DOI QR코드

DOI QR Code

Spudcan Design under Combined Load in Southwestern Sea of Korea

복합하중을 고려한 국내 서남해 지반에서의 Spudcan 설계

  • Yoo, Jinkwon (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Duhee (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Mandokhail, Saeed-ullah Jan (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2016.07.06
  • Accepted : 2016.09.08
  • Published : 2016.10.01

Abstract

An optimized spudcan was designed for the Southwestern Sea, an area mostly comprised of sand and soft clay layers. The spudcan was designed using guidelines by SNAME, ISO, and InSafeJIP, as well as the yield surface for combined loads. The probe test method was applied to define a yield surface used in estimating spudcan stability. Numerical analyses that considered vertical, horizontal, and moment loads in Southwestern Sea resulted in a design of 8 m diameter spudcan. Additionally, the empirical equations suggested by previous studies can estimate a reasonable spudcan bearing capacity at shallow depth. Each yield surface calculated from Mohr Coulomb and Hardening soil model showed different shapes, however the yield surface also grew with increasing spudcan diameter. This yield surface is a useful reference, along with site investigation results and published guidelines, to estimate the stability of a spudcan in the Southwestern Sea.

본 연구에서는 가이드라인에 제시된 스퍼드캔의 설계 프로세스에 따라 서남해 연약지반 조건에 최적화된 스퍼드캔의 형상 및 크기를 도출하고, 안정성 평가를 위한 복합하중 작용 시의 항복면을 정의하였다. 이를 위해 일정한 수직하중 작용 시 수평하중과 모멘트 하중을 가하여 수평하중-수평변위, 모멘트-회전변위간의 상관관계를 통해 항복면을 산출하는 프로브 방법을 적용하였다. 분석 결과, 복합하중을 고려한 서남해 지반에서 요구되는 스퍼드캔의 직경은 8m로 나타났으며, 가이드라인에 제시된 지지력 산출경험식을 통해 지지력을 계산할 경우 얕은 심도에서는 비교적 정확한 지지력의 예측이 가능한 것으로 나타났다. 제시된 항복면은 Mohr Coulomb 모델과 Hardening soil 모델을 각각 적용하였을 시 서로 다른 형상을 보였으나, 스퍼드캔의 직경이 증가함에 따라 점차 확장되는 경향을 보였다. 본 연구를 통해 제시된 항복면은 실제 스퍼드캔이 설치될 지역의 지반조사 결과, 가이드라인과 더불어 추후 해상풍력단지 조성 시 스퍼드캔의 안정성 평가에 유용한 참고자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Brinkgreve, R., Vermeer, P. and Bakker, K. (1998), Plaxis: Finite element code for soil and rock analyses:[user's Guide], AA Balkema, pp. 1-376.
  2. Byrne, B. and Houlsby, G. (2001), Observations of footing behaviour on loose carbonate sands, Geotechnique, Vol. 51, No. 5, pp. 463-466. https://doi.org/10.1680/geot.2001.51.5.463
  3. Drescher, A. and Michalowski, R. L. (2009), Shape factor sr for shallow footings, Geomechanics and Engineering, Vol. 1, No. 2, pp. 113-120. https://doi.org/10.12989/gae.2009.1.2.113
  4. Dunham, J. (1954), Pile foundations for buildings, Journal of the Soil Mechanics and Foundations Division, Vol. 80, No. 1, pp. 1-21.
  5. Gottardi, G., Houlsby, G. and Butterfield, R. (1999), Plastic response of circular footings on sand under general planar loading, Geotechnique, Vol. 49, No. 4, pp. 453-470. https://doi.org/10.1680/geot.1999.49.4.453
  6. Govoni, L., Gourvenec, S. and Gottardi, G. (2010), Centrifuge modeling of circular shallow foundations on sand, International Journal of Physical Modelling in Geotechnics, Vol. 10, No. 2, pp. 35-46. https://doi.org/10.1680/ijpmg.2010.10.2.35
  7. Hanna, A. and Meyerhof, G. (1980), Design charts for ultimate bearing capacity of foundations on sand overlying soft clay, Canadian Geotechnical Journal, Vol. 17, No. 2, pp. 300-303. https://doi.org/10.1139/t80-030
  8. Hansen, J. B. (1970), A revised and extended formula for bearing capacity, Akademiet for de Tekniske Videnskaber, Vol. 28, pp. 5-11.
  9. Hossain, M. and Randolph, M. (2010a), Deep-penetrating spudcan foundations on layered clays: centrifuge tests, Geotechnique, Vol. 60, No. 3, pp. 157-170. https://doi.org/10.1680/geot.8.P.039
  10. Hossain, M. and Randolph, M. (2010b), Deep-penetrating spudcan foundations on layered clays: numerical analysis, Geotechnique, Vol. 60, No. 3, pp. 171-184. https://doi.org/10.1680/geot.8.P.040
  11. Houlsby, G. and Martin, C. (2003), Undrained bearing capacity factors for conical footings on clay, Geotechnique, Vol. 53, No. 5, pp. 513-520. https://doi.org/10.1680/geot.2003.53.5.513
