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PRICING EXTERNAL-CHAINED BARRIER OPTIONS WITH

EXPONENTIAL BARRIERS

Junkee Jeon and Ji-Hun Yoon

Abstract. External barrier options are two-asset options with stochastic
variables where the payoff depends on one underlying asset and the barrier
depends on another state variable. The barrier state variable determines
whether the option is knocked in or out when the value of the variable
is above or below some prescribed barrier level. This paper derives the
explicit analytic solution of the chained option with an external single
or double barrier by utilizing the probabilistic methods - the reflection
principle and the change of measure. Before we do this, we examine the

closed-form solution of the external barrier option with a single or double-
curved barrier using the methods of image and double Mellin transforms.
The exact solution of the external barrier option price enables us to obtain
the pricing formula of the chained option with the external barrier more
easily.

1. Introduction

Barrier options are one of the most popular path-dependent derivatives in
various markets, particularly in over-the-counter markets and FX markets. The
main reasons barrier options have become so popular are flexibility and a lower
price compared to vanilla options. Merton [13] first proposed the analytic pric-
ing formula for a barrier option with a lower knock-out boundary. Reiner and
Rubinstein [15] derived the closed-form formula for all eight types of barri-
ers with a cumulative normal distribution function. Kunitomo and Ikeda [11]
obtained double-barrier options with two curved (exponential) barriers.

An external barrier option is a contract whereby the payoff of an underlying
asset is created by the crossing of a barrier determined by a state variable. In
other words, in an external barrier option, one underlying asset depends on
the actual option payoff, and the other asset depends on whether the option
is knocked in or out. Heynen and Kat [6] derived closed-form formulas for
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European-style barrier options with a single external barrier, where the exter-
nal variable is not the underlying asset price. Carr [3] obtained the analytical
valuation for the up-and-in call option with an external single barrier. Kwok
et al. [12] studied analytic formulas for multi-asset option prices with an ex-
ternal single barrier so that the barrier level is exponential, and Chen et al. [4]
derived the closed-form formulas for Parisian external single-barrier options.
Additionally, Wong and Kwok [16] used the splitting direction technique for
the pricing of multi-asset options with an external double-barrier. Kim and
Kim et al. [10] obtained the Laplace transforms of the prices for the exter-
nal single and double-barrier options so that the underlying asset prices follow
a regime-switching model with finite regimes and then calculated the option
prices through numerical inversion of the Laplace transforms.

This paper examines the pricing of external-chained barrier options with
curved barriers based on the external barrier option pricing formula. Jun and
Ku [8] found the exact formula of chained barrier options where the monitoring
of the barrier begins at a random time as the underlying asset first crosses
two barrier levels in a specified order. The authors also addressed the pricing
formula of chained barrier options with exponential barriers [9].

Jun and Ku [8] derived the pricing formula of chained barrier options using
the reflection property and the change of measure and computing the given
expectation directly under a risk-neutral probability. However, if we are at-
tempting to calculate the expectation directly after implementing the change
of measure under an equivalent martingale measure in case of the external-
chained barrier option, then the computation of the barrier option price may
be more complicated than the case of the chained barrier option mentioned
in Jun and Ku [8] because the dynamics of the assets of the external-chained
barrier option are those of a two-factor model. Hence, to compute the closed-
form formula of the external-chained barrier option with exponential barriers
effectively and easily, we utilize the external European barrier option price
described in Section 2. After using the reflection principle method and the
change of measure under risk-neutral probability, we change the expectation
representation of the external-chained barrier option into the form of the ex-
pectation of the external European barrier option. Then, because the pricing
formula of the external European barrier option is expressed by the bivariate
cumulative normal distribution function, we obtain the closed solution of the
external-chained barrier option directly without any calculation of the expec-
tation. Similarly, by using the external double-barrier option price mentioned
in Section 3 immediately, we obtain the semi-analytic formula of the external-
chained double-barrier option.

The pricing formulas of the external European call option price proposed by
Heynen and Kat [6] were derived by the properties of reflection and probabilistic
approaches. However, the derivation of the option pricing formula using these
methods requires the complexity of the calculation. To resolve this problem, we
use the double Mellin transform methods and the method of images to derive
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the valuation formula of the given option price. The Mellin transform, which is
considered the integral transform of the multiplicative version of the two-sided
Laplace transform, is a useful instrument for the transformation of partial
differential equations. Yoon [17] used Mellin transforms to obtain a closed
formula for European options under a Hull-White stochastic interest rate. Yoon
and Kim [18] utilized double Mellin transforms to derive the exact-form solution
for European vulnerable options under a constant interest rate and a stochastic
interest rate. Additionally, Jeon, Kang, and Yoon [7] considered the pricing
of path-dependent options using double Mellin transforms for an explicit-form
pricing formula of path-dependent options.

The method of images was first proposed by Buchen [1] and is closely related
to the reflection principle of the expectations solution. Buchen [1] obtained
the closed formula of barrier options more easily using the PDE method of
images compared to the existing probabilistic method. Therefore, using the
double Mellin transforms and the method of images for the derivation of the
option pricing formula solves the pricing formula of the external European call
option presented in Section 2 effectively and easily. To find the semi-analytic
valuation formula of the external double-barrier option price in Section 3, the
double Mellin transform and the image operators of the method of images are
tools that find the solution simply.

This paper is organized as follows. Section 2 uses the Mellin transform tech-
nique and the method of images to derive the external European barrier option
with one or two curved barriers. Section 3 considers the derivation of the price
of the external double-barrier option with the double exponential barrier. Sec-
tion 4 shows an explicit analytic solution for an external-chained single barrier
option using the reflection principle and the formula of the given external Euro-
pean barrier option directly. Section 5 addresses the semi-analytic solution for
the external double-barrier option, and Section 6 presents concluding remarks.

2. External European barrier option with a single curved barrier

2.1. Model formulation

Assume that St is the value of an asset underlying the option with the
constant drift rate µ and the volatility σ, and Zt is the barrier state variable
with the constant drift rate µ∗ and the volatility σ∗, where both σ and σ∗

are positive constants. Then, the dynamics of St and Zt have the following
stochastic differential equations (SDEs)

(2.1)
dSt = µStdt+ σStdB

s
t ,

dZt = µ∗Ztdt+ σ∗ZtdB
z
t ,

and Bs
t and Bz

t are standard Brownian motions satisfying d〈Bs
t , B

z
t 〉t = ρdt.

Using the Girsanov theorem in Oksendal [14], in the risk neutral world P ∗, the
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equation (2.1) is changed into

(2.2)
dSt = rStdt+ σStdB

s∗
t ,

dZt = rZtdt+ σ∗ZtdB
z∗
t ,

where r is a constant interest rate, and Bs∗
t and Bz∗

t are the transformed
Brownian motions of Bs

t and Bz
t , respectively, with d〈Bs∗

t , Bz∗
t 〉t = ρdt.

Based upon the SDEs (2.2), we consider European up-and-out call options
where the terminal payoff depends on the underlying asset St, and the knock-
out occurs when the barrier state variable Zt breaches the upstream exponential
barrier β(t) = Ueb(T−t). If K is the strike price of the option, then, under the
risk-neutral measure P ∗, the price of the up-and-out call with the exponential
barrier is given by

(2.3) P (t, s, z) := EP∗

[

e−r(T−t)h̃(ST , ZT )|St = s, Zt = z
]

,

where the payoff function h̃ is expressed by

h̃(ST , ZT ) = (ST −K)+1{max0≤γ≤T (Zγ−β(γ))<0}.

Using the Feynman-Kac formula in Oksendal [14], P (t, s, z) leads to the
following PDE problem

(2.4)

LP (t, s, z) = 0, t < T,

P (T, s, z) = h(s) = (s−K)+, on z < U,

P (t, s, β(t)) = 0 ,

L :=
∂

∂t
+

1

2
σ2s2

∂2

∂s2
+

1

2
σ∗

2z2
∂2

∂z2
+ ρσσ∗sz

∂2

∂s∂z

+ r

(

s
∂

∂s
+ z

∂

∂z

)

− rI

on the domain {(t, s, z) : 0 ≤ t < T, 0 ≤ x < ∞, 0 ≤ z < β(t)}, where I is the
identity operator.

If we apply the change of variables V (t, x, y) = P (t,s,z)

eb(T−t) , x = s
eb(T−t) , and

y = z
eb(T−t) to (2.4), then, the PDE (2.4) yields

(2.5)

L̃V (t, x, y) = 0, t < T,

V (T, x, y) = h(x) = (x−K)+, on y < U

V (t, x, U) = 0 ,

L̃ :=
∂

∂t
+

1

2
σ2x2 ∂2

∂x2
+

1

2
σ∗

2y2
∂2

∂y2
+ ρσσ∗xy

∂2

∂x∂y

+ (r + b)

(

x
∂

∂x
+ y

∂

∂y

)

− (r + b)I

on the domain {(t, x, y) : 0 ≤ t < T, 0 ≤ x < ∞, 0 ≤ y < U}.
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2.2. Derivation of the external European barrier option price with a
single exponential barrier: Double Mellin transform approach

This subsection investigates the price of an external European option with
a single exponential barrier. To find an explicit closed-form solution, we use
the method of images mentioned in Buchen [1] and a double Mellin transform
consistent with Hassan and Adem [5].

2.2.1. The review of the method of images. Let f(t, x, y) be a differentiable
function with respect to (t, x, y). Then, the image function of f(t, x, y) de-
scribed by f∗(t, x, y) = IBf(t, x, y) to the barrier B has the following proper-
ties

(a) IB
2 = I, where I is the identity operator.

(b) If L f(t, x, y) = 0, then LIB[f(t, x, y)] = 0.
(c) When x = B or y = B, IB[f ] = f , that is, (I − IB)[F ] = 0.
(d) If x > B or y > B (x < B or y < B) is the active domain of f(t, x, y),

then x < B or y < B (x > B or y > B) is the active domain of
f∗(t, x, y) = IBf(t, x, y),

where IB is the image operator with respect to the barrier level B, and L is a
parabolic differential operator.

Then, for a differentiable function f̃(t, x, y), we consider the following PDE

(2.6)

Lf̃(t, x, y) = 0;

f̃(t, B, y) = 0, x < B , t < T

f̃(T, x, y) = g(x),

where g(x) is the terminal payoff function of f̃(t, x, y). To solve this PDE
(2.6), the following related PDE with an unrestricted domain with respect to
x should be considered.

Lf(t, x, y) = 0;

f(T, x, y) = g(x)1{x<B}, x > 0 , t < T.

Then, we obtain the solution of the PDE (2.6), which is expressed by

f̃(t, x, y) = f(t, x, y)− f∗(t, x, y),

where f∗(t, x, y) is the image solution of f(t, x, y).

