DOI QR코드

DOI QR Code

차동 위상 천이 변조 방식의 수중음향통신을 위한 수신기 설계

Receiver design for differential phase-shift keying underwater acoustic communication

  • 전은혜 (한국해양대학교 전파공학과) ;
  • 권택익 (한국해양대학교 전파공학과) ;
  • 김기만 (한국해양대학교 전파공학과)
  • 투고 : 2016.06.20
  • 심사 : 2016.07.19
  • 발행 : 2016.09.30

초록

본 논문은 기존의 DPSK(Differential Phase-Shift Keying) 방식 수중음향통신에 직접 수열 대역확산 기법을 적용하여 송수신단을 구성하는 내용을 다루었다. DPSK방식의 수신기에서는 인접 비트 간 위상차만 알고 있으면 복조가 가능하기 때문에 수신기 구조가 간단해지는 장점이 있다. 기존의 DPSK 수신단에서는 역확산 전 신호의 두 심볼씩 전이 상관기로 입력되면 상관 결과의 최대값을 비교하여 데이터를 검출하는데 이 때 채널에 따른 낮은 SNR(Signal to Noise Ratio) 또는 높은 도플러 천이 주파수 때문에 전이 상관기 출력의 최대값 오류율이 증가할 수 있다. 본 논문에서는 전이 상관기에서 생성되는 다수 출력들의 크기뿐만 아니라 간격을 추가적으로 이용하여 더욱 정확한 검출 결과를 얻을 수 있도록 하는 방법을 제안하였다. 제안된 방법의 성능은 모의 및 호수실험을 통해 획득한 데이터를 이용하여 분석되었다.

This paper presents constructing transmitter and receiver by using a direct sequence spread spectrum techniques to DPSK (Differential Phase-Shift Keying) scheme in underwater acoustic communication. Since DPSK signal can be demodulated if the receiver knows only the phase difference between the adjacent bits, DPSK receiver structure has the advantage of being simplified. In the conventional receiver, two adjacent symbols of transmitted signal before despread are passed to the transition correlator that detects data by comparing maximum correlation outputs. At this time, the error for maximum value of the correlator output may increase because of low SNR (Signal to Noise Ratio) or high Doppler shift frequency according to the underwater channel. In this paper, we propose a method for accurate detection result using the width as well as the magnitude among outputs produced by the correlator. The performances of the proposed method was evaluated by simulation and lake trial data.

키워드

참고문헌

  1. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: propagation models and statistical characterization," IEEE Communication Magazine 47, 84-89 (2009).
  2. Y. M. Aval and M. Stojanovic, "Differentially coherent multichannel detection of acoustic OFDM signals," IEEE J. Oceanic Eng. 40, 251-268 (2015). https://doi.org/10.1109/JOE.2014.2328411
  3. C. H. Hwang, K. M. Kim, D. W. Lee, and T. D. Park, "Influence of underwater channel time-variability on communication throughput efficiency" (in Korean), J. Acoust. Soc. Kr. 33, 413-419 (2014). https://doi.org/10.7776/ASK.2014.33.6.413
  4. M. Stojanovic, "Underwater acoustic communications: design considerations on the physical layer," Proc. IEEE/IFIP WONS Conference, 1-10 (2008).
  5. J. Ling, H. He, J. Li, W. Roberts, and P. Stoica, "Covert underwater acoustic communications," J. Acoust. Soc. Am. 128, 2898-2909 (2010). https://doi.org/10.1121/1.3493454
  6. J. H. Park, "LPI techniques in underwater acoustic channel," Proc. IEEE Military Communication Conference 1, 10.5.1-10.5.5 (1986).
  7. M. Stojanovic, J. G. Proakis, J. A. Rice, and M. D. Green, "Spread spectrum underwater acoustic telemetry," Proc. MTS/IEEE Oceans Conference 2, 650-654 (1998).
  8. H. W. Lee, K. M. Kim, Y. J. Son, W. S. Kim, S. Y. Chun, and S. K. Lee, "Underwater acoustic communication of FHMFSK method with multiple orthogonal properties" (in Korean), J. Acoust. Soc. Kr. 33, 407-412 (2014). https://doi.org/10.7776/ASK.2014.33.6.407
  9. R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread-Spectrum Communication (Prentice Hall, New Jersey, 1995), pp. 47-67.
  10. E. M. Sozer, J. G. Proakis, M. Stojanovic, J. A. Rice, A. Benson, and M. Hatch, "Direct sequence spread spectrum based modem for under water acoustic communication and channel measurements," Proc. MTS/IEEE Oceans Conference 1, 228-233 (1999).
  11. H. S. Kim, D. H. Choi, J. P. Seo, J. H. Chung, and S. I. Kim, "The experimental verification of adaptive equalizers with phase estimator in the East sea" (in Korean), J. Acoust. Soc. Kr. 29, 229-236 (2010).
  12. A. M. Matarneh, "Thorough investigation of BER simulation of DPSK in underwater acoustic channel," JJEE. 2, 160-171 (2016).
  13. T. C. Yang and W. B. Yang, "Low probability of detection underwater acoustic communications using direct-sequence spread spectrum," J. Acoust. Soc. Am. 124, 3632-3647 (2008). https://doi.org/10.1121/1.2996329
  14. J. S. Kim, H. C. Song, W. S. Hodgkiss, and M. Siderius, "Virtual time series experiment (VirTEX) simulation tool for underwater acoustic communication," J. Acoust. Soc. Am. 126, 2174 (2009).