DOI QR코드

DOI QR Code

Estimation of source signal and channel response using ray-based blind deconvolution technique for Doppler-shifted underwater channel

음선 기반 블라인드 디컨볼루션 기법을 이용한 수중 도플러 편이 채널에서의 송신 신호 및 채널 응답 추정

  • 변기훈 (한국해양대학교 해양과학기술전문대학원) ;
  • 오세현 (한국해양대학교 해양과학기술전문대학원) ;
  • 변성훈 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김재수 (한국해양대학교 해양공학과)
  • Received : 2016.07.08
  • Accepted : 2016.08.04
  • Published : 2016.09.30

Abstract

This paper suggests an estimation method of the source signal and the channel impulse response (CIR) using ray-based blind deconvolution (RBD) in the underwater acoustic channel environment where Doppler effect exists by the relative motion between source and receiver. It is difficult to estimate the CIR on Doppler effect by the matched filter with a highly Doppler-sensitive waveform such as the m-sequence signal because Doppler shift can severely degrade the correlation between the received signal corrupted by Doppler effect and the original source signal. In this study, the Doppler-shifted source-signal's phase is estimated using the RBD, and the received signal is compensated by it to obtain the Doppler-corrected CIR. It is verified that using the matched filter with the received signal from the experimental data fails to estimate the CIR while the obtained CIR by the suggested method has the similarity to the propagation path of the ray model. Also, the results show that the reconstructed source signal using the RBD has the better Doppler shift compensation than the Doppler-shifted source signal derived from scattering function.

본 논문은 음선 기반 블라인드 디컨볼루션을 이용하여 송 수신기의 상대적인 이동으로 인한 도플러 편이가 존재하는 수중 음향 채널 환경에서의 송신 신호 및 채널 임펄스 응답 추정에 대한 방법을 제시한다. 도플러 편이가 존재하는 수중 채널 환경에서 m시퀀스와 같은 도플러 효과에 민감한 탐침 신호를 사용할 경우, 도플러 왜곡에 의한 수신 신호와의 낮은 상관도에 의해 정합 필터 처리만으로는 채널 임펄스 응답 추정에 어려움이 따른다. 본 연구에서는 음선기반 블라인드 디컨볼루션을 이용하여 도플러 편이가 포함되어 있는 송신 신호의 위상을 추정한 후, 이를 수신 신호에 보상함으로써 도플러 편이가 보상된 채널 임펄스 응답 추정에 대한 방법을 제안한다. 해상실험을 통해 측정된 수신 데이터에 대하여 정합 필터만으로는 채널 임펄스 응답 추정이 어려운 반면 제안된 방법을 통한 채널 임펄스 응답 추정 시, 음선 모델에서 예측된 전달경로와 유사한 특성을 보여주는 것을 확인하였다. 또한 산란 함수를 통해 추정된 도플러를 보상한 송신 신호에 비해 음선 기반 블라인드 디컨볼루션을 이용하여 복원한 송신 신호가 더 우수한 도플러 보상효과를 나타낸다.

Keywords

References

  1. M. Siderius, M. B. Porter, P. Hursky, V McDonald, and the KauaiEx Group, "Effects of ocean thermocline variability on noncoherent underwater acoustic communcations," J. Acoust. Soc. Am. 121, 1895-1908 (2006).
  2. P. A. van Walree, T. Jenserud, and M. Smedsrud, "A discretetime channel simulator driven by measured scattering function," IEEE Journal on J-SAC 26, 1628-1637 (2008).
  3. A. Song, M. Badiey, H. C. Song, W. S. Hodgkiss, M. B. Porter, and the KauaiEx Group, "Impact of ocean variability on coherent underwater acoustic communications during the kauai experiment," J. Acoust. Soc. Am. 123, 856-865 (2008). https://doi.org/10.1121/1.2828055
  4. J. R. Yoon, M. K. Park, and Y. J. Ro, "Bit error parameters on passive phase conjugation underwater acoustic communication" (in Korean), J. Acoust. Soc. Kr. 24, 454-461 (2005).
  5. M. J. Eom, J. S. Park, Y. H. Ji, and J. S. Kim, "Mitigation of inter-symbol interference in underwater acoustic communication using spatial filter" (in Korean), J. Acoust. Soc. Kr. 33, 48-53 (2014). https://doi.org/10.7776/ASK.2014.33.1.048
  6. M. J. Eom, J. S. Kim, J. H. Cho, H. Kim, and I. Sung, "Algorithm and experimental verification of underwater acoustic communication based on passive time-reversal mirror," (in Korean) J. Acoust. Soc. Kr. 33, 392-399 (2014). https://doi.org/10.7776/ASK.2014.33.6.392
  7. J. S. Kim, "Virtual time series experiment (VirTEX) simulation tool for underwater acoustic communication," 09 ASA Conference, 2174 (2009).
  8. J. S. Kim, H. C. Song, W. S. Hodgkiss, M. Dzieciuch and M. B. Porter, "Dynamic channel modeling with a time-evolving sea surface," 10 ECUA, 741-745 (2010).
  9. M. Siderius and M. B. Porter, "Modeling broadband ocean acoustic transmissions with time-varying sea surfaces," J. Acoust. Soc. Am. 124, 137-150 (2008). https://doi.org/10.1121/1.2920959
  10. T. H. Oh, J. Y. Na, and D. W. Suk, "Two-dimensional localization of array elements placed on a sea floor using m-sequence signal in mutipath ocean environment" (in Korean), J. Acoust. Soc. Kr. 21, 686-694 (2002).
  11. S. Seo and C. K. Lee, "Analysis of ocean acoustic channel using m-sequences in ocean acoustic tomography" (in Korean), J. Acoust. Soc. Kr. 23, 24-29 (2004).
  12. E. M. Sozer, J. G. Proakis, M. Stojanovic, M. Hatch, J. A. Rice and A. Benson, "Direct sequence spread spectrum based modem for under water acoustics communication and channel measurement," in Proc. MTS/IEEE OCEANS'99, 228-233 (1999).
  13. K. G. Sabra, H. C. Song and D. R. Dowling, "Ray-based blind deconvolution in ocean sound channels," J. Acoust. Soc. Am. 127, 42-47 (2010). https://doi.org/10.1121/1.3284548
  14. S. H. Byun and K. G. Sabra, "Passive characterization of underwater sound channel using blind deconvolution of ship noise" (in Korean), J. Acoust. Soc. Kr. Suppl.1(s) 35, 57 (2016).
  15. S. H. Abadi, D. Rouseff and D. R. Dowling, "Blind deconvolution for robust signal estimation and approximate source localization," J. Acoust. Soc. Am. 131, 2599-2610 (2012). https://doi.org/10.1121/1.3688502
  16. G. H. Byun, S. H. Oh, and J. S. Kim, "Passive characterization of underwater sound channel using blind deconvolution of ship noise," in Proc. the SAVEX15 Workshop, 13 (2016).
  17. K. G. Sabra and D. R. Dowling, "Blind deconvolution in ocean waveguides using artificial time reversal," J. Acoust. Soc. Am. 116, 262-271 (2004). https://doi.org/10.1121/1.1751151
  18. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, Boston, 2001), pp. 411-420.
  19. W. S. Burdic, Underwater Acoustic System Analysis (Prentice Hall, Englewood Cliffs, 1991), pp. 231-232.
  20. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, Boston, 2008), pp. 461-463.
  21. M. B. Porter, The Bellhop Manual and User's Guide: Preliminary Draft, http://oalib.hlsresearch.co m/Rays/HLS-2010-1.pdf