2.2.2. Review of the double Mellin transform. Referring to Hassan and Adem
[5], we review the double Mellin transform to solve the PDE with the given
final and boundary conditions. For a locally Lebesgue integrable function
f(x1, y1), x1, y1 ∈ R

+, the double Mellin transform is given by

Mx1y1(f(x1, y1), w1, w2) := f̂(w1, w2) =

∫ ∞

0

∫ ∞

0

f(x1, y1)x
w1−1
1 yw2−1

1 dx1dy1,
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where w1 and w2 are complex numbers. If a < Re(w1), Re(w2) < b, and if c1
and c2 such that a < c1 < b and a < c2 < b exist, the inverse of the double
Mellin transform is the complex integral function satisfying

f(x1, y1) = M−1
x1y1

(f̂(w1, w2))

=
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞

f̂(w1, w2)x
−w1
1 y−w2

1 dw1dw2.

In PDE (2.5), letting W (t, x, y) = V (t, x, U y) and r̃ = r + b, (2.5) is trans-
formed into the following PDE:

(2.7)

L̃W (t, x, y) = 0, t < T,

W (T, x, y) = h(x) = (x−K)+, on y < 1

W (t, x, 1) = 0 ,

L̃ :=
∂

∂t
+

1

2
σ2x2 ∂2

∂x2
+

1

2
σ∗

2y2
∂2

∂y2
+ ρσσ∗xy

∂2

∂x∂y

+ r̃

(

x
∂

∂x
+ y

∂

∂y

)

− r̃I

in the region {(t, x, y) : 0 ≤ t < T, 0 ≤ x < ∞, 0 ≤ y < 1}.
To solve the problem (2.7), we must consider w̄(t, x, y) satisfying the follow-

ing PDE

(2.8)
L̃w̄(t, x, y) = 0,

w̄(T, x, y) = h(x)1{y<1}.

with the unrestricted domain {(t, x, y) : 0 ≤ t < T, 0 ≤ x < ∞, 0 ≤ y < ∞}.
Using the PDE method of images stated in Buchen [1], if we obtain the image
solution of the above w̄(t, x, y), then we can find the solution of W (t, x, y) in
(2.7) by integrating w̄(t, x, y) and the image solution of w̄(t, x, y).

If we define w̄(t, x, y) as the inverse double Mellin transform of ŵ(t, x∗, y∗)
satisfying

w̄(t, x, y) =
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞

ŵ(t, x∗, y∗)x−x∗

y−y∗

dx∗dy∗,

the PDE (2.7) is transformed into

(2.9)

dŵ

dt
+A(x∗, y∗)ŵ = 0,

A(x∗, y∗) :=
σ2

2
x∗2 + ρσσ∗x

∗y∗ +
σ∗

2

2
y∗2 −

(

r̃ −
σ2

2

)

x∗

−

(

r̃ −
σ∗

2

2

)

y∗ − r̃,
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and from the solution ŵ(t, x∗, y∗) of the ordinary differential equation (2.9), we
obtain
(2.10)

w̄(t, x, y) =
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞

ĥ(x∗, y∗)eA(x∗,y∗)(T−t)x−x∗

y−y∗

dx∗dy∗,

where ĥ(x∗, y∗) is the double Mellin transform of w̄(T, x, y) = h(x)1{y<1}.
Hence, to compute (2.10), let us consider

(2.11) B̃(t, x, y) =
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞

eA(x∗,y∗)(T−t)x−x∗

y−y∗

dx∗dy∗.

Because eA(x∗,y∗)(T−t) and ĥ(x∗, y∗) are the double Mellin transforms of

B̃(t, x, y) and h(x)1{y<1}, respectively, by using the Mellin convolution prop-
erty stated in Hassan and Adem [5], we have

(2.12) w̄(t, x, y) =

∫ ∞

0

∫ ∞

0

h(u1)1{u2<1}B̃

(

τ,
x

u1
,
y

u2

)

u−1
1 u−1

2 du1du2.

To find the value of the double integral in (2.12), we calculate B̃(t, x, y) in

(2.11). The computation of the B̃(t, x, y) is given by Yoon and Kim [18] and

B̃(τ, x, y) (τ = T − t)

(2.13)

=
1

2πi

∫ c1+i∞

c1−i∞

exp

[{

1

2
(1 − ρ2)σ2x∗2 +

(

ρσσ∗

2
(k∗ − 1)−

(

r̃ −
σ2

2

))

x∗

−
σ∗

2(k∗ − 1)2

8
− r̃

}

τ

]

x−x∗

b(τ, x∗, y)dx∗,

b(τ, x∗, y) :=
1

2πi

∫ c2+i∞

c2−i∞

exp

[

σ∗
2

2
τ

{

y∗ +

(

ρσ

σ∗
x∗ −

k∗ − 1

2

)}2
]

y−y∗

dy∗,

k∗ :=
2r̃

σ∗
2
.

As mentioned earlier, W (t, x, y) of the PDE problem in (2.7) is expressed
as the sum of w̄(t, x, y) and the image solution of w̄(t, x, y). To find the image
solution of w̄(τ, x, y), the following lemma is useful.

Lemma 2.1. If we define R(x∗, y∗) :=
{

y∗ +
(

ρσ
σ∗

x∗ − k∗−1
2

)}2

in the equa-

tion b(τ, x∗, y) of (2.13), then

B̃(τ, x, y) = y−(k∗−1)B̃
(

τ, y−
2ρσ
σ∗ x, 1

y

)

.

Proof. By the definition of R(x∗, y∗), we obtain

R(x∗, y∗) = R

(

x∗,−y∗ − 2

(

2ρσ

σ∗
x∗ −

k∗ − 1

2

))

.
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Then,

b(τ, x∗, y) =
1

2πi

∫ c2+i∞

c2−i∞

exp

[

σ∗
2

2
τR (x∗, y∗)

]

y−y∗

dy∗

= y
2ρσ
σ∗

x∗

y−(k∗−1) 1

2πi

∫ c2+i∞

c2−i∞

exp

[

σ∗
2

2
τR (x∗, y∗∗)

]

yy
∗∗

dy∗∗,

= y
2ρσ
σ∗

x∗

y−(k∗−1)b
(

τ, x∗, 1
y

)

.

where y∗∗ = −y∗ − 2
(

2ρσ
σ∗

x∗ − k∗−1
2

)

.

In (2.13), if we let

l(x∗)=

{

1

2
(1−ρ2)σ2x∗2+

(

ρσσ∗

2
(k∗ − 1)−

(

r̃−
σ2

2

))

x∗−
σ∗

2(k∗ − 1)2

8
−r̃

}

,

then B̃(τ, x, y) yields

B̃(τ, x, y) =
1

2πi

∫ c2+i∞

c2−i∞

exp [τl(x∗)] y
2ρσ
σ∗

x∗

y−(k∗−1)b
(

τ, x∗, 1
y

)

x−x∗

dx∗.

(2.14)

=⇒ y(k∗−1)B̃(τ, x, y) =
1

2πi

∫ c2+i∞

c2−i∞

exp [τl(x∗)] y
2ρσ
σ∗

x∗

b
(

τ, x∗, 1
y

)

x−x∗

dx∗.

Replacing 1
y
with y again, and using

B̃(τ, x, y) =
1

2πi

∫ c2+i∞

c2−i∞

exp [τl(x∗)] l (τ, x∗, y)x−x∗

dx∗

in (2.11), we obtain

y−(k∗−1)B̃

(

τ, x,
1

y

)

=
1

2πi

∫ c2+i∞

c2−i∞

exp [τl(x∗)] y−
2ρσ
σ∗

x∗

b (τ, x∗, y)x−x∗

dx∗

= B̃
(

τ, y
2ρσ
σ∗ x, y

)

.(2.15)

Hence, B̃(τ, x, y) = y−(k∗−1)B̃
(

τ, y−
2ρσ
σ∗ x, 1

y

)

. �

Therefore, from Lemma 2.1, w̄(t, x, y) of (2.12) is described by

w̄(t, x, y) =

∫ ∞

0

∫ ∞

0

h(u1)1{u2<1}

(

y

u2

)−(k∗−1)

(2.16)

B̃

(

τ,

(

y

u2

)− 2ρσ
σ∗ x

u1
,
u2

y

)

u−1
1 u−1

2 du1du2,

and yields

y−(k∗−1)w̄

(

t, y−
2ρσ
σ∗ x,

1

y

)

=

∫ ∞

0

∫ ∞

0

h(u
− 2ρσ

σ∗

2 u1)u
−(k∗−1)
2 1{u2>1}(2.17)
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B̃

(

τ,
x

u1
,
y

u2

)

u−1
1 u−1

2 du1du2.

Lemma 2.2. Let w̄∗(t, x, y) = y−(k∗−1)w̄
(

t, y−
2ρσ
σ∗ x, 1

y

)

. Then, w̄∗(t, x, y)

is an image function of w̄(t, x, y) satisfying L̃w̄∗(t, x, y) = 0. Moreover, the

solution of (2.5) is given by

(2.18) V (t, x, y) = V̄ (t, x, y)−
( y

U

)−(k∗−1)

V̄

(

t,
( y

U

)− 2ρσ
σ∗

x,
U2

y

)

,

where V̄ (t, x, y) is a solution of L̃V̄ (t, x, y)=0 with the final condition V̄ (T, x, y)
= h(x)1{y<U}.

Proof. As described above by the property of the double Mellin transform
convolution, w̄(t, x, y) in (2.12) is a solution of the PDE problem of (2.7).
Hence, by the relationship between (2.7) (PDE problem) and (2.12) (Mellin

convolution), we note that w̄∗(t, x, y) = y−(k∗−1)w̄
(

t, y−
2ρσ
σ∗ x, 1

y

)

given in

(2.17) is the solution of the PDE L̃w̄∗(t, x, y) = 0 with the terminal condition

w̄∗(T, x, y) = h(y−
2ρσ
σ∗ x)y−(k∗−1)1{y>1}. Additionally, to prove that w̄∗(t, x, y)

is an image function of w̄(t, x, y), we define

(2.19) W (t, x, y) = w̄(t, x, y)− w̄∗(t, x, y).

Then,

(2.20) L̃w̄(t, x, y) = 0 and L̃w̄∗(t, x, y) = 0,

(2.21) W (t, x, 1) = w̄(t, x, 1)− w̄∗(t, x, 1) = 0

at y = 1, and

W (T, x, y) = w̄(T, x, y)− w̄∗(T, x, y)

= h(x)1{y<1} − h(y−
2ρσ
σ∗ x)y−(k∗−1)1{y>1}

=

{

h(x) if y < 1

−h(y−
2ρσ
σ∗ x)y−(k∗−1) if y > 1

(2.22)

are satisfied. Hence, by the properties of the image function mentioned in
Buchen [1], w̄∗(t, x, y) is the image function of w̄(t, x, y).

Moreover, (2.19) and (2.20) lead to L̃W (t, x, y) = 0, and by combining (2.19)
to (2.22), W (t, x, y) = w̄(t, x, y)− w̄∗(t, x, y) becomes the solution of the PDE
(2.7).

