DOI QR코드

DOI QR Code

부배열을 이용한 음향벡터센서 선배열의 광대역 적응빔형성기법

Wideband adaptive beamforming method using subarrays in acoustic vector sensor linear array

  • 투고 : 2016.08.10
  • 심사 : 2016.09.13
  • 발행 : 2016.09.30

초록

본 논문에서는 음향벡터 선배열 센서 기반에서의 광대역 적응빔형성기법을 다룬다. 적응 빔형성을 위하여 안정적인 공분산행렬추정은 매우 중요한 문제이다. 기존의 코히어런트 신호부공간기반의 적응 빔형성기법은 초점조정행렬(focusing matrix) 추정으로 인해 방위각 추정에 오차가 발생하며 또한 공분산행렬 추정을 위하여 많은 데이터 단편을 필요로 한다. 방위각 추정오차 및 공분산 행렬 추정시 필요한 데이터 단편의 수 문제를 완화하기 위하여 음압센서 선배열에 적용된 조향공분산 행렬 기법을 음향벡터 선배열 센서에 확장하여 적용한다. 그리고 부배열 기법을 통하여 공분산행렬의 차원을 줄임으로써 적은 수의 데이터 단편으로 안정적인 공분산행렬 추정이 가능하고 방위각 추정성능을 향상시킨다. 모의 실험을 통하여 기존의 코히어런트 신호 부공간 전처리 기반 광대역 빔형성기법과 제안한 기법의 방위각 추정 성능을 분석한다.

In this paper, a wideband adaptive beamforming approach for an acoustic vector sensor linear array is presented. It is a very important issue to estimate the stable covariance matrix for adaptive beamforming. In the conventional wideband adaptive beamforming based on coherent signal-subspace (CSS) processing, the error of bearing estimates is resulted from the focusing matrix estimation and the large number of data snapshot is necessary. To alleviate the estimation error and snapshot deficiency in estimating covariance matrix, the steered covariance matrix method in the pressure sensor is extended to the vector sensor array, and the subarray technique is incorporated. By this technique, more accurate azimuth estimates and a stable covariance matrix can be obtained with a small number of data snapshot. Through simulation, the azimuth estimation performance of the proposed beamforming method and a wideband adaptive beamforming based on CSS processing are assessed.

키워드

참고문헌

  1. B. C. Kim and I. T. Lu, "High resolution broadband beamforming based on the MVDR method" Oceans 2000 MTS/IEEE, 3,1673-1676 (2000).
  2. S. Haykin, Adaptive Filter Theory (Prentice Hall New Jersey, 1996), pp. 59-60.
  3. H. Krim and M. Viberg, "Two decades of signal processing research-the parametric appoach," IEEE Signal Process. Mag. 67-94 (1996).
  4. A. Nehorai and E. Paldi, "Acoustic vector-sensor array processing," IEEE Trans. Signal Process. 42, 2481-2491 (1994). https://doi.org/10.1109/78.317869
  5. M. Hawkes and A. Nehorai, "Acoustic vector-sensor beamforming and capon direction estimation," IEEE Trans. Signal Process. 46, 2291-2304 (1998). https://doi.org/10.1109/78.709509
  6. K. T. Wong and M. D. Zoltowski, "Self-initiating MUSICbased direction finding in underwater acoustic particle velocity-field beam-space," IEEE J. Ocean. Eng. 25, 262-273 (2000). https://doi.org/10.1109/48.838989
  7. K. T. Wong and M. D. Zoltowski, "Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones," IEEE Trans. Signal Process. 47, 3250-3260 (1999). https://doi.org/10.1109/78.806070
  8. K. T. Wong and M. D. Zoltowski, "Extended-aperture underwater acoustic multisource azimuth/elevation directionfinding using uni-formly but sparsely spaced vector hydrophones," IEEE J. Ocean. Eng. 22, 659-672 (1997). https://doi.org/10.1109/48.650832
  9. H. W. Chen and J. W. Zhao, "Wideband MVDR beamforming for acoustic vector sensor linear array," IEE Proc. Radar Sonar Navig. 151, 158-162 (2004). https://doi.org/10.1049/ip-rsn:20040651
  10. W. Hong and A. H. Tewfik, "Focusing matrices for wideband array processing with no a priori angle estimates," in Proc. ICASSP-92, 23-26(1992).
  11. J. Krolik and D. Swingler, "The detection performance of coherent wideband focusing for a spatially resampled array," in Proc. IEEE Int.Conf. on Acoustics, 2827-2830(1990).
  12. J. Krolik and D. Swingler, "Multiple broad-band source location using steered covariance matrices," IEEE Trans. Acoust. Speech Signal Process. 37, 1418-1494 (1989).
  13. J. S. Lee, D. H. Park, J. S. Kim, and K. K. Lee, "MVDR beamformer for high frequency resolution using subband decomposition" (in Korean), J. Acoust. Soc. Kr. 21, 62-68 (2002).