DOI QR코드

DOI QR Code

절점기준에 따른 강우빈도 변화 및 종관기후학적 분석

Analysis of Changes in Rainfall Frequency Under Different Thresholds and Its Synoptic Pattern

  • 김태정 (전북대학교 토목공학과, 방재연구센터) ;
  • 권현한 (전북대학교 토목공학과, 방재연구센터)
  • 투고 : 2016.05.02
  • 심사 : 2016.09.02
  • 발행 : 2016.10.01

초록

최근 기상변동성이 증가함에 따라 지난 30년 동안 극한강우의 발생 빈도는 점차 증가하고 있다. 우리나라는 지리적으로 단시간에 매우 높은 강우강도를 유발하는 강우사상이 빈번하게 발생하여 홍수사상이 유발되기 쉽다. 본 연구에서는 장기간의 강우자료를 활용하여 극치강우사상의 발생을 고려한 강우빈도해석을 수행하였다. 이를 위해 극치강우사상을 분석하는데 있어 서로 다른 절점기준을 사용하여 극치강우의 발생횟수를 반영한 포아송-GPD 강우빈도해석 기법을 개발하였다. 빈도해석을 수행함에 있어서 확률분포 매개변수의 불확실성을 보다 정량적으로 산정할 수 있는 Bayesian 기법을 적용하였으며, 또한 각각의 절점기준에 따라서 분류된 강우사상의 종관기후학적 분석을 수행하였다. 연구결과 우리나라의 극치강우 발생이 증가하는 지점에서 기존의 Gumbel 분포를 통한 확률강우량보다 상향된 결과를 도출하였다. 이는 포아송-GPD 모형이 치수안정성 측면에서 유리한 모형으로 판단된다. 또한 동중국해 지역의 저기압 특성과 북태평양 고기압 특성이 우리나라 극치강우현상에 주로 영향을 미치는 것을 확인하였다.

Recently, frequency of extreme rainfall events in South Korea has been substantially increased due to the enhanced climate variability. Korea is prone to flooding due to being surrounded by mountains, along with high rainfall intensity during a short period. In the past three decades, an increase in the frequency of heavy rainfall events has been observed due to enhanced climate variability and climate change. This study aimed to analyze extreme rainfalls informed by their frequency of occurrences using a long-term rainfall data. In this respect, we developed a Poisson-Generalized Pareto Distribution (Poisson-GPD) based rainfall frequency method which allows us to simultaneously explore changes in the amount and exceedance probability of the extreme rainfall events defined by different thresholds. Additionally, this study utilized a Bayesian approach to better estimate both parameters and their uncertainties. We also investigated the synoptic patterns associated with the extreme events considered in this study. The results showed that the Poisson-GPD based design rainfalls were rather larger than those of based on the Gumbel distribution. It seems that the Poisson-GPD model offers a more reasonable explanation in the context of flood safety issue, by explicitly considering the changes in the frequency. Also, this study confirmed that low and high pressure system in the East China Sea and the central North Pacific, respectively, plays crucial roles in the development of the extreme rainfall in South Korea.