Therefore, the solution of (2.7) is expressed by

(2.23) W (t, x, y) = w̄(t, x, y)− y−(k∗−1)w̄
(

t, y−
2ρσ
σ∗ x, 1

y

)

,

and by replacing y with y
U

in (2.23), we obtain

(2.24) W (t, x,
y

U
) = w̄(t, x,

y

U
)−

( y

U

)−(k∗−1)

w̄

(

t,
( y

U

)− 2ρσ
σ∗

x,
U

y

)

,
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and from W (t, x, y) = V (t, x, Uy), V (t, x, y) is given by

V (t, x, y) = V̄ (t, x, y)−
( y

U

)−(k∗−1)

V̄

(

t,
( y

U

)− 2ρσ
σ∗

x,
U2

y

)

,

where V̄ (t, x, y) is a solution of L̃V̄ (t, x, y)=0 with the final condition V̄ (T, x, y)
= h(x)1{y<U} in the unrestricted region {(t, x, y) : 0 ≤ t < T, 0 ≤ x < ∞, 0 ≤
y < ∞}. �

Theorem 2.1. The price of the external European call option price with the

single exponential barrier, defined by (2.4), is expressed by

(2.25)
P (t, s, z)

= sN2

(

dr1
(

τ, s
K

)

,−dr2

(

τ, z
β(t)

)

,−ρ
)

−e−rτKN2

(

dr3
(

τ, s
K

)

,−dr4

(

τ, z
β(t)

)

,−ρ
)

+
(

z
β(t)

)−
2ρσ
σ∗

−(k∗−1)

sN2

(

dr1

(

τ,
(

z
β(t)

)−
2ρσ
σ∗ s

K

)

, dr2

(

τ, β(t)
z

)

,−ρ

)

− e−rτ K
(

z
β(t)

)−(k∗−1)

N2

(

dr3

(

τ,
(

z
β(t)

)−
2ρσ
σ∗ s

K

)

,−dr4

(

τ, β(t)
z

)

,−ρ

)

,

where N2 is the bivariate normal cumulative distribution function defined by

N2(n1, n2, ρ) =
1

2π
√

1− ρ2

∫ n1

−∞

∫ n2

−∞

e
− 1

2(1−ρ2)
(p2−2ρpq+q2)

dpdq

and dr1(τ, ς1) =
ln(ς1)+(r+σ2

2 )τ

σ
√
τ

, dr2(τ, ς2) =
ln(ς2)+(r−σ∗

2

2 +ρσσ∗)τ

σ∗

√
τ

, dr3(τ, ς3) =

ln(ς3)+(r− σ2

2 )τ

σ
√
τ

and dr4(τ, ς2) =
ln(ς4)+(r−σ∗

2

2 )τ

σ∗

√
τ

.

Proof. First, Lemma 2.2 shows that the V̄ (t, x, y) is the solution satisfying

(2.26)
L̃V̄ = 0,

V̄ (T, x, y) = h(x)1{y<U} = (x−K)+1{y<U},

where L̃ is the operator given by (2.5).
To solve the PDE (2.5), we utilize the double Mellin transform technique.

First, we solve the PDE (2.26). However, since the payoff function h of the
European call option is not bounded, the double Mellin transforms may not
exist. Therefore, we modify h by defining a sequence of functions hn such that
hn is given by

(2.27)

hn(x, y) = h1
n(x)h

2
n(y),

h1
n(x) :=

{

x−K, if K ≤ x < n

0, otherwise,
h2
n(y) :=

{

1, if y ≤ U

0, otherwise,

and each hn is bounded and limn→∞ hn(x, y) = h(x)1{y<U}.
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If we define sequential functions V̄n(t, x, y) satisfying the following PDE

(2.28)
L̃ V̄n(t, x, y) = 0

V̄n(T, x, y) = hn(x, y)

on domain {(t, x, y) : 0 ≤ t < T, 0 ≤ x < ∞, 0 ≤ y < ∞}, where the operator

L̃ is described by (2.5), then the limit V (t, x, y) = limn→∞ Vn(t, x, y) should
be the solution of the PDE (2.5).

By using the Mellin convolution property, we have

V̄n(t, x, y) =

∫ ∞

0

∫ ∞

0

hn(u1, u2) B̃

(

τ,
x

u1
,
y

u2

)

u−1
1 u−1

2 du1du2.

Here, more detail on the computation of the B̃(t, x, y) is given by the equa-
tion (2.12) in Yoon and Kim [18].

Therefore, from hn(s, v) = h1
n(s)h

2
n(v) in (2.26),

V̄n(t, x, y) =

∫ U

0

∫ n

K

eθ1(u)(u−K)θ2(u,w)
1

u

1

w
dudw,

where

θ1 = −
τ

8(1− ρ2)

(

σ2(k − 1)2 + σ∗
2(k∗ − 1)2 − 2ρσσ∗(k − 1)(k∗ − 1)

)

− r̃τ,

θ2(u,w)=
(x

u

)

ρσσ∗τ
2

(k∗−1)−

(

r̃−σ2

2

)

τ+
ρσ
σ∗

ln(y/w)

(1−ρ2)σ2τ
( y

w

)

ρσσ∗τ
2

(k−1)−

(

r̃−
σ∗

2

2

)

τ+
ρσ∗

σ
ln(x/u)

(1−ρ2)σ∗
2τ

e
− 1

2

(
ln(x/u)

σ
√

(1−ρ2)τ

)2

σ
√
2πτ

e
− 1

2

(
ln(y/w)

σ∗

√
(1−ρ2)τ

)2

σ∗

√

2π(1− ρ2)τ
,

k =
2r̃

σ2
, and k∗ =

2r̃

σ∗
2
.

Then, taking the limit n → ∞ yields

V̄ (t, x, y) = lim
n→∞

V̄n(t, x, y)

=

∫ U

0

∫ ∞

K

eθ1(u)u θ2(u,w)
1

u

1

w
dudw

−

∫ U

0

∫ ∞

K

eθ1(u)K θ2(u,w)
1

u

1

w
dudw

:= V 1(t, x, y)− V 2(t, x, y).(2.29)

Using a similar method described in Yoon and Kim [18], to find the value of

V1(t, x, y) in (2.28), if we let p = ln(x/u)

σ
√
τ

and q = ln(y/w)

σ∗

√
τ

and use the method

of undetermined coefficients, then

V 1(t, x, y) =
x

2π
√

1− ρ2

∫

ln(y/U)

σ∗

√
τ

∞

∫ −∞

ln(x/K)

σ
√

τ

exp

{

−
1

2(1− ρ2)

(

(p+ a)2(2.30)
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+(q + b)2
)

+
ρ

1− ρ2
(p+ a)(q + b)

}

dpdq.

where a =

(
r̃+σ2

2

)√
τ

σ
, b =

(
ρσσ∗+

(
r̃− σ∗

2

2

))√
τ

σ∗

.

Also, V 2(t, x, v) in (2.28) is expressed by

V 2(t, x, y) =
K

2π
√

1− ρ2

∫

ln(y/U)

σ∗

√
τ

∞

∫ −∞

ln(x/K)

σ
√

τ

exp

{

D2 −
1

2(1− ρ2)

(

(p+ c)2

(2.31)

+(q + d)2
)

+
ρ

1− ρ2
(p+ c)(q + d)

}

dpdq,

where c =

(
r̃− σ2

2

)√
τ

σ
, d =

(
r̃−σ∗

2

2

)√
τ

σ∗

and D2 = −r̃τ .

Therefore, by setting p1 = p +

(
r̃+σ2

2

)√
τ

σ
and q1 = q +

(
ρσσ∗+

(
r̃− σ∗

2

2

))√
τ

σ∗

in (2.29), and p2 = p+

(
r̃− σ2

2

)√
τ

σ
and q2 = q +

(
r̃− σ∗

2

2

)√
τ

σ∗

in (2.30), V̄ (t, x, y)
yields the following formula

V̄ (t, x, y)

= x

[

1

2π
√

1− ρ2

∫

ln(y/w)
σ∗

√
τ

+
(ρσσ∗+(r̃−

σ∗
2

2
))

√

τ

σ∗

∞

∫ −∞

ln(x/u)

σ
√

τ
+

(r̃+ σ2
2

)
√

τ

σ

e
− 1

2(1−ρ2)
(p2

1−2ρp1q1+y2
1)dp1dq1

]

−Ke−r̃τ

[

1

2π
√

1− ρ2

∫

ln(y/w)

σ∗

√
τ

+
(r̃−

σ∗
2

2
)
√

τ

σ∗

∞

∫ −∞

ln(x/u)

σ
√

τ
+

(r̃−σ2
2

)
√

τ

σ

e
− 1

2(1−ρ2)
(p2

2−2ρp2q2+q22)dp2dq2

]

(2.32)

= xN2

(

dr̃1
(

τ, x
K

)

,−dr̃2
(

τ, y
U

)

,−ρ
)

− e−r̃τKN2

(

dr̃3
(

τ, x
K

)

,−dr̃4
(

τ, y
U

)

,−ρ
)

.(2.33)

Therefore, from this closed-form solution of V̄ (t, x, y) with respect to the
bivariate normal cumulative distribution function, we find the image solution
(

y
U

)−(k∗−1)
V̄
(

t,
(

y
U

)− 2ρσ
σ∗ x, U2

y

)

to V̄ (t, x, y). We combine the two results to

derive a closed-form formula for the option price V (t, x, v) of the PDE (2.5).
Therefore,

V (t, x, y)

= xN2

(

dr̃1
(

τ, x
K

)

,−dr̃2
(

τ, y
U

)

,−ρ
)

− e−r̃τKN2

(

dr̃3
(

τ, x
K

)

,−dr̃4
(

τ, y
U

)

,−ρ
)

+

[

(

y
U

)−
2ρσ
σ∗

−(k∗−1)
xN2

(

dr̃1

(

τ,
(

y
U

)−
2ρσ
σ∗

x
K

)

, dr̃2

(

τ, U
y

)

,−ρ

)

−e−r̃τ K
(

y
U

)−(k∗−1)
N2

(

dr̃3

(

τ,
(

y
U

)− 2ρσ
σ∗ x

K

)

,−dr̃4

(

τ, U
y

)

,−ρ
)]

.
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Because V (t, x, y) = P (t,s,z)

eb(T−t) ,x =
s

eb(T−t)
, y = z

eb(T−t) and dr̃j(τ,
s

Kebτ
) =

drj(τ,
s
K
) for j = 1, 2, 3, 4,

P (t, s, z)

(2.34)

= sN2

(

dr1
(

τ, s
K

)

,−dr2

(

τ, z
β(t)

)

,−ρ
)

−e−rτKN2

(

dr3
(

τ, s
K

)

,−dr4

(

τ, z
β(t)

)

,−ρ
)

+
(

z
β(t)

)−
2ρσ
σ∗

−(k∗−1)

sN2

(

dr1

(

τ,
(

z
β(t)

)−
2ρσ
σ∗ s

K

)

, dr2

(

τ, β(t)
z

)

,−ρ

)

− e−rτ K
(

z
β(t)

)−(k∗−1)

N2

(

dr3

(

τ,
(

z
β(t)

)−
2ρσ
σ∗ s

K

)

,−dr4

(

τ, β(t)
z

)

,−ρ

)

.

