx/PEI/CNT 구조를 제조한 뒤, 가교제인 테레프타랄데하이드(Terephthalaldehyde, TPA)와 알돌축합반응을 통해 TPA/[GOx/bPEI/CNT] 구조의 촉매를 합성하였으며, 각각의 전기화학적 특성 및 장기안정성 등을 평가하였다. GOx/PEI/CNT의 경우, PEI의 분자량의 증가에 따라 유의한 차이를 확인할 수 없었으나, TPA 도입한 TPA/[GOx/bPEI/CNT]는 PEI 분자의 증가에 따라 전자전달 및 장기안정성은 향상되며 글루코스의 물질전달은 감소함을 확인하였다. 또한 효소연료전지 음극 촉매로서의 최적 bPEI 분자량을 확인한 결과, 750 k PEI를 이용한 촉매(TPA/[GOx/bPEI-750k/CNT]에서 최고의 최대전력밀도($0.995mW{\cdot}cm^{-2}$)를 얻을 수 있음을 확인하였다.

Keywords

References

  1. Clark, L. C. Jr. and Lyons, C., "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Ann. NY Acad. Sci., 102, 29-45(1962).
  2. Gao, F., Viry, L., Maugey, M., Poulin, P. and Mano, N., "Engineering Hybrid Nanotube Wires for High-power Biofuel Cells," Nat. Commun., 1, 1-7(2010).
  3. Kim, H., Jeong, N. J., Lee, S. J. and Song, K. S., "Electrochemical Deposition of Pt Nanoparticles on CNTs for Fuel Cell Electrode," Korean J. Chem. Eng., 25(3), 443-445(2008). https://doi.org/10.1007/s11814-008-0075-5
  4. Yu, H. R., Kim, J. G., Im, J. S., Bae, T. S. and Lee, Y. S., "Effects of Oxyfluorination on a Multi-walled Carbon Nanotube Electrode for a High-performance Glucose Sensor," J. Ind. Eng. Chem., 18, 674-679(2012). https://doi.org/10.1016/j.jiec.2011.11.064
  5. Sheldon, R. A., "Characteristic Features and Biotechnological Applications of Cross-linked Enzyme Aggregates (CLEAs)," Appl. Microbiol. Biotechnol., 92, 467-477(2011). https://doi.org/10.1007/s00253-011-3554-2
  6. Chung, Y. and Kwon, Y., "A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker," Korean Chem. Eng. Res., 53(6), 802-807(2015). https://doi.org/10.9713/kcer.2015.53.6.802
  7. "Enzymatic Assay of Glucose Oxidase," Sigma Aldrich, http://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-glucose-oxidase.html (accessed May 1, 2016).
  8. Chung, Y., Hyun, K. H. and Kwon, Y., "Fabrication of a Biofuel Cell Improved by the ${\pi}$-conjugated Electron Pathway Effect Induced from a New Enzyme Catalyst Employing Terephthalaldehyde," Nanoscale, 8, 1161-1168(2016). https://doi.org/10.1039/C5NR06703K
  9. Deng, C., Chen, J., Chen, X., Xiao, C., Nie, L. and Yao, S., "Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Boron-doped Carbon Nanotubes Modified Electrode," Biosens. Bioelectron., 23(8), 1272-1277(2008). https://doi.org/10.1016/j.bios.2007.11.009
  10. Kashyap, D., Dwivedi, P. K., Pandey, J. K., Kim, Y. H., Kim, G. M., Sharma, A. and Goel, S., "Application of Electrochemical Impedance Spectroscopy in Bio-fuel Cell Characterization: A Review," International Journal of Hydrogen Energy, 39(35), 20159-20170 (2014). https://doi.org/10.1016/j.ijhydene.2014.10.003
  11. Christwardana, M. and Kwon, Y., "Effects of Multiple Polyaniline Layers Immobilized on Carbon Nanotube and Glutaraldehyde on Performance and Stability of Biofuel Cell," J. Power Sources, 299, 604-610(2015). https://doi.org/10.1016/j.jpowsour.2015.08.107
  12. Liu, J., Zhang, X., Pang, H., Liu, B., Zou, Q. and Chen, J., "Highperformance Bioanode Based on the Composite of CNTs-immo-Bilized Mediator and Silk Film-immobilized Glucose Oxidase for Glucose/$O_2$ Biofuel Cells," Biosens. Bioelectron., 31(1), 170-175(2012). https://doi.org/10.1016/j.bios.2011.10.011
  13. Xiong, M. P., "Poly(aspartate-g-PEI800), a Polyethylenimine Analogue of Low Toxicity and Gh Transfection Efficiency for GeneDelivery," Biomaterials, 28, 4889-4900(2007). https://doi.org/10.1016/j.biomaterials.2007.07.043