References
- D. Ciresan, U. Meier, J. Masci and J. Schmidhuber, "Multicolumn deep neural network for traffic sign classification," Neural Networks, vol. 32, pp. 333-338, Aug. 2012. https://doi.org/10.1016/j.neunet.2012.02.023
- N. Kalchbrenner, E. Grefenstette and P. Blunsom, "A Convolutional Neural Network for Modelling Sentences," arXiv preprint arXiv:1404.2188, 2014.
- P. Callet, C. Viard-Gaudin and D. Barba, "A Convolutional Neural Network Approach for Objective Video Quality Assessment," IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1316-1327, Sep. 2006. https://doi.org/10.1109/TNN.2006.879766
- Y. Zhang, "Deep Convolutional Network for Handwritten Chinese Character Recognition," University of Stanford, CS231N course project.
- Z. Zhong, L. Jin and Z. Xie, "High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature map," in Document Analysis and Recognition(ICDAR), 13th International Conference on IEEE, pp. 846-850, May 2015.
- W. Yang, L. Jin, Z. Xie and Z. Feng, "Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge," in Document Analysis and Recognition (ICDAR), 13th International Conference on. IEEE, pp. 551-555, May 2015.
- D. Ham, D. Lee, I. Jung and I. Oh, "Construction of Printed Hangul Character Database PHD08," Journal of the korea contents association, vol. 8, no. 11, pp.33-40, Nov. 2008. https://doi.org/10.5392/JKCA.2008.8.11.033
- B. Sin and J. Kim, "On-line Handwritten Character Recognition with Hidden Markov Models," in proceeding of the Korea Information Science Society, pp. 533-542, Oct. 1992.
- J. Ha and B. Shin, "Optimization of Number of States in HMM for On-line Hangul Recognition," in Proceeding of the Korea Information Science Society, vol. 25, no. 2, pp. 372-374, Oct. 1998.
- T. Hwang and S. Kim, "Hangul Recognition Using The Path Following Algorithm," IE interfaces, vol. 3, no. 2, pp. 53-62, Oct. 1990.
- I. Kim and X. Xiaohui, "Handwritten Hangul recognition using deep convolutional neural network," International Journal on Document Analysis and Recognition (IJDAR), vol. 18, no. 1, pp. 1-13, Mar. 2015. https://doi.org/10.1007/s10032-014-0229-4
- Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-Based Learning Applied to Document Recognition," in Proceeding of the IEEE 86.11, pp. 2278-2324, 1998.
- ImageNet Large Scale Visual Recognition Challenge [Internet]. Available: http://image-net.org/.
- A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Network," in Proceeding of the Neural Information Processing Systems 25(NIPS), pp. 1097-1105, 2012.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, "Going deeper with convolutions," in Proceeding of the Computer Vision and Pattern Recognition (CVPR), pp. 1-9, 2015.
- S. Arora, A. Bhaskara, R. Ge and T. Ma, "Provable Bounds for Learning Some Deep Representations," CoRR (Computing Research Repository), abs/1310.6343, 2013.
- Recognition Technologies and Innovation Ace (RETIA) ABBYYFineReader12 [Internet]. Available: http://www.retia.co.kr/cnt/products/products.html?category=1&uid=24&name=finereader-12&tab=1.
- ABC-OCR [Internet]. Available: https://itunes.apple.com/us/app/scanner-ocr-optical-character/id777913435?mt=8.
- Office Lens [Internet]. Available: https://itunes.apple.com/en/app/office-lens/id975925059?mt=8.
- Linear Interpolation [Internet]. Available: https://en.wikipedia.org/wiki/Linear_interpolation.
- CAFFE(Convolutional Architecture for Fast Feature Embedding) [Internet]. Available: http://caffe.berkeleyvision.org/.
Cited by
- 딥 러닝 기반 쇼핑몰 플랫폼용 상품 이미지 자동 분류 시스템 및 사용성 평가 vol.17, pp.3, 2017, https://doi.org/10.7236/jiibc.2017.17.3.227
- O2O 쇼핑몰 플랫폼 서비스디자인을 위한 딥 러닝 기반의 이미지 검색 시스템 vol.15, pp.7, 2017, https://doi.org/10.14400/jdc.2017.15.7.213
- 병 인식 및 보증금 환불을 위한 분류 알고리즘 vol.21, pp.9, 2016, https://doi.org/10.6109/jkiice.2017.21.9.1744
- 딥 러닝 기법을 활용한 이미지 내 한글 텍스트 인식에 관한 연구 vol.11, pp.6, 2020, https://doi.org/10.15207/jkcs.2020.11.6.001