�

3. External European barrier option with the double-curved barrier

This section addresses the price of an external double-barrier option using
the image method mentioned by Buchen and Konstandatos [2] and the dou-
ble Mellin transforms. First, we transform the PDE problem of the external
double-barrier option with a boundary and final conditions with a final condi-
tion on the extended domain of a barrier state variable. From double Mellin
transforms, we derive the pricing formula of the external double-barrier option
in the unrestricted region. From the image operators of the method of images,
combining the external double-barrier option price in the unrestricted region
and the image solution of the option yields the semi-analytic solution of the
external European barrier option with the double-curved barrier.

3.1. Model formulation

Let us consider the arbitrage-free pricing of double knock-out external bar-
rier call options. A double-barrier option is an option with two barriers, which
contains an upstream barrier at α(t) = Aea(T−t) and a downstream barrier at
β(t) = Beb(T−t). If the barrier state variable Zt reaches one of the two barriers
at any time before the expiration, then the nullification of the option contract
will be aroused. Then, the price of all double knock-out external barriers is
described by

(3.1) P (t, s, z) := EP∗

[e−r(T−t)ĥ(ST , ZT ) |St = s, Zt = z ]

under the risk-neutral measure, and the payoff function ĥ is given by

(3.2) ĥ(ST , ZT ) = (ST −K)+ 1{{max0≤γ≤T (Zγ−α(γ))<0}∩{min0≤γ≤T (Zγ−β(γ))>0}}.
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Using the Feynman-Kac formula, the external double-barrier problem yields
the following PDE

(3.3)

LP (t, s, z) = 0, 0 ≤ t < T,

P (T, s, z) = h(s) = (s−K)+ on B < z < A,

P (t, s, α(t)) = P (t, s, β(t)) = 0,

L :=
∂

∂t
+

1

2
σ2s2

∂2

∂s2
+

1

2
σ∗

2z2
∂2

∂z2
+ ρσσ∗sz

∂2

∂s∂z

+ r

(

s
∂

∂s
+ z

∂

∂z

)

− rI

on the domain {(t, x, z) : 0 ≤ t < T, 0 ≤ s ≤ ∞, β(t) < z < α(t)}, and I is
the identity operator.

In a similar manner to the calculation in Section 2, to solve the PDE (3.3),
we consider the following related PDE in an unrestricted domain.

(3.4)

Lφ(t, s, z) = 0, 0 ≤ t < T,

φ(T, s, z) = h(s, z) = (s−K)+1{B<z<A}

L :=
∂

∂t
+

1

2
σ2s2

∂2

∂s2
+

1

2
σ∗

2z2
∂2

∂z2
+ ρσσ∗sz

∂2

∂s∂z

+ r

(

s
∂

∂s
+ z

∂

∂z

)

− rI

in the region {(t, s, z) : 0 ≤ t < T, 0 ≤ s ≤ ∞, 0 ≤ z ≤ ∞}, and I is the
identity operator.

Here, φ(t, s, z) is a solution of the unrestricted initial value (IV) problem
(3.4), and the solution of the restricted initial and boundary value (IBV) prob-
lem (3.3) is given by

P (t, s, z) = φ(t, s, z)− image function of φ(t, s, z)

using the PDE method of images mentioned earlier.
To solve the closed-form solution of the PDE (3.4), we take advantage of the

double Mellin transform method. The technique obtains the solution of the
PDE (3.4) more easily, and the solution is expressed by

φ(t, s, z)

(3.5)

= sN2

(

dr1(τ,
s

K
),−dr2(τ,

z

A
),−ρ

)

− e−rτKN2

(

dr3(τ,
s

K
),−dr4(τ,

z

A
),−ρ

)

− sN2

(

dr1(τ,
s

K
),−dr2(τ,

z

B
),−ρ

)

+ e−rτKN2

(

dr3(τ,
s

K
),−dr4(τ,

z

B
),−ρ

)

,

where dr1, d
r
2, d

r
3, and dr4 are given by equation (2.25), and N2 is the bivariate

cumulative normal distribution function.
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3.2. The derivation of the price of the external double-barrier op-
tion with the double exponential barrier: Image operator of the
double-barrier option

Buchen and Konstandatos [2] examined pricing formulas of double-barrier
options with an arbitrary payoff using an image operator. Based on these re-
sults, we find the analytic solution of the external double-barrier option using
the image operator of the method of images. Therefore, for double-barrier
option pricing with exponential barriers, the following Lemma is useful. Ad-
ditionally, Lemma 3.1 enables us to find the image operator of the external
double-barrier option with curved (exponential) barriers in this section.

Lemma 3.1. If Q(t, s, z) is a solution satisfying the PDE LQ = 0, where L is

expressed by (3.3), then the image function of Q with respect to the exponential

barrier z = β(t) = Beb(T−t) is given by

(3.6) Q∗(t, s, z) = IβQ(t, s, z) =
(

z
β(t)

)−(kz,b−1)

Q

(

t,
(

z
β(t)

)−2
ρσ
σ∗ s, β(t)2

z

)

,

where kz,b =
2(r+b)
σ∗

2 − 1 and B are constants mentioned before.

Proof. First, we define a function Qb(t, s, z) such that

(3.7) Q(t, s, z) := eb(T−t)Qb(t, se
−b(T−t), ze−b(T−t)).

For any b, if we define the following parabolic PDE operator

(3.8) Lb :=
∂

∂t
+
1

2
σ2s2

∂2

∂s2
+
1

2
σ∗

2z2
∂2

∂z2
+ρσσ∗sz

∂2

∂s∂z
+b

(

s
∂

∂s
+ z

∂

∂z

)

−bI,

then LQ = Lr Q = Lr+b Qb = 0.
By defining Q∗

b as an image function of Qb with respect to v = B for the
PDE operator Lr+b, from Lemma 2.2, we obtain

Q∗
b(t, e

−b(T−t)s, e−b(T−t)z)

(3.9)

=
(

z
Beb(T−t)

)−(kz,b−1)
Qb

(

t,
(

z
Beb(T−t)

)−2
ρσ
σ∗ se−b(T−t), (Beb(T−t))2

z
e−b(T−t)

)

,

where Lr+b Q
∗
b = 0.

Then, from (3.7), the image solution of Q(t, s, z) is expressed by Q∗(t, s, z) =
eb(T−t)Q∗

b(t, se
−b(T−t), ze−b(T−t)).

Hence, the image function of Q with respect to z = β(t) has

Q∗(t, s, z)

(3.10)

= eb(T−t)Q∗
b(t, se

−b(T−t)s, ze−b(T−t))
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= eb(T−t)
(

z
Beb(T−t)

)−(kz,b−1)
Qb

(

t,
(

z
Beb(T−t)

)−2
ρσ
σ∗ se−b(T−t), (Beb(T−t))2

z
e−b(T−t)

)

=
(

z
β(t)

)−(kz,b−1)

Q

(

t,
(

z
β(t)

)−2
ρσ
σ∗ s, β(t)2

z

)

.
�

Using this lemma, the infinite sequence sum of image operators Iα and Iβ for
exponential barrier α(t) and β(t), respectively, which is defined by the following
Lemma 3.2, allows us to obtain the semi-analytic solution of the PDE (3.3) in
terms of φ(t, s, z). Contrary to the image operator of the external single-barrier
option shown in Section 2, the image operator of the external double-barrier
option is expressed by any sequence of continuative image operators, similar to
Buchen and Konstandatos [2].

Lemma 3.2. Let J β
α denote the doubly infinite sequence of image operators

(3.11)
J β
α = I − Iα + Iβα − Iαβα + Iβαβα + · · ·

−Iβ + Iαβ − Iβαβ + Iαβαβ + · · · .

Then, the solution of the PDE (3.3) is given by

P (t, s, z) = J β
α [φ(t, s, z)],

where φ(t, s, z) is described by (3.5).

Proof. First, because J β
α is the infinite sequence of the image operator, the

property of the image operator leads to L
(

J β
α [φ(t, x, v)]

)

= 0. Additionally,
if we define

Aβα = I − Iβ + Iβα − Iαβα + · · · and Aαβ = I − Iα + Iαβ − Iβαβ + · · ·

then, J β
α and J α

β have the following decompositions

J β
α = (I − Iα)Aβα and J α

β = (I − Iβ)Aαβ ,

and, from this, we obtain J β
α [φ(t, s, α)] = J β

α [φ(t, s, β)] = 0.
Next, from (3.11), if we consider J β

α [φ(T, s, z)] = φ(T, s, z)+ image sequence
of φ(T, s, z), then φ(T, s, z) = h(s, z) for B < z < A in (3.4), and the property
of the image operator, imply that the image sequence of φ(T, s, z) extinguishes
at an outside interval (B,A). Hence, J β

α [φ(T, s, z)] = h(s, z).
Therefore, J β

α [φ(t, s, z)] is the solution of the PDE (3.3), and P (t, s, z) =
J β
α [φ(t, s, z)]. �

To calculate J β
α [φ(t, s, z)], the following Lemma 3.3 and Lemma 3.4 are

useful.

Lemma 3.3. For α(t) = Aea(T−t), β(t) = Beb(T−t) defined in Section 3.1 and

γ(t) = Cec(T−t),

(3.12) Iγβα := IγIβIα = A
2(c−b)

σ∗
2 B

2(a−c)

σ∗
2 C

2(b−a)

σ∗
2 Iαγ

β
.
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Proof. Using Lemma 3.1, the direct calculations lead to,

Iγβα[Q(t, s, z)]

(3.13)

= IγIβ

[

(

z
α

)−(kz,a−1)
Q

(

t,
(

z
α

)−2
ρσ
σ∗ s, α2

z

)]

= Iγ

[

(

z
β

)−(kz,b−1) (
β2

αz

)−(kz,a−1)

Q

(

t
(

βz
α

)−2
ρσ
σ∗ s, α2

β2 z

)]

=
(

z
γ

)−(kz,c−1) (
γ2

β z

)−(kz,b−1) (
β2 γ2 z

α

)−(kz,a−1)

Q

(

t,
(

β z
αγ

)−2
ρσ
σ∗ s,

(

αγ
β

)2
1
z

)

= α(kz,c−kz,b)β(kz,a−kz,c)γ(kz,b−kz,a)
(

βz
αγ

)−(kz,a+kz,c−kz,b−1)

Q

(

t,
(

β z
αγ

)−2
ρσ
σ∗ s,

(

αγ
β

)2
1
z

)

= A
2(c−b)
σ∗

2 B
2(a−c)
σ∗

2 C
2(b−a)

σ∗
2

(

βz
αγ

)−(kz,a+kz,c−kz,b−1)

Q

(

t,
(

β z
αγ

)−2
ρσ
σ∗ s,

(

αγ
β

)2
1
z

)

,

where kz,a = 2(r+a)
σ∗

2 , kz,b =
2(r+b)
σ∗

2 and kz,c =
2(r+c)
σ∗

2 . �

For image operators Iα and Iβ , if we define the image operator T n
αβ as a

composition of image operators for all integers n > 0,

(3.14)
T n
αβ = IαβIαβ · · · Iαβ {n (αβ)− pairs}

= Iαβαβ···αβ ,

we obtain the following lemma.

