DOI QR코드

DOI QR Code

Research on radar-based risk prediction of sudden downpour in urban area: case study of the metropolitan area

레이더 기반 도시지역 돌발성 호우의 위험성 사전 예측 : 수도권지역 사례 연구

  • Received : 2016.07.07
  • Accepted : 2016.08.05
  • Published : 2016.09.30

Abstract

The aim of this study is to apply and to evaluate the radar-based risk prediction algorithm for damage reduction by sudden localized heavy rain in urban areas. The algorithm is combined with three processes such as "detection of cumulonimbus convective cells that can cause a sudden downpour", "automatic tracking of the detected convective cells", and "risk prediction by considering the possibility of sudden downpour". This algorithm was applied to rain events that people were marooned in small urban stream. As the results, the convective cells were detected through this algorithm in advance and it showed that it is possible to determine the risk of the phenomenon of developing into local heavy rain. When use this risk predicted results for flood prevention operation, it is able to secure the evacuation time in small streams and be able to reduce the casualties.

최근 빈번히 발생하는 도시지역에서의 돌발성 집중호우로 인한 피해를 저감하고자, 기상레이더를 통해 관측되는 자료를 바탕으로 돌발성 호우의 위험성을 사전에 예측하는 기법을 적용하였다. 본 연구에서 활용한 방법은 대기 중의 돌발성 호우를 유발할 수 있는 적란운 대류세포의 조기탐지, 탐지된 대류세포의 자동 추적, 해당 대류세포가 발달하여 돌발성 호우를 유발할 수 있는 가능성을 판단하는 위험예측이라는 3가지 단계를 결합한 것이다. 본 기법은 실제 돌발성 호우로 인해 수도권 지역 소하천에서 시민들이 고립된 사례를 포함한 집중호우 사례에 적용되었다. 그 결과, 레이더 자료만을 이용하여 지상관측망보다 사전에 강우세포를 탐지하고, 국지적 집중호우로 발달하는 현상을 위험도로 판단할 수 있음을 보여 주었다. 본 연구를 통해 제시된 위험도 예측결과를 도시 소하천 홍수대피 업무에 활용한다면 대피시간을 충분히 확보할 수 있어 인명사고를 줄이는 데 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. Byers, H.R., and Braham, R.R. (1949). "The thunderstorm." U.S. Government Printing Office, p. 287.
  2. Dixon, M.J., and Wiener, G. (1993). "TITAN: Thunderstorm identification, tracking, analysis, and nowcasting-A radar-based methodology." Journal of Atmospheric and Oceanic Technology, 10, pp. 785-797. https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
  3. Eblen, L.H., Ladd, J.W., and Hicks, T.M. (1990). "Severe thunderstorm forecasting." NOAA Tech. memo. NWS SR-130, National Weather Service Forecast Office, p. 42.
  4. Han, L., Fu, S.X., Zhao, L.F., Zheng, Y.Z., Wang, H.Q., and Lin, Y.J. (2009). "3D Convective storm identification, tracking, and forecasting-An Enhanced TITAN algorithm." Journal of Atmospheric and Oceanic Technology, 26, pp. 719-732. https://doi.org/10.1175/2008JTECHA1084.1
  5. Jung, S.H., Lee, G.W., Kim, H.W., and Kuk, B.J. (2011). "Development of convective cell identification and tracking algorithm using 3-Dimensional radar reflectivity fields." Atmosphere, Korean Meterological Society, Vol. 21, No. 3, pp. 243-256.
  6. Jung, S.P., Kwon, T.Y., and Han, S.O. (2014). "Thermodynamic characteristics associated with localized torrential rainfall events in the middle west region of Korean Peninsula." Atmosphere, Korean Meteorological Society, Vol. 24, No. 4, pp. 457-470. https://doi.org/10.14191/Atmos.2014.24.4.457
  7. Lakshmanan, V., Rabin, R., and DeBrunner, V. (2003). "Multiscale storm identification and forecast." Journal of Atmospheric Research, 67, pp. 367-380.
  8. Nakakita, E., Yamabe, H., and Yamaguchi, K. (2010). "Earlier detection of the origin of very localized torrential rainfall." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 54, pp. 343-348.
  9. Nakakita, E., Nishiwaki, R., and Yamaguchi, K. (2012). "Research on anticipation of risk of a baby cell of guerrilla-heavy rain by analysis in terms of vorticity that uses doppler velocity." Annuals of Disaster Prevention Research Institute., Kyoto University, No. 55B, pp. 527-530.
  10. Nakakita, E., Nishiwaki, R., and Yamaguchi, K. (2014). "A study on development and upgrading of early detection and risk prediction system of guerrilla heavy-rainfall." Annuals of Disaster Prevention Research Institute., Kyoto University, No. 57B, pp. 289-298.
  11. Nishiwaki, R. (2014). "A study on development and upgrading of guerrilla heavy rain forecasting system." Master thesis, Kyoto university.
  12. Rasmussen, E.N., and Blanchard, D.O. (1998). "A baseline climatology of sounding-derived supercell and tornado forecasting parameters." Weather Forecasting, Vol. 13, pp. 1148-1164. https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
  13. Rinehart, R.E., and Garvey, E.T. (1978). "Three-dimensional storm motion detection by conventional weather radar." Nature, Vol. 273, pp. 287-289. https://doi.org/10.1038/273287a0
  14. Rotunno, R. (1981) "On the evolution of thunderstorm rotation." Monthly Weather Review, Vol. 109, No. 3, pp. 577-586. https://doi.org/10.1175/1520-0493(1981)109<0577:OTEOTR>2.0.CO;2
  15. Weisman, M.L., and Klemp, J.B. (1982). "The dependence of numerically simulated convective storms on vertical wind shear and buoyancy." Monthly Weather Review, Vol. 110, pp. 504-520. https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2
  16. Wilhelmson, R.B., and Klemp, J.B. (1978). "A numerical study of storm splitting that leads to long-lived storms." Journal of the Atmospheric Sciences, Vol. 35, No. 10, pp. 1974-1986. https://doi.org/10.1175/1520-0469(1978)035<1974:ANSOSS>2.0.CO;2