DOI QR코드

DOI QR Code

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • 투고 : 2016.06.18
  • 심사 : 2016.09.08
  • 발행 : 2016.09.30

초록

Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

키워드

참고문헌

  1. Ai, P., S. Sun, J. Zhao, W. Xin, Q. Guo, L. Yu, Q. Shen, P. Wu, A. J. Miller, and G. Xu. 2009. Two rice phosphate transporters, OsPT1;2 and OsPT1;6 have different functions and kinetic properties in uptake and translocation. Plant J. 57(5) : 798-809. https://doi.org/10.1111/j.1365-313X.2008.03726.x
  2. Araki, R. 2006. Structural genes consistent with high-affinity nitrate transport system in rice and reed. PhD thesis. University of Shiga Prefecture. Japan (in Japanese).
  3. Corbesier, L., C. Vincent, S. H. Jang, and G. Coulpand. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 316 : 1030-1033. https://doi.org/10.1126/science.1141752
  4. Dai, A. 2006. Recent climatology, variability, and trends in global surface humidity. Journal of Climate. 24 : 1992-1930.
  5. Dennett, M. D., J. R. Milford, and J. Elston. 1978. The effect of temperature in the relative leaf growth rate of crops of Vicia Faba L. Agricultural Meteorology. 19 : 505-514. https://doi.org/10.1016/0002-1571(78)90047-X
  6. Feng, H., M. Yan, X. Fan, B. Li, and Q. Shen. 2011. Spatial expression and regulation of high affinity nitrate transporters by nitrogen and carbon status. J. Exp. Bot. 62 : 2319-2332. https://doi.org/10.1093/jxb/erq403
  7. Fitter, A. H. and R. S. Fitter. 2002. Rapid changes in flowering time in British plants. Science 296 : 1689-1691. https://doi.org/10.1126/science.1071617
  8. James, L. W., C. L. Lim, F. G. Valerie, R. Vinodan, E. L. Rebecca, R. Stephen, W. Benedicte, K. V. S. Jacqueline, J. Odile, B. Christelle, D. Marion, R. Catherine, B. Abdelhafid, C. M. Richard, and L. H. Isabelle. 2012. A conserved molecular basis for photoperiod adaptation in two temperature legumes. Proceedings of the National Academy of Sciences. 109(51) : 21158-21163. https://doi.org/10.1073/pnas.1207943110
  9. Ku, B. I., S. G.Kang, W. G. Sang, M. K.,Choi, K. J. Lee, H. K. Park, Y. D. Kim, B. K. Kim, and J. H. Lee. 2013. Variation of panicle differentiation stage by leaf growth according to rice varieties and transplanting time. Korean J. Crop Sci. 58(4) : 353-361. https://doi.org/10.7740/kjcs.2013.58.4.353
  10. Mueller, B. and S. I. Seneviratne. 2012. Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences. 109 : 12398-12403. https://doi.org/10.1073/pnas.1204330109
  11. NIAST (National Institute of Agricultural Science and Technology). 2000. Methods of soil and plant analysis. RDA. Suwon. Korea.
  12. Osmario, J. L., S. A. M. Pinto, V. L. Marcus, A. S. Leandro, Santos, M. L. M. Elvia, M. S. Stark, A. M. Santos, and S. R. Souza. 2015. Expression of the genes OsNRT1.1, OsNRT2.1, OsNRT2.2, and kinetics of nitrate uptake in genetically contrasting rice varieties. American Journal of Plant Sciences. 6 : 306-314. https://doi.org/10.4236/ajps.2015.62035
  13. Seo, H. M., Y. H. Jung, S. Y. Song, Y. H. Kim, T. M. Kwon, D. H. Kim, S. J. Jeung, Y. B. Yi, G. H. Yi, M. H. Nam, and J. S. Nam. 2008. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol. Lett. 30 : 1833-1838. https://doi.org/10.1007/s10529-008-9757-7
  14. Shimono, H., S. Fujimura, T. Nishimura, and T. Hasegawa. 2012. Nitrogen uptake by rice exposed to low water temperatures at different growth stages. Journal of agronomy and crop science. 198 : 145-151. https://doi.org/10.1111/j.1439-037X.2011.00503.x
  15. Song, Y. H., S. Ito, and T. Imaizumi. 2013. Flowering time regulation: photoperiod and temperature sensing in leaves. Trends Plant Sci. 18(10) : 575-583. https://doi.org/10.1016/j.tplants.2013.05.003
  16. Thiagarajah, M. R. and L. A. Hunt. 1982. Effects of temperature on leaf growth in corn (Zea mays). Canadian Jounal of Botany. 60(9) : 1647-1652. https://doi.org/10.1139/b82-213
  17. Varley, J. 1966. The determination of N, P, and K ions in plant materials. Analyst. 91 : 119-126. https://doi.org/10.1039/an9669100119
  18. Vegara, B. S. and T. T. Chang. 1985. The flowering response of the rice plant to photoperiod. A review of the literature. Fourth Edition. International Rice Research Institute.
  19. Vittoria, B. and F. Fabio. 2013. Molecular control of flowering in response to day length in rice. Journal of integrative plant biology.
  20. Wang, Y. Y., P. K. Hsu, and Y. F. Tsay. 2012. Uptake, allocation and signaling of nitrate. Trends Plant Sci. 17 : 458-467. https://doi.org/10.1016/j.tplants.2012.04.006
  21. Fan, X., Z. Tang, Y. Tan, Y. Zhang, B. B. Luo, M. Yang, X. M. Lian, Q. Shen, A. J. Miller, G. H. Xu. 2016. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. P.N.A.S. 113(26) : 7118-7123. https://doi.org/10.1073/pnas.1525184113
  22. Yoshitake, Y., T. Yokoo, H. Saito, T. Ysukiyama, X. Quan, K. Zikihara, H. Katsura, S. Tokutomi, T. Aboshi, N. Mori, H. Inoue, H. Nishida, T. Kohchi, M. Teraishi, Y. Okumoto, and T. Tanisaka. 2014. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Scientific reports. 5 : 7709.
  23. Zhenlong, X. U., Z. H. O. U. Yanzhen, M. E. N. G. Chengsheng, G. U. O. Chengjin, X. U. Hairong., L. U. Wengng, G. U. Juntao, and X. I. A. O. Kai. 2009. Characterization of promoter expression patterns of OsNrt2.1, a nitrate transporter gene of rice (Oryza sativa L.). Front. Agric. China. 3(4) : 402-412. https://doi.org/10.1007/s11703-009-0047-5