Lemma 3.4. (a) T n
αβ = Iβ · I

( βn+1

αn )
. Hence, for n > 0, we define T −n

αβ =

Iβ · I
( β−n+1

α−n )
.

(b) From (a), for n > 0, T n
αβ = T −n

βα .

(c) J β
α = (I − Iα)

∑∞
n=−∞ T n

αβ = (I − Iβ)
∑∞

n=−∞ T n
αβ

= (I − Iα)
∑∞

n=−∞ T n
βα = (I − Iβ)

∑∞
n=−∞ T n

βα.

Proof. The proof of this lemma (a) follows from Lemma 3.3. Also, combining
(a) and (b), and using the direct computation, we obtain the formula of J β

α ,
(c). Refer to Lemma 3.7, Lemma 3.9, Corollary 3.8, and Corollary 3.10 in
Buchen and Konstandatos [2]. �

Hence, from Lemma 3.4,

P (t, s, z) = J β
α [φ(t, s, z)](3.15)

= (I − Iα)
∞
∑

n=−∞

T n
αβ [φ(t, s, z)]
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=

∞
∑

n=−∞

[

T n
αβ − IαT

n
αβ

]

φ(t, s, z)

=

∞
∑

n=−∞

[

T n
βα − IαT

n
αβ

]

φ(t, s, z).

First, in (3.15), to find T n
βα[φ(t, s, z)], Lemma 3.4(a) yields

(3.16)
T n
βα = Iα Iαn+1

βn

= Iα Iδ,

where δ(t) = αn+1(t)
βn(t) = An+1

Bn e{(n+1)a−nb}(T−t) and kz,δ = 2(r+(n+1)a−nb)
σ∗

2 .

Then, T n
βα[φ(t, s, z)] has

T n
βα[φ(t, s, z)](3.17)

=
(α

z

)(kz,a−1)
(

δ z

α2

)(kz,δ−1)

φ

(

t,

(

δ

α

)

2ρσ
σ∗

s,
δ2

α2
z

)

=
( z

α

)

2(a−b)n

σ∗
2

(

α

β

)(kz,δ−1)n

φ

(

t,

(

α

β

)

2ρσ
σ∗

s,

(

α

β

)2n

z

)

.

Next, in (3.15), to find IαT n
βα[φ(t, s, z)], we use Lemma 3.4(b) to obtain

IαT
n
αβ [φ(t, s, z)](3.18)

= IαT
−n
βα [φ(t, s, z)]

= Iα
( z

α

)

−2(a−b)n

σ∗
2

(

α

β

)−(kz,δ−1)n

φ

(

t,

(

α

β

)

2ρσ
σ∗

s,

(

α

β

)−2n

z

)

=
( z

α

)(kz,a−1)− 2(a−b)n

σ∗
2

(

α

β

)−(kz,δ−1)n

φ

(

t,

(

α

β

)

2ρσ
σ∗

s,

(

α

β

)−2n
α2

z

)

.

Hence, by integrating (3.15), (3.17), and (3.18), we obtain following results.

Theorem 3.1. The unique arbitrage-free price of the external double knock-out

call given by PDE (3.3) can be expressed explicitly by the doubly infinite sum in

terms of φ(t, s, z) mentioned in (3.5). Then, we obtain the following formula

P (t, x, z) =

∞
∑

n=−∞

[

(

z
α

)

2(a−b)n

σ∗
2

(

α
β

)((
2(r+a)
σ∗

2 −1))n

φ

(

t,
(

α
β

)

2ρσ
σ∗ s,

(

α
β

)2n

z

)

(3.19)

−
(

z
α

)(
2(r+a)
σ∗

2 −1)+ 2(a−b)n

σ∗
2

(

α
β

)(kz,δ−1)n

φ

(

t,
(

α
β

)

2ρσ
σ∗

s,
(

α
β

)2n
α2

z

)

]

,

where kz,δ = 2(r+(n+1)a−nb)
σ∗

2 , and a and b are constants in α(t) = Aea(T−t) and

β(t) = Beb(T−t).
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Proof. By combining (3.15), (3.17), (3.18), and φ(t, s, z) in (3.5), we obtain
the semi-analytic solution (3.19) of the external double-barrier European call
option. �

4. External-chained single barrier option with curved barriers

This section addresses barrier options where barrier monitoring begins at
a random time when the barrier state variable first hits an exponential bar-
rier or two exponential barriers in a specified order. To find the exact-form
formula of the external-chained barrier option with the bivariate normal cu-
mulative distribution function, we exploit the pricing formula of the external
European call option in Section 2. From the method of reflection principle
and the change of measure under risk-neutral probability, we replace the ex-
pectation of the external-chained barrier option with the expectation from the
external European call option. Then, we derive the closed-form formula of the
external-chained barrier option with exponential barriers immediately.

In SDE (2.2), St and Zt have the following geometric Brownian motion.

(4.1)
St = S0 exp (µ̃ t+ σW s∗

t ), µ̃ = (r −
σ2

2
)

Zt = Z0 exp (µ̃∗ t+ σ∗W
z∗
t ), µ̃∗ = (r −

σ∗
2

2
)

where r is the risk-free interest rate, σ is a positive constant, St and Zt are
underlying asset prices, and the barrier state variable, respectively, and W s∗

t

and W z∗
t are standard Brownian motions under the risk-neutral measure P ∗.

Let the upper and lower exponential barriers in the interval [0, T ] be U(t) =
Aeξ1t and D(t) = Beξ2t (A > Z(0) > B, ξ1 ≥ ξ2), respectively, and

(4.2)

Gt =
1

σ∗
ln

(

Zt

Z0

)

= W z∗
t +

µ̃∗

σ∗
t, u(t) =

1

σ∗
ln

(

U(t)

Z0

)

=
ξ1
σ∗

t+ a,

d(t) =
1

σ∗
ln

(

D(t)

Z0

)

=
ξ2
σ∗

t+ b,

where a = 1
σ∗

ln A
Z0

and b = 1
σ∗

ln B
Z0

.

4.1. The case of crossing a barrier

First, we derive the pricing formula for a down-and-out call option com-
mencing at a random time when the barrier state variable reaches the upper
exponential barrier U(t). If the barrier state process rises above U(t) and then
goes below D(t) before the time of expiry T , the payoff of the option holder
becomes zero, and its payoff is a call otherwise.

Theorem 4.1. Let us consider a down-and-out external barrier call option,

which is activated at time τ = min{t > 0 : Zt = U(t)}. For t∗ < τ , the price

of the external-chained barrier option activated at time τ is described by

DOCu(t
∗, s, z)(4.3)
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= e2a
(µ̃∗−ξ1)

σ∗ sN2

(

dr1(T − t∗, s
K
),−dr2(T − t∗, D(t∗)z

U(t∗)2 ),−ρ
)

− e−r(T−t∗)KN2

(

dr3(T − t∗, s
K
),−dr4(T − t∗, D(t∗)z

U(t∗)2 ),−ρ
)

+ e
2a

(µ̃∗−ξ1)
σ∗

[

(

D(t∗)z
U(t∗)2

)−
2ρσ
σ∗

−(k̃∗−1)

sN2

(

dr1(T − t∗,
(

D(t∗)z
U(t∗)2

)−
2ρσ
σ∗ s

K
), dr2(T − t∗, U(t∗)2

D(t∗)z ),−ρ

)]

− e
2a

(µ̃∗−ξ1)
σ∗

[

e−r(T−t∗) K
(

D(t∗)z
U(t∗)

)−(k̃∗−1)

N2

(

dr3(T − t∗,
(

D(t∗)z
U(t∗)2

)−
2ρσ
σ∗ s

K
),−dr4(T − t∗, U(t∗)2

D(t∗)z ),−ρ

)]

,

where k̃∗ = 2(−r+σ∗

2+ξ2)
σ∗

2 and dr1, d
r
2, d

r
3, and dr4 are given by equation (2.25).

Proof. Under the risk-neutral measure, the expectation representation of the
knock-out external barrier call option price at time t∗ < τ

DOCu(t
∗, s, z)

(4.4)

= e−r(T−t∗)

EP∗

[(S(T )−K)+ 1{minτ<γ<T (Zγ−D(γ))>0, τ≤T, Zτ=U(τ)}|St∗ = s, Zt∗ = z]

= e−r(T−t∗)

EP∗

[(S(T )−K)+ 1{minτ<γ<T (Gγ−d(γ))>0, τ≤T,Gτ=u(τ)}|St∗ = s, Zt∗ = z].

If we define a process Ht = Gt −
ξ1
σ∗

t = W z∗
t + 1

σ∗

(µ̃∗ − ξ1) t, then Ht is a
standard Brownian motion under the measure Q, defined by

(4.5)
dQ

dP ∗
= exp

(

−
1

σ∗
(µ̃∗ − ξ1) W

z∗
T −

1

2σ∗
2
(µ̃∗ − ξ1)

2
T

)

.

Also, let us define a process H̃t, t ∈ [0, T ], defined by the formula

H̃t :=

{

Ht t ≤ τ

2a−Ht t > τ
.(4.6)

Using the reflection principle, the process H̃t also follows a standard Brownian
motion under Q and from the definition of Ht, (4.5) and (4.6), (4.4) leads to

DOCu(t
∗, s, z)

(4.7)

= e−r(T−t∗)EP∗ [

(S(T )−K)+
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1
minτ<γ<T (Hγ+

ξ1
σ∗

γ−d(γ))>0, τ≤T,Hτ=a
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗)EQ
[

e
1

σ∗
(µ̃∗−ξ1)HT− 1

2σ∗
2 (µ̃∗−ξ1)

2 T

(S(T )−K)+ 1
{minτ<γ<T (Hγ+

ξ1
σ∗

γ−d(γ))>0, τ≤T,Hτ=a}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗)EQ
[

e
1

σ∗
(µ̃∗−ξ1) (2a−H̃T )− 1

2σ∗
2 (µ̃∗−ξ1)

2 T

(S(T )−K)+ 1
{min0<γ<T (2a−H̃γ+

ξ1
σ∗

γ−d(γ))>0}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗ EQ
[

e
− 1

σ∗
(µ̃∗−ξ1) H̃T − 1

2σ∗
2 (µ̃∗−ξ1)

2 T

(S(T )−K)+ 1
{max0<γ<T (H̃γ−

ξ1
σ∗

γ−(2a−d(γ)))<0}
|St∗ = s, Zt∗ = z

]

.

Let us again define an equivalent probability measure P̃ ∗ by setting

(4.8)
d P̃ ∗

dQ
= exp

(

−
1

σ∗
(µ̃∗ − ξ1) H̃T −

1

2σ∗
2
(µ̃∗ − ξ1)

2
T

)

so that the process W̃ z∗
t := H̃t +

1
σ∗

(µ̃∗ − ξ1) t, t ∈ [0, T ] follows a standard

Brownian motion under P̃ ∗.
Using the definition of Ht and H̃t mentioned above, we define W̃ z∗

t

(4.9) W̃ z∗
t =







W z∗
t +

2(µ̃∗ − ξ1)

σ∗
t t ≤ τ

2a−W z∗
t t > τ

.

