DOI QR코드

DOI QR Code

CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal

CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석

  • 임종훈 (성균관대학교 화학공학과) ;
  • 배건 (성균관대학교 화학공학과) ;
  • 신재호 (성균관대학교 화학공학과) ;
  • 이동호 (한화케미칼 중앙연구소) ;
  • 한주희 (한화케미칼 중앙연구소) ;
  • 이동현 (성균관대학교 화학공학과)
  • Received : 2015.09.24
  • Accepted : 2016.07.11
  • Published : 2016.10.01

Abstract

The effect of internal and shroud nozzle distributor to bubbling fluidized beds which has the size of $0.3m-ID{\times}2.4m-high$ column was modeled by CPFD (Computational Particle-Fluid Dynamics). Metal-grade silicon particles (MG-Si) were used as bed materials which have $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$ and $U_{mf}=0.02m/s$. Total bed inventory and static bed height were 75 kg and 0.8 m, respectively. Effect of vertical internal on the bubble rising velocity was investigated. Bubbles were split by internal when the axial position of the internal from the distributor, z = 0.45 m. Bed pressure drop and axial solid holdup were not affected by internal. However, in the case that axial distance of internal from distributor was too close to jet penetration length, bubbles were not separated and bypassed internal, and faster than without internal or z = 0.45 m.

본 연구에서는 내경 0.3 m, 높이 2.4 m인 기-고 유동층 반응기 내에서 수직 방향의 내부 구조물과 shroud 노즐 분산판이 기포 흐름에 미치는 영향을 CPFD (Computational Particle-Fluid Dynamics)를 이용하여 모델링을 수행하였다. 층 물질로는 Metal-grade 실리콘 입자(MG-Si)가 사용되었으며 $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$, $U_{mf}=0.02m/s$이다. 전체 층물질의 양은 75 kg이며 정적층(static bed) 높이는 0.8 m이다. 수직 내부 구조물이 기포 상승속도에 미치는 영향을 파악하였다. 내부 구조물이 분산판으로부터 0.45 m 높이에 설치되었을 때 기포의 분쇄가 일어났다. 유동층의 압력강하 및 수직 고체체류량 분포는 내부 구조물의 영향을 크게 받지 않는 것으로 나타났다. 하지만 내부 구조물이 제트에 너무 가까운 경우 기포가 분쇄되지 않고 내부 구조물을 우회하여 상승하였으며 내부 구조물이 없는 경우나 0.45 m 높이에 설치된 경우에 비해 더 빠른 속도로 상승하였다.