키워드

참고문헌

  1. Begueria, S. (2005). "Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value." Journal of Hydrology, Vol. 303, No. 1, pp. 215-230. https://doi.org/10.1016/j.jhydrol.2004.07.015
  2. Begueria, S. and Vicente-Serrano, S. M. (2006). "Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques." Journal of Applied Meteorology and Climatology, Vol. 45, No. 1, pp. 108-124. https://doi.org/10.1175/JAM2324.1
  3. Clarke, R. T., de Paiva, R. D. and Uvo, C. B. (2009). "Comparison of methods for analysis of extremes when records are fragmented: A case study using Amazon basin rainfall data." Journal of Hydrology, Vol. 368, No. 1, pp. 26-29. https://doi.org/10.1016/j.jhydrol.2009.01.025
  4. Davison, A. C. and Smith, R. L. (1990). "Models for exceedances over high thresholds." Journal of the Royal Statistical Society. Series B (Methodological), pp. 393-442.
  5. Dhakal, A. S. and Sidle, R. C. (2004). "Distributed simulations of landslides for different rainfall conditions." Hydrological Processes, Vol. 18, No. 4, pp. 757-776. https://doi.org/10.1002/hyp.1365
  6. Done, J. M., Greg, J. H., Cindy, L. B., Leung, L. R. and Asuka, S. P. (2015). "Modeling high-impact weather and climate : Lessons from a Tropical Cyclone Perspective." Climate Change, Vol. 129, No. 3-4, pp. 381-395. https://doi.org/10.1007/s10584-013-0954-6
  7. Jenkinson, A. F. (1955). "The frequency distribution of the annual maximum (or minimum) values of meteorological elements." Quarterly Journal of the Royal Meteorological Society, Vol. 81, No. 348, pp. 158-171. https://doi.org/10.1002/qj.49708134804
  8. Kedem, B., Chiu, L. S. and Karni, Z. (1990). "An analysis of the threshold method for measuring area-average rainfall." Journal of Applied Meteorology, Vol. 29, No. 1, pp. 3-20. https://doi.org/10.1175/1520-0450(1990)029<0003:AAOTTM>2.0.CO;2
  9. Kendall, M. (1975). "Multivariate analysis." Charles Griffin.
  10. Kim, S. H., Kim, H. M., Kim, E. J. and Shin, H. C. (2013). "Forecast sensitivity to observations for high-impact weather events in the korean peninsula." Atmosphere, Korean Meteorological Society, Vol. 23, No. 2, pp. 171-186 (in Korean).
  11. Kim, T. J., Park, K. C. and Kwon, H. H. (2015). "Assessment of precipitation characteristics and synoptic pattern associated with typhoon affecting the South Korea." Journal of Korean Water Resources Association, Vol. 48, No. 6, pp. 463-477 (in Korean). https://doi.org/10.3741/JKWRA.2015.48.6.463
  12. Kite, G. W. (1993). "Application of a land class hydrological model to climate change." Water Resources Research, Vol. 73, No. 7, pp. 2377-2384.
  13. Kwon, H. H. and Myeong, S. J. (2011). "Development of a future disaster risk assessment model for climate change using bayesian GLM and statistical downscaling model." Journal of The Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 207-216 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.6.207
  14. Kwon, H. H., Brown, C. and Lall, U. (2008). "Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling." Geophysical Research Letters, Vol. 35, No. 5.
  15. Lee, D. R., Lee, J. S. and Kim, D. K. (2014). "Applicability of a space-time rainfall downscaling algorithm based on multifractal framework in modeling heavy rainfall events in korean peninsula." Journal of Korean Water Resources Association, Vol. 47, No. 9, pp. 839-852 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.9.839
  16. Lee, J. J., Kwon, H. H. and Kim, T. W. (2010). "Concept of trend analysis of hydrological extreme variables and nonstationary frequency analysis." Journal of Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 389-397 (in Korean).
  17. Mann, H. B. (1945). "Nonparametric test against trend." Journal of Econometrics Society, Vol. 13, No. 3, pp. 245-259. https://doi.org/10.2307/1907187
  18. McNeil, A. J. and Saladin, T. (1997). "The peaks over thresholds method for estimating high quantiles of loss distributions." In Proceedings of 28th International ASTIN Colloquium, pp. 23-43.
  19. Ministry of Land, Infrastructure and Transport (2011). "Study on improvement and supplement of the probability precipitation."
  20. Ouarda. T. B. M. J. and Adlouni, S. E. (2008). "Bayesian inference of non-stationary flood frequency models." World Environmental and Water Resources Congress.
  21. Papagiannaki, K., Lagouvardos, K. and Kotroni, V. (2013). "A database of high-impact weather events in Greece : a descriptive impact analysis for the period 2001-2011." Natural Hazards and Earth System Science, Vol. 13, No. 3, pp. 727-736. https://doi.org/10.5194/nhess-13-727-2013
  22. Reis, D. S. and Stedinger, J. R. (2005). "Bayesian MCMC flood frequency analysis with historical information." Journal of Hydrology, Vol. 313, No. 1, pp. 97-116. https://doi.org/10.1016/j.jhydrol.2005.02.028
  23. Scott, S. and Lall, U. (2015). "A hierarchical bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports." Water Resources Research, Vol. 51, No. 3, pp. 1472-1492. https://doi.org/10.1002/2014WR016664
  24. Shi, J. and Cui, L. (2012). "Characteristics of high impact weather and meteorological disaster in Shanghai, China." Natural hazards, Vol. 30, No. 3, pp. 951-969.
  25. Sun, X., Lall, U. and Dung, N. V. (2015). "Hierarchical bayesian clustering for nonstationary flood frequency analysis : application to trends of annual maximum flow in Germany." Water Resources Research, Vol. 51, No. 8, pp. 6586-6601. https://doi.org/10.1002/2015WR017117
  26. Thomas, K. M., Dominique, F. C., David, W. T., Corinne, S., Abdel, R. M. and John, D. H. (2006). "A role of high impact weather events in waterborne disease outbreaks in Canada, 1975-2001." International Journal of Environmental Health Research, Vol. 16, No. 3, pp. 167-180. https://doi.org/10.1080/09603120600641326
  27. Zhai, P., Zhang, X., Wan, H. and Pan, X. (2005). "Trends in total precipitation and frequency of daily precipitation extremes over China." Journal of Climate, Vol. 18, No. 7, pp. 1096-1108. https://doi.org/10.1175/JCLI-3318.1