Then, (4.7) leads to

e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗ EQ
[

e
− 1

σ∗
(µ̃∗−ξ1) H̃T− 1

2σ∗
2 (µ̃∗−ξ1)

2 T

(4.10)

(S(T )−K)+ 1
{max0<γ<T (H̃γ−

ξ1
σ∗

γ−(2a−d(γ)))<0}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗ EQ
[

e
− 1

σ∗
(µ̃∗−ξ1) H̃T− 1

2σ∗
2 (µ̃∗−ξ1)

2 T

(S(T )−K)+ 1{max0<γ<T (G̃γ−
µ̃∗

σ∗
γ−(2a−d(γ)))<0} |St∗ = s, Zt∗ = z

]

= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗

EP̃∗

[

(S(T )−K)+ 1
{max0<γ<T (H̃γ−

ξ1
σ∗

γ−(2a−d(γ)))<0}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗

EP̃∗

[

(S(T )−K)+ 1{max0<γ<T (W̃ z∗
γ − µ̃∗

σ∗
γ−(2a−d(γ)))<0} |St∗ = s, Zt∗ = z

]

= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗
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EP̃∗

[

(S(T )−K)+ 1{max0<γ<T (G̃γ−(2a−d(γ)))<0} |St∗ = s, Zt∗ = z
]

= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗

EP̃∗

[

(S(T )−K)+ 1{max0<γ<T (G̃γ−d̃(γ))<0} |St∗ = s, Zt∗ = z
]

,

where G̃t = H̃t −
ξ1
σ∗

t and d̃(t) = 2a− d(t).

Now, let us define Z̃t satisfying following SDE:

(4.11) d Z̃t = (−µ̃∗ +
σ∗

2

2
) Z̃t d t+ σ∗ Z̃t d W̃

z∗
t . Z̃0 = Z0.

Then, from the definition of Gt and d(t) in (4.2), we obtain G̃t =
1
σ∗

ln
(

Z̃t

Z0

)

and d̃(t) = 1
σ∗

ln
(

D̃(t)
Z0

)

. To compute the conditional expectation of (4.10),

we review the external barrier call option mentioned in Section 2 where the
terminal payoff depends on the payoff state variable St, and knock-out occurs
when the barrier state variable Z̃t breaches the upstream exponential barrier

D̃(t) = A2

D(t) . From (4.9) and SDE (4.11), for t < τ , we have

(4.12) Z̃t = Zt e
−2ξ1t,

and the price of this up-and-out call option with an external barrier variable

Z̃t and the upstream exponential barrier D̃(t) = A2

D(t) is expressed by

P̃ (t∗, s, z̃)(4.13)

= EP̃∗

[

e−r(T−t∗) (ST −K)+1{max0≤γ≤t(Z̃γ−D̃(γ))<0} |St∗ = s, Z̃t∗ = z̃
]

,

where the closed formula of P̃ (t∗, s, z̃) is given by (2.25).

Finally, from the definition of G̃ and d̃ stated above, the equation (4.10)
yields

e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗(4.14)

EP̃∗

[

(S(T )−K)+ 1{max0<γ<T (Z̃γ−D̃(γ))<0} |St∗ = s, Z̃t∗ = ze−2ξ1t
∗

]

= e2a
(µ̃∗−ξ1)

σ∗ P̃ (t∗, s, z e−2ξ1t
∗

).(4.15)

However, because P̃ (t∗, s, z e−2ξ1t
∗

) is the up-and-out call option with an ex-
ternal barrier in (4.13), from (2.25), we obtain the desired closed-form formula
of DOCu given by (4.3). �

4.2. Case of crossing two barriers

This subsection considers barrier options activated in the event that the
barrier state variable crosses two barrier levels successively in a specified order.
Alternatively, we derive the pricing formula for an up-and-out call option cre-
ated when the external barrier state variable hits the lower exponential barrier
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D(t) after hitting the upper exponential barrier U(t). The payoff value of the
option is zero if the barrier state process increases above U(t), then falls below
D(t), and then rises above U(t) before expiration time T , and its payoff is a
call otherwise.

Theorem 4.2. Let us consider an up-and-out external barrier call option that

is activated at time τ2= min {t > τ1 : Zt = D(t), τ1 = min {t > 0 : Zt = U(t)}}.
Then, for t∗ < τ1, the price of the external-chained barrier option activated at

time τ2 is given by

UOCud(t
∗, s, z)

(4.16)

= eθsN2

(

dr1(T − t∗,
s

K
),−dr2(T − t∗,

D(t∗)2 z

U(t∗)3
),−ρ

)

− e−r(T−t∗)KN2

(

dr3(T − t∗,
s

K
),−dr4(T − t∗,

D(t∗)2 z

U(t∗)3
),−ρ

)

+ eθ

[

(

D(t∗)2z

U(t∗)3

)− 2ρσ
σ∗

−(k̂∗−1)

sN2

(

dr1(T − t∗,

(

D(t∗)2 z

U(t∗)3

)− 2ρσ
σ∗ s

K
), dr2(T − t∗,

U(t∗)3

D(t∗)2 z
),−ρ

)]

− eθ

[

e−r(T−t∗) K

(

D(t∗)2 z

U(t∗)3

)−(k̂∗−1)

N2

(

dr3(T − t∗,

(

D(t∗)2 z

U(t∗)3

)− 2ρσ
σ∗ s

K
),−dr4(T − t∗,

U(t∗)3

D(t∗)2z
),−ρ

)]

,

where k̂∗ = 2(r−ξ1)
σ∗

2 , θ := 2(b − a) (µ̃∗−ξ1)
σ∗

− 2(b − 2a) (ξ2−ξ1)
σ∗

, a =
1

σ∗
ln A

Z0
,

b = 1
σ∗

ln B
Z0

, and U(t) = Aeξ1t and D(t) = Beξ2t are the upper and lower

exponential barriers, respectively, satisfying A > V (0) > B, where ξ1 ≥ ξ2.

Proof. First, under the risk-neutral measure, the price of the up-and-out call
option at time t < τ1 is given by

UOCud(t
∗, s, z)

(4.17)

= e−r(T−t∗)EP∗

[(S(T )−K)+

1{maxτ2<γ<T (Zγ−U(γ))<0, τ1<τ2≤T, Zτ1=U(τ1) ,Zτ2=D(τ2)}|St∗ = s, Zt∗ = z]

= e−r(T−t∗)EP∗

[(S(T )−K)+

1{maxτ2<γ<T (Gγ−u(γ))<0, τ1<τ2≤T,Gτ1=u(τ1) ,Gτ2=d(τ2)}|St∗ = s, Zt∗ = z],
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= e−r(T−t∗)EP∗ [

(S(T )−K)+

1
{maxτ2<γ<T (Hγ+

ξ1
σ∗

−u(γ))<0, τ1<τ2≤T,Hτ1=a,Hτ2=k(τ2)}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗)EQ
[

e
1
σ∗

(µ̃∗−ξ1)HT − 1
2σ∗

2 (µ̃∗−ξ1)
2 T

(S(T )−K)+

1
{maxτ2<γ<T (Hγ+

ξ1
σ∗

γ−u(γ))<0, τ1<τ2≤T,Hτ1=a,Hτ2=k(τ2)}
|St∗ = s, Zt∗ = z

]

,

where Ht = Gt −
ξ1
σ∗

t = W z∗
t + 1

σ∗

(µ̃∗ − ξ1) t is a standard Brownian motion
under the measure Q so that Q is defined by

(4.18)
dQ

dP ∗
= exp

(

−
1

σ∗
(µ̃∗ − ξ1) W

z∗
T −

1

2σ∗
2
(µ̃∗ − ξ1)

2
T

)

and k(t) = (ξ2−ξ1)
σv

t+ b.

Similar to Section 4.1, we consider a process H̃(t), ∈ [0, T ] defined by the
formula

(4.19) H̃(t) =

{

H(t) t ≤ τ1

2a−H(t) t > τ1
,

and the reflection principle implies that the process H̃(t) is a Brownian motion
under Q.

Hence, (4.17) leads to

e−r(T−t∗)EQ
[

e
1

σ∗
(µ̃∗−ξ1)HT− 1

2σ∗
2 (µ̃∗−ξ1)

2 T
(S(T )−K)+

(4.20)

1
{maxτ2<γ<T (Hγ+

ξ1
σ∗

γ−u(γ))<0, τ1<τ2≤T,Hτ1=a,Hτ2=k(τ2)}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗)EQ
[

e
1

σ∗
(µ̃∗−ξ1) (2a−H̃T )− 1

2σ∗
2 (µ̃∗−ξ1)

2 T
(S(T )−K)+

1
{maxτ2<γ<T (−H̃γ+

ξ1
σ∗

γ+(2a−u(γ)))<0, τ2≤T, H̃τ2=2a−k(τ2)}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗)+2a
(µ̃∗−ξ1)

σ∗ EQ
[

e
− 1

σ∗
(µ̃∗−ξ1) H̃T− 1

2σ∗
2 (µ̃∗−ξ1)

2 T
(S(T )−K)+

1
{minτ2<γ<T (H̃γ−

ξ1
σ∗

γ−(2a−u(γ)))>0, τ2≤T, H̃τ2=2a−k(τ2)}
|St∗ = s, Zt∗ = z

]

.

Additionally, we introduce a process Lt so that Lt = H̃t+
(ξ2−ξ1)

σ∗

t is a standard
Brownian motion under the measure R, defined by

(4.21)
dR

dQ
= exp

(

−
(ξ2 − ξ1)

σ∗
H̃T −

1

2σ∗
2
(ξ2 − ξ1)

2
T

)

.

Then, (4.20) yields

e−r(T−t∗)+2a
(µ̃∗−ξ1)

σ∗ EQ
[

e
− 1

σ∗
(µ̃∗−ξ1) H̃T − 1

2σ∗
2 (µ̃∗−ξ1)

2 T
(S(T )−K)+

1
{minτ2<γ<T (H̃γ−

ξ1
σ∗

γ−(2a−u(γ)))>0, τ2≤T, H̃τ2=2a−k(τ2)}
|St∗ = s, Zt∗ = z

]
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= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗(4.22)

ER

[

e
(ξ2−ξ1)

σ∗
H̃T− 1

2σ∗
2 (ξ2−ξ1)

2 T
e
− 1

σ∗
(µ̃∗−ξ1) H̃T − 1

2σ∗
2 (µ̃∗−ξ1)

2 T

(S(T )−K)+ 1Λ1 |St∗ = s, Zt∗ = z
]

= e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗ ER

[

e
(ξ2−ξ1)

σ∗
(LT−

(ξ2−ξ1)
σ∗

T )+ 1
2σ∗

2 (ξ2−ξ1)
2 T

(4.23)

e
− 1

σ∗
(µ̃∗−ξ1) (LT−

(ξ2−ξ1)

σ∗
T )− 1

2σ∗
2 (µ̃∗−ξ1)

2 T

(S(T )−K)+ 1Λ2 |St∗ = s, Zt∗ = z
]

,

where Λ1 and Λ2 in (4.22) and (4.23) are described by

(4.24)

Λ1 =

{

min
τ2<γ<T

(

H̃γ −
ξ1
σ∗

γ − (2a− u(γ))

)

> 0, τ2 ≤ T, H̃τ2 = 2a− k(τ2)

}

and

Λ2 =

{

min
τ2<γ<T

(

Lγ −
ξ2
σ∗

γ − (2a− u(γ))

)

> 0, τ2 ≤ T, Lτ2 = 2a− b

}

,

respectively.
To compute the expectation under the measure R in (4.23), we consider a

process L̃t, t ∈ [0, T ] defined by the formula

(4.25) L̃t :=

{

Lt t ≤ τ2

2(2a− b)− Lt t > τ2
.