Keywords

References

  1. Jiang, P., Bi, H. T., Jean, R. H. and Fan, L. S., "Baffle Effects on Performance of Catalytic Circulating Fluidized Bed Reactor," AIChE J., 37, 1392-1340(1991). https://doi.org/10.1002/aic.690370911
  2. Zheng, C. G., Tung, Y. K., Xia, Y. S., Hun, B. and Kwauk, M., "Voidage Redistribution by Ring Internals in Fast Fluidization," Fluidization, 91, 168-177(1991).
  3. Zheng, C. G., Tung, Y. K., Li, H. Z. and Kwauk, M., "Characteristics of Fast Fluidized Beds with Internals," Fluidization VII, 275-284(1992).
  4. Zhu, J. X., Salah, M. and Zhou, Y. M., "Radial and Axial Voidage Distributions in Circulating Fluidized Bed with Rign-type Internals," J. Chem. Eng. Jpn., 30, 928-937(1997). https://doi.org/10.1252/jcej.30.928
  5. Snider, D. M., "An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows," J. of Computational Physics, 170, 523-549(2001). https://doi.org/10.1006/jcph.2001.6747
  6. Zhong, W., Yu, A., Zhou, G., Xie, J. and Zhang, H., "CFD Simulation of Dense Particulate Reaction System: Approaches, Recent Advances and Applications," Chemical Engineering Science, 140, 16-43(2016). https://doi.org/10.1016/j.ces.2015.09.035
  7. Lim, J. H., Shin, J. H., Bae, K., Kim, J. H., Lee, D. H., Han, J. H. and Lee, D. H., "Hydrodynamic Characteristics of Bubbles in Bubbling Fluidized Bed with internals," Korean J. Chem. Eng., 32(9), 1938-1944(2015). https://doi.org/10.1007/s11814-015-0131-x
  8. Lim, J. H., Lee, Y., Shin, J. H., Bae, K., Han, J. H. and Lee, D. H., "Hydrodynamic Characteristics of Gas-solid Fluidized Beds with Shroud Nozzle Distributors for Hydrochlorination of Metallurgical-grade Silicon," Powder Technology, 266, 312-320(2014). https://doi.org/10.1016/j.powtec.2014.06.031
  9. Wen, C. Y. and Yu, Y. H., "Mechanics of Fluidization," Chem. Eng. Prog. Symp. 62, 100-110(1966).
  10. Ergun, S., "Fluid Flow Through Packed Columns," Chem. Eng. Prog. 48, 89-94(1952).
  11. Gidaspow, D., "Multiphase Flow and Fluidization Continuum and Kinetic Theory Description," Academic Press, Boston(1994).
  12. Baldwin, B. S. and Lomax, H., "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows," 16th Aerospace Sciences Meeting. doi:10.2514/6.1978-257(1978).
  13. Karimipour, S. and Pugsley, T., "Application of the Particle in Cell Approach for the Simulation of Bubbling Fluidized Beds of Geldart A Particles," Powder Technology, 220, 63-69(2012). https://doi.org/10.1016/j.powtec.2011.09.026
  14. Lim, J. H., Bae, K., Shin, J. H., Kim, J. H., Lee, D. H., Han, J. H. and Lee, D. H., "Effect of Particle-Particle Interaction on the Bed Pressure Drop and bubble Flow by Computational Particle- Fluid Dynamics Simulation of Bubbling Fluidized Beds with Shroud Nozzle," Powder Technology, 288, 315-323(2016). https://doi.org/10.1016/j.powtec.2015.11.017
  15. Andrews, M. J. and O'Rourke, P. J., "The Multiphase Particle-incell (MP-PIC) Method for Dense Particulate Flows," Int. J. Multiphase Flow. 22, 379-402(1996). https://doi.org/10.1016/0301-9322(95)00072-0
  16. O'Rourke, P. J., Zhao, P. and Snider, D., "A Model for Collisional Exchange in Gas/liquid/solid Fluidized Beds," Chem. Eng. Sci., 64, 1784-1799(2009). https://doi.org/10.1016/j.ces.2008.12.014
  17. Batchelor, G. K., "A New Theory of the Instability of a Uniform Fluidized Bed," J. Fluid Mech. 193, 75-110(1988). https://doi.org/10.1017/S002211208800206X
  18. Williams, F. A., "Combustion Theory," 2nd ed. Benjamin-Cummings, Menlo Park, CA.(1985).
  19. Harris, S. E. and Crighton, D. G., "Solitons, Solitary Waves, and Voidage Disturbances in Gas-fluidized Beds," J. Fluid Mech. 266, 243-276(1994). https://doi.org/10.1017/S0022112094000996
  20. Karimipour, S. and Pugsley, T., "A Critical Evaluation of Literature Correlations for Predicting Bubble Size and Velocity in Gas-solid Fluidized Beds," Powder Technology, 205, 1-14(2011). https://doi.org/10.1016/j.powtec.2010.09.016
  21. Davidson, J. F. and Harrison, D., "Fluidized Particles," Cambridge University Press, London(1963).
  22. Mori, S. and Wen, C. Y., "Estimation of Bubble Diameter in Gaseous Fludized Beds," AIChE J., 21, 109-115(1975). https://doi.org/10.1002/aic.690210114
  23. Merry, J. M. D., "Penetration of Vertical Jets Into Fluidized Beds," AIChE J., 21, 507-510(1975). https://doi.org/10.1002/aic.690210312
  24. Knowlton, T., Karri, R. and Cocco, R., "PSRI Fluidization Seminar and Workshop," Particulate Solid Research Inc.(2011).
  25. Rudisuli, M., Schildhauer, T. J., Biollaz, S. M. A. and van Ommen, J. R., "Bubble Characterization in a Fluidized Bed with Vertical Tubes," Ind. Eng. Chem. Res., 51, 4748-4758(2012). https://doi.org/10.1021/ie2022306
  26. Jin, Y., Wei, F. and Wang, Y., "Effect of Internal Tube and Baffles," Handbook of Fluidization and Fluid-Particle Systems, Ed. By W. C. Yang, Marcel Dekker, New York(2003).

Cited by

  1. Two- and Three-dimensional Analysis on the Bubble Flow Characteristics Using CPFD Simulation vol.55, pp.5, 2016, https://doi.org/10.9713/kcer.2017.55.5.698