  12. Hu, P., Stanier, S., Cassidy, M. and Wang, D. (2013), Predicting peak resistance of spudcan penetrating sand overlying clay, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 2, pp. 04013009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001016
  13. InSafeJIP (2011), InSafeJIP: Improved guidelines for the prediction of geotechnical performance of spudcan foundations during installation and removal of jack-up units, RPS Energy, pp. 1-124.
  14. ISO (2009), Petroleum and natural gas industries-site-specific assessment of mobile offshore units-, International Organization for Standardization, pp. 1-288.
  15. Itasca, F. (2011), Fast lagrangian analysis of continua, Minneapolis, pp. 1-3058.
  16. Kim, D.-J., Youn, J.-U., Jee, S.-H., Choi, J., Lee, J.-S. and Kim, D.-S. (2014), Numerical studies on bearing capacity factor $N{\gamma}$ and shape factor of strip and circular footings on sand according to dilatancy angle, Journal of the Korean Geotechnical Society, Vol. 30, No. 1, pp. 49-63 (in Korean). https://doi.org/10.7843/kgs.2014.30.1.49
  17. Kim, S. R. (2012), Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay, Ocean Engineering, Vol. 52, pp. 75-82. https://doi.org/10.1016/j.oceaneng.2012.06.001
  18. Kohan, O., Gaudin, C., Cassidy, M. J. and Bienen, B. (2014), Spudcan extraction from deep embedment in soft clay, Applied Ocean Research, Vol. 48, pp. 126-136. https://doi.org/10.1016/j.apor.2014.08.001
  19. Loukidis, D. and Salgado, R. (2009), Bearing capacity of strip and circular footings in sand using finite elements, Computers and Geotechnics, Vol. 36, No. 5, pp. 871-879. https://doi.org/10.1016/j.compgeo.2009.01.012
  20. Martin, C. M. (1994), Physical and numerical modelling of offshore foundations under combined loads, University of Oxford, pp. 1-306.
  21. Meyerhof, G. G. (1963), Some recent research on the bearing capacity of foundations, Canadian Geotechnical Journal, Vol. 1, No. 1, pp. 16-26. https://doi.org/10.1139/t63-003
  22. MICHALOWSKIC, R. (2001), Upper-bound load estimates on square and rectangular footings, Geotechnique, Vol. 51, No. 9, pp. 787-798. https://doi.org/10.1680/geot.2001.51.9.787
  23. Mitchell, J. K. and Gardner, W. S. (1975), In situ measurement of volume change characteristics, In Situ Measurement of Soil Properties: ASCE, pp. 279.
  24. PLAXIS-B.V. (2010), PLAXIS 3D reference manual: Delft, Netherlands: Plaxis Company, pp. 1-364.
  25. Purwana, O., Leung, C., Chow, Y. and Foo, K. (2005), Influence of base suction on extraction of jack-up spudcans, Geotechnique, Vol. 55, No. 10, pp. 741-753. https://doi.org/10.1680/geot.2005.55.10.741
  26. SNAME (2008), Guideline for site specific assessment of mobile jack-up units, The society of naval architects & marine engineers, New Jersy, City, NJ, USA, pp. 1-366.
  27. Teh, K. and Leung, C. (2010), Centrifuge model study of spudcan penetration in sand overlying clay, Geotechnique, Vol. 60, No. 11, pp. 825-842. https://doi.org/10.1680/geot.8.P.077
  28. Teh, K., Leung, C. and Chow, Y. (2007), Some considerations for predicting spudcan penetration resistance in two-layered soil using miniature penetrometer, Offshore site investigation and geotechnics, Confronting New Challenges and Sharing Knowledge: Society of Underwater Technology, pp. 47-52.
  29. Terzaghi, K. (1943), Theory of consolidation, Wiley Online Library, pp. 1-510.
  30. Vesic, A. (1975), Bearing capacity of shallow foundations, foundation engineering handbook, Winterkorn and Fang, Ed: Van Nostrand Reinhold Company, New York, pp. 121-147.
  31. Zhang, Y., Bienen, B., Cassidy, M. J. and Gourvenec, S. (2011), The undrained bearing capacity of a spudcan foundation under combined loading in soft clay, Marine Structures, Vol. 24, No. 4, pp. 459-477. https://doi.org/10.1016/j.marstruc.2011.06.002
  32. Zhao, J., Duan, M., Zhang, A., Wang, F. and Zhang, M. (2014), Bearing capacity of square spudcan of jack-up rig based on a three-dimensional failure mechanism, Ships and Offshore Structures, Vol. 9, No. 2, pp. 149-160. https://doi.org/10.1080/17445302.2012.752126

Cited by

  1. Reinforcing Effects of Ring Plates on a Detachable Spudcan Subjected to Eccentric Load vol.21, pp.5, 2016, https://doi.org/10.9798/kosham.2021.21.5.191