Using the reflection principle, the process L̃t is a standard Brownian motion
under R, and (4.23) leads to

e−r(T−t∗) e2a
(µ̃∗−ξ1)

σ∗ ER

[

e
(ξ2−ξ1)

σ∗
(LT−

(ξ2−ξ1)
σ∗

T )+ 1
2σ∗

2 (ξ2−ξ1)
2 T

(4.26)

e
− 1

σ∗
(µ̃∗−ξ1) (LT−

(ξ2−ξ1)
σ∗

T )− 1
2σ∗

2 (µ̃∗−ξ1)
2 T

(S(T )−K)+ 1Λ3 |St∗ = s, Zt∗ = z

]

= e−r(T−t∗) eθER

[

e
−

(ξ2−ξ1)
σ∗

(L̃T+
(ξ2−ξ1)

σ∗
T )+ 1

2σ∗
2 (ξ2−ξ1)

2 T

e
1
σ∗

(µ̃∗−ξ1) (L̃T+
(ξ2−ξ1)

σ∗
T )− 1

2σ∗
2 (µ̃∗−ξ1)

2 T
(S(T )−K)+ 1Λ3 |St∗ = s, Zt∗ = z

]

,

where θ is defined by θ := 2(b− a) (µ̃∗−ξ1)
σ∗

− 2(b− 2a) (ξ2−ξ1)
σ∗

, and Λ3 in (4.26)

is given by Λ3 =
{

max0≤γ<T

(

L̃γ + ξ2
σ∗

γ − (u(γ)− 2(a− b))
)

< 0
}

.
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Let us again introduce a process Ĥt so that Ĥt = L̃t+
(ξ2−ξ1)

σ∗

t is a standard
Brownian motion under the measure Q∗, defined by

(4.27)
dQ∗

dR
= exp

(

−
(ξ2 − ξ1)

σ∗
L̃T −

1

2σ∗
2
(ξ2 − ξ1)

2
T

)

.

Hence, (4.26) is expressed by

e−r(T−t∗) eθER

[

e
−

(ξ2−ξ1)

σ∗
(L̃T+

(ξ2−ξ1)

σ∗
T )+ 1

2σ∗
2 (ξ2−ξ1)

2 T

(4.28)

e
1
σ∗

(µ̃∗−ξ1) (L̃T+
(ξ2−ξ1)

σ∗
T )− 1

2σ∗
2 (µ̃∗−ξ1)

2 T
(S(T )−K)+ 1Λ3 |St∗ = s, Zt∗ = z

]

= e−r(T−t∗) eθ EQ∗

[

e
1
σ∗

(µ̃∗−ξ1) ĤT− 1
2σ∗

2 (µ̃∗−ξ1)
2 T

(S(T )−K)+ 1
{max0≤γ<T (Ĥγ+

ξ1
σ∗

γ−(u(γ)−2(b−a)))<0}
|St∗ = s, Zt∗ = z

]

.

Finally, let us define an equivalent probability measure P̂ ∗ by setting

(4.29)
d P̂ ∗

dQ∗
= exp

(

1

σ∗
(µ̃∗ − ξ1) ĤT −

1

2σ∗
2
(µ̃∗ − ξ1)

2
T

)

so that the process Ŵ z∗
t := Ĥt −

1
σ∗

(µ̃∗ − ξ1) t, t ∈ [0, T ] follows a standard

Brownian motion under P̂ ∗.
By the definition of Ht and Ĥt stated previously, we define the following

Ŵ z∗
t

(4.30) Ŵ z∗
t :=











W z∗
t + 2(ξ2−ξ1)

σ∗

t t ≤ τ1

2a−W z∗
t − 2(µ̃∗−ξ2)

σ∗

t τ1 < t ≤ τ2

W z∗
t + 2(a− b) τ2 < t

.

Then, (4.28) satisfies the following equations

e−r(T−t∗) eθ EQ∗

[

e
1
σ∗

(µ̃∗−ξ1) ĤT − 1
2σ∗

2 (µ̃∗−ξ1)
2 T

(4.31)

(S(T )−K)+ 1
{max0≤γ<T (Ĥγ+

ξ1
σ∗

γ−(u(γ)−2(b−a)))<0}
|St∗ = s, Zt∗ = z

]

= e−r(T−t∗) eθ EP̂∗ [

(S(T )−K)+

1{max0≤γ<T (Ŵ z∗
γ + µ̃∗

σ∗
γ−(u(γ)−2(b−a)))<0} |St∗ = s, Zt∗ = z

]

= e−r(T−t∗) eθ EP̂∗

[

(S(T )−K)+ 1{max0≤γ<T (Ĝγ−û(γ))<0} |St∗ = s, Zt∗ = z
]

,

where Ĝt = Ĥt +
ξ1
σ∗

and û(t) = u(t)− 2(b− a).
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Similar to Section 4.1, to compute the expectation of (4.31), we consider Ẑt

satisfying the following SDE:

(4.32) d Ẑt = (µ̃∗ +
σ∗

2

2
) Ẑt dt+ σ∗ Ẑt d Ŵ

z∗
t , Ẑ0 = Z0.

From the definition of Gt and u(t) in (4.2), we have Ĝt = 1
σ∗

ln
(

Ẑt

Z0

)

and

û(t) = 1
σ∗

ln
(

Û(t)
Z0

)

. Then, we review the price of the external up-and-out

barrier call option given by

P̂ (t∗, s, ẑ)(4.33)

= EP̂∗

[

e−r(T−t∗) (ST −K)+1{max0≤γ≤t(Ẑγ−Û(γ))<0} |St∗ = s, Ẑt∗ = ẑ
]

,

where the terminal payoff depends on the payoff state variable St, and knock-
out occurs when the barrier state variable Z̃t breaches the upstream exponential

barrier Û(t) = A2

B2U(t). Then, the closed-form solution of P̂ (t, s, ẑ) is described
by (2.25).

For t < τ1, because Ẑt = Z0 exp (µ̂∗ t+ σ∗ Ŵ
z∗
t ),

(4.34) Ẑt = Zt e
2(ξ2−ξ1)t

and (4.31) leads to

e−r(T−t∗) eθ EP̂∗

[

(S(T )−K)+ 1{max0≤γ<T (Ĝγ−û(γ))<0} |St∗ = s, Zt∗ = z
]

(4.35)

= e−r(T−t∗) eθEP̂∗ [

(S(T )−K)+

1{max0<γ<T (Ẑγ−Û(γ))<0} |St∗ = s, Ẑt∗ = z e2(ξ2−ξ1)t
∗

]

= eθ P̂ (t∗, s, z e2(ξ2−ξ1)t
∗

).

Therefore, because P̂ (t∗, s, z e2(ξ2−ξ1)t
∗

) is the up-and-out call option with the
external barrier given by (2.25), the desired closed formula of UOCud given by
(4.16) is derived. �

5. External-chained double-barrier options with curved barriers

This section derives the semi-analytic solution of the double-barrier options
where monitoring of a double-barrier starts at the time when the barrier state
variable first crosses one exponential barrier or two exponential barriers in a
specified order. To derive the pricing formula of the external-chained double-
barrier option, as in the case in Section 4, we use the closed formula of the
external double-barrier call option mentioned in Section 3. In a similar way to
Section 4, we substitute the expectation representation of the external-chained
double-barrier option for the expectation form of the external double-barrier
call option and then find the semi-analytic form formula of the external-chained
double-barrier option price with exponential barriers directly.
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5.1. Case of crossing an exponential barrier: External double-barrier
option

This subsection considers the pricing formula for an external double knock-
out barrier option starting at a random time when the barrier state vari-
able reaches the upper exponential barrier U(t). Let us consider an exter-
nal double knock-out barrier call option (EDKCu) activated at time τ =
min {t > 0 : Zt = U(t)}. Then, the expectation representation of the exter-
nal double knock-out barrier call option is described by

EDKCu(t, s, z)

(5.1)

= e−r(T−t)EP∗

[(S(T )−K)+

1{maxτ≤γ≤T (Zγ−U(γ))<0}∩{minτ≤γ≤T (Zγ−D(γ))>0, τ≤T,Zτ=U(τ) } |St=s, Zt=z].

Theorem 5.1. For t∗ < τ , the price of the external-chained double knock-out

external option activated at time τ , EDKCu defined by (5.1), is given by

EDKCu(t
∗, s, z)

= e2a
(µ̃∗−ξ1)

σ∗

∞
∑

n=−∞



z
2(ξ2−ξ1)n

σ∗
2

(

D(t∗)
U(t∗)

)(
2(−r+σ∗

2+ξ2)
σ∗

2 −1)n

J

(

t∗,
(

D(t∗)
U(t∗)

)

2ρσ
σ∗ s, A2

(

D(t∗)
U(t∗)

)2n
z

U(t∗)2

)

− z
(
2(−r+σ∗

2+ξ2)
σ∗

2 −1)+
2(ξ2−ξ1)n

σ∗
2

(

D(t∗)
U(t∗)

)(k̃z,δ−1)n

J

(

t∗,
(

D(t∗)
U(t∗)

)

2ρσ
σ∗ s, A2

(

D(t∗)
U(t∗)

)2n
U(t∗)2

D(t∗)2 z

)]

,

where J(t, s, z) is the solution of the unrestricted PDE defined by (3.4), and the

closed solution is described by (3.5) and k̃z,δ = 2(−r+σ∗

2+(n+1)ξ2−nξ1)
σ∗

2 .

Proof. Using the same procedure as in Section 4.1, under a probability measure
P̃ ∗,

EDKCu(t
∗, s, z)

(5.2)

= e−r(T−t∗)EP∗

[(S(T )−K)+

1{maxτ≤γ≤T (Zγ−U(γ))<0}∩{minτ≤γ≤T (Zγ−D(γ))>0, τ≤T,Zτ=U(τ) } |St∗ = s, Zt∗ = z]

= e2a
(µ̃∗−ξ1)

σ∗ e−r(T−t∗)EP̃∗ [

(S(T )−K)+

1{min0≤γ≤T (Z̃γ−Ũ(γ))>0}∩{max0≤γ≤T (Z̃γ−D̃(γ))<0} |St∗ = s, Z̃t∗ = z e−2ξ1t
∗

]

,
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where D̃(t) := A2

D(t) (the upstream exponential barrier), Ũ(t) := A2

U(t) (the

downstream exponential barrier) and Z̃t are defined by Section 4.1.
If we call

e−r(T−t∗)EP̃∗ [

(S(T )−K)+

1{min0≤γ≤T (Z̃γ−Ũ(γ))>0}∩{max0≤γ≤T (Z̃γ−D̃(γ))<0} |St∗ = s, Z̃t∗ = z e−2ξ1t
∗

]

in (5.2) H∗(t∗, s, z), then H∗(t∗, s, z) is the double knock-out external barrier

option with the upstream exponential barrier D̃(t) and with the downstream

exponential barrier Ũ(t) from Section 3. Then, by Theorem 3.1,

H∗(t∗, s, z)

(5.3)

= e−r(T−t∗)EP̃∗ [

(S(T )−K)+

1{min0≤γ≤T (Z̃γ−Ũ(γ))>0}∩{max0≤γ≤T (Z̃γ−D̃(γ))<0} |St∗ = s, Z̃t∗ = z e−2ξ1t
∗

]

in (5.2) is expressed by

H∗(t∗, s, z) =

∞
∑

n=−∞



z
2(ξ2−ξ1)n

σ∗
2

(

D(t∗)
U(t∗)

)(
2(−r+σ∗

2+ξ2)
σ∗

2 −1)n

(5.4)

J

(

t∗,
(

D(t∗)
U(t∗)

)

2ρσ
σ∗ s, A2

(

D(t∗)
U(t∗)

)2n
z

U(t∗)2

)

− z
(
2(−r+σ∗

2+ξ2)
σ∗

2 −1)+
2(ξ2−ξ1)n

σ∗
2

(

D(t∗)
U(t∗)

)(k̃z,δ−1)n

J

(

t∗,
(

D(t∗)
U(t∗)

)

2ρσ
σ∗ s, A2

(

D(t∗)
U(t∗)

)2n
U(t∗)2

D(t∗)2 z

)]

,

where J(t, s, z) is a solution of the following unrestricted domain PDE

(5.5)

LJ(t, s, z) = 0, 0 ≤ t < T,

J(T, s, z) = h(s, z) = (s−K)+1{B̃<z<Ã}

J(t, s, Ã) = J(t, s, B̃) = 0,

L :=
∂

∂t
+

1

2
σ2s2

∂2

∂s2
+

1

2
σ∗

2z2
∂2

∂z2
+ ρσσ∗sz

∂2

∂s∂z

+ r

(

s
∂

∂s
+ z

∂

∂z

)

− rI

with the domain {(t, s, z) : 0 ≤ t < T, 0 ≤ s ≤ ∞, 0 ≤ z ≤ ∞}, and Ã and

B̃ are two constants satisfying Ũ(t) := A2

U(t) = B̃eξ̃1(T−t) and D̃(t) := A2

D(t) =

Ãeξ̃2(T−t), respectively.
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Then, as seen in (3.5) of Section 3, the closed-form solution J(t, s, z) of the
PDE problem in (5.5) is given by

J(t, s, z)

(5.6)

= sN2

(

dr1(τ,
s

K
),−dr2(τ,

z

Ã
),−ρ

)

− e−rτKN2

(

dr3(τ,
s

K
),−dr4(τ,

z

Ã
),−ρ

)

− sN2

(

dr1(τ,
s

K
),−dr2(τ,

z

B̃
),−ρ

)

+e−rτKN2

(

dr3(τ,
s

K
),−dr4(τ,

z

B̃
),−ρ

)

.

Hence, by combining (5.2), (5.3) and (5.4), we obtain the desired result of
Theorem 5.1. �

5.2. Case of crossing two exponential barriers: External double-
barrier option

This subsection addresses an external double knock-out barrier option ac-
tivated in the event that the barrier state variable hits the upstream barrier
U(t) followed by reaching the downstream barrier D(t), or vice versa.

Theorem 5.2. For t∗ < τ1, if we consider the external double knock-out barrier
call option (EDKCud) activated at a random time τ2 defined by

(5.7) τ2 = min { t > τ1 : Zt = D(t), τ1 = min { t > 0 : Zt = U(t)}},

then, the price of the option, EDKCud is given by

EDKCud(t
∗, s, z) = eθ

∞
∑

n=−∞





(

D(t∗)2z

U(t∗)2

)

2(ξ2−ξ1)n

σ∗
2

(

U(t∗)

D(t∗)

)(
2(r−ξ1)

σ∗
2 −1)n

(5.8)

Ĵ

(

t∗,

(

U(t∗)

D(t∗)

)

2ρσ
σ∗

s,
A2

B2

(

U(t∗)

D(t∗)

)2n
D(t∗)2 z

U(t∗)2

)

− z
(
2(r−ξ1)

σ∗
2 −1)+

2(ξ2−ξ1)n

σ∗
2

(

U(t∗)

D(t∗)

)(k̂z,δ−1)n

Ĵ

(

t∗,

(

U(t∗)

D(t∗)

)

2ρσ
σ∗

s,
A2

B2

(

U(t∗)

D(t∗)

)2n
U(t∗)4

D(t∗)2 z

)]

,

where θ := 2(b − a) (µ̃∗−ξ1)
σ∗

− 2(b − 2a) (ξ2−ξ1)
σ∗

, and Ĵ(t, s, z) is the solution of

the unrestricted PDE defined by (3.4), and the closed solution is expressed by

(3.5) and k̂z,δ =
2(r−(n+1)ξ1+nξ2)

σ∗
2 .
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Proof. Using a similar method as in Section 4.2, under a probability measure
P ∗,

EDKCud(t
∗, s, z)

(5.9)

= e−r(T−t∗)EP∗

[(S(T )−K)+

1{{ max
τ2≤γ≤T

(Zγ − U(γ)) < 0} ∩ { min
τ2≤γ≤T

(Zγ −D(γ)) > 0, τ1 < τ2 ≤ T, Zτ1 = U(τ1), Zτ2 = U(τ2) }} |St∗ = s, Zt∗ = z]

= eθe−r(T−t∗)EP̂∗

[(S(T )−K)+

1{{ max
0≤γ≤T

(V̂γ − Û(γ)) < 0} ∩ { min
0≤γ≤T

(V̂γ − D̂(γ)) > 0, }} |St∗ = s, Ẑt∗ = ze2(ξ2−ξ1)t
∗

],

where Û(t) := A2 U(t)
B2 (upstream exponential barrier), D̂(t) := A2 D(t)

B2 (down-

stream exponential barrier), and Ẑt are defined by Section 4.2.
Similar to Section 5.1,

e−r(T−t∗)EP̂∗

[(S(T )−K)+
(5.10)

1{{max0≤γ≤T (Ẑγ−Û(γ))<0}∩{min0≤γ≤T (Ẑγ−D̂(γ))>0, }} |St∗ = s, Ẑt∗ = ze2(ξ2−ξ1)t
∗

]

in (5.9) becomes the price of the external double knock-out barrier option with

the upstream exponential barrier Û(t) and the downstream exponential barrier

D̂(t) mentioned in Section 3. Let us define (5.10) as Ĥ(t∗, s, z). By Theorem

3.1, Ĥ is expressed by

Ĥ(t∗, s, z)(5.11)

=
∞
∑

n=−∞

[

(

D(t∗)2z
U(t∗)2

)

2(ξ2−ξ1)n

σ∗
2

(

U(t∗)
D(t∗)

)(
2(r−ξ1)

σ∗
2 −1)n

Ĵ

(

t∗,
(

U(t∗)
D(t∗)

)

2ρσ
σ∗ s, A2

B2

(

U(t∗)
D(t∗)

)2n
D(t∗)2 z

U(t∗)2

)

− z
(
2(r−ξ1)

σ∗
2 −1)+

2(ξ2−ξ1)n
σ∗

2

(

U(t∗)
D(t∗)

)(k̂z,δ−1)n

Ĵ

(

t∗,
(

U(t∗)
D(t∗)

)

2ρσ
σ∗ s, A2

B2

(

U(t∗)
D(t∗)

)2n
U(t∗)4

D(t∗)2 z

)]

,

where Ĵ(t, s, z) is a solution of an unrestricted domain PDE satisfying

LĴ(t, s, z) = 0, 0 ≤ t < T,

Ĵ(T, s, z) = h(s, z) = (s−K)+1{B̂<z<Â}

Ĵ(t, s, Â) = Ĵ(t, s, B̂) = 0,(5.12)
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L :=
∂

∂t
+

1

2
σ2s2

∂2

∂s2
+

1

2
σ∗

2z2
∂2

∂z2
+ ρσσ∗sz

∂2

∂s∂z

+ r

(

s
∂

∂s
+ z

∂

∂z

)

− rI,

where the domain {(t, s, z) : 0 ≤ t < T, 0 ≤ s ≤ ∞, 0 ≤ z ≤ ∞} and Â and

B̂ are two constant values so that Û(t) = A2 U(t)
B2 = Âeξ̂1(T−t) and D̂(t) :=

A2 D(t)
B2 = B̂eξ̂2(T−t), respectively.
Then, using the double Mellin transform as seen in Section 3, we obtain the

closed-form formula of Ĵ(t, s, z) given by

Ĵ(t, s, z)

(5.13)

= sN2

(

dr1(τ,
s

K
),−dr2(τ,

z

Â
),−ρ

)

− e−rτKN2

(

dr3(τ,
s

K
),−dr4(τ,

z

Â
),−ρ

)

− sN2

(

dr1(τ,
s

K
),−dr2(τ,

z

B̂
),−ρ

)

+e−rτKN2

(

dr3(τ,
s

K
),−dr4(τ,

z

B̂
),−ρ

)

.

Finally, by integrating (5.9), (5.10) and (5.11), the desired result of Theorem
5.2 is obtained. �

6. Concluding remarks

This paper examined the valuation formulas for external-chained barrier op-
tions or external-chained double-barrier options with curved barriers so that
barrier options are activated when the external barrier state hits a specified
barrier level. First, we derived explicit valuation formulas for the external-
chained barrier options using the reflection principle method and the change
of measure and by changing the expectation representation of the external-
chained barrier options into the external European barrier option price with
a closed formula, which is described by the bivariate cumulative normal dis-
tribution function. Similarly, using the semi-analytic formula of the exter-
nal double-barrier options, we obtained the pricing valuation formula for the
external-chained double-barrier options with infinite sum in terms of the bivari-
ate cumulative normal distribution function. A significant contribution of our
methodology is the resolution of the complicated calculation of the pricing of
the external-chained barrier (double-barrier) option with two underlying assets
by using the closed-form formula (semi-analytic formula) of the well-known
external barrier (double-barrier) option directly. Then, the pricing formulas
of the external barrier (double-barrier) option using the double Mellin trans-
form method and the method of images are derived more easily and effectively
compared to existing probabilistic approaches.
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