
Bull. Korean Math. Soc. 53 (2016), No. 5, pp. 1483–1495
http://dx.doi.org/10.4134/BKMS.b150781
pISSN: 1015-8634 / eISSN: 2234-3016

INT-SOFT FILTERS IN LATTICE IMPLICATION ALGEBRAS

Young Bae Jun, Yang Xu, and Xiaohong Zhang

Abstract. The notion of int-soft (implicative) filters in lattice implica-
tion algebras is introduced, and related properties are investigated. Char-
acterizations of int-soft (implicative) filters are discussed. Conditions for
an int-soft filter to be an int-soft implicative filter are provided. Extension
property for int-soft implicative filters is established.

1. Introduction

In the field of many-valued logic, lattice-valued logic plays an important role
for two aspects: One is that it extends the chain-type truth-value field of some
well-known presented logic [4] to some relatively general lattices. The other
is that the incompletely comparable property of truth value characterized by
general lattice can more efficiently reflect the uncertainty of people’s think-
ing, judging and decision. Hence, lattice-valued logic is becoming a research
field which strongly influences the development of Algebraic Logic, Computer
Science and Artificial Intelligence Technology. Therefore Goguen [10], Pavelka
[25] and Novak [23] researched on this lattice-valued logic formal systems. In
order to research the logical system whose propositional value is given in a
lattice, Xu [26] proposed the concept of lattice implication algebras, and dis-
cussed their some properties. For the general development of lattice implica-
tion algebras, filter theory and its fuzzification play an important role. Xu and
Qin [27] introduced the notion of (implicative) filters in a lattice implication
algebra, and investigated their properties. Jun (together with Xu and Qin)
[11, 19] discussed positive implicative and associative filters of a lattice impli-
cation algebra, and Jun [12] considered the fuzzification of positive implicative
and associative filters of a lattice implication algebra. In [28], Xu and Qin
considered the fuzzification of (implicative) filters.

Molodtsov [22] introduced the concept of soft set as a new mathematical tool
for dealing with uncertainties that is free from the difficulties that have troubled
the usual theoretical approaches. Molodtsov pointed out several directions
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for the applications of soft sets. At present, works on the soft set theory
are progressing rapidly. Maji et al. [21] described the application of soft set
theory to a decision making problem. Maji et al. [20] also studied several
operations on the theory of soft sets. Chen et al. [7] presented a new definition of
soft set parametrization reduction, and compared this definition to the related
concept of attributes reduction in rough set theory. The algebraic structure
of set theories dealing with uncertainties has been studied by some authors.
Çaǧman et al. [6] introduced fuzzy parameterized (FP) soft sets and their
related properties. They proposed a decision making method based on FP-
soft set theory, and provided an example which shows that the method can
be successfully applied to the problems that contain uncertainties. Feng [8]
considered the application of soft rough approximations in multicriteria group
decision making problems. Aktaş and Çağman [2] studied the basic concepts
of soft set theory, and compared soft sets to fuzzy and rough sets, providing
examples to clarify their differences. They also discussed the notion of soft
groups. After than, many algebraic properties of soft sets are studied (see
[1, 3, 9, 13, 14, 15, 16, 17, 18, 24, 30]).

In this paper, we introduce the notion of int-soft (implicative) filters in
lattice implication algebras, and investigated related properties. We discuss
characterizations of int-soft (implicative) filters. We provide conditions for an
int-soft filter to be an int-soft implicative filter. We establish extension property
for int-soft implicative filters.

2. Preliminaries

By a lattice implication algebra we mean a bounded lattice L := (L,∨,∧, 0, 1)
with order-reversing involution “ ′ ” and a binary operation “ → ” satisfying
the following axioms:

(I1) x → (y → z) = y → (x → z),
(I2) x → x = 1,
(I3) x → y = y′ → x′,
(I4) x → y = y → x = 1 ⇒ x = y,
(I5) (x → y) → y = (y → x) → x,
(L1) (x ∨ y) → z = (x → z) ∧ (y → z),
(L2) (x ∧ y) → z = (x → z) ∨ (y → z),

for all x, y, z ∈ L.
In a lattice implication algebra L, the following hold (see [26]):

(a1) 0 → x = 1, 1 → x = x and x → 1 = 1,
(a2) x → y ≤ (y → z) → (x → z),
(a3) x ≤ y implies y → z ≤ x → z and z → x ≤ z → y,
(a4) x′ = x → 0,
(a5) x ∨ y = (x → y) → y,
(a6) ((y → x) → y′)′ = x ∧ y = ((x → y) → x′)′,
(a7) x ≤ (x → y) → y,
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where x ≤ y means x → y = 1.
A subset F of a lattice implication algebra L is called a filter of L (see [27])

if it satisfies:

(F1) 1 ∈ F ,
(F2) x ∈ F and x → y ∈ F imply y ∈ F

for all x, y ∈ L.
A subset F of a lattice implication algebra L is called an implicative filter

of L (see [27]) if it satisfies (F1) and

(F3) x → y ∈ F and x → (y → z) ∈ F imply x → z ∈ F

for all x, y, z ∈ L. Note that every implicative filter is a filter, but the converse
is not true in general.

A soft set theory is introduced by Molodtsov [22], and Çaǧman et al. [5]
provided new definitions and various results on soft set theory.

In what follows, let U be an initial universe set and E be a set of parameters.
Let P(U) denotes the power set of U and A,B,C, · · · ⊆ E.

A soft set (α̃, A) over U is defined to be the set of ordered pairs

(α̃, A) := {(x, α̃(x)) : x ∈ E, α̃(x) ∈ P(U)} ,

where α̃ : E → P(U) such that α̃(x) = ∅ if x /∈ A.
The function α̃ is called approximate function of the soft set (α̃, A). The

subscript A in the notation α̃ indicates that α̃ is the approximate function of
(α̃, A).

For a soft set (α̃, A) over U and a subset ε of U, the ε-inclusive set of (α̃, A),
denoted by iA(α̃; ε), is defined to be the set

iA(α̃; ε) := {x ∈ A | ε ⊆ α̃(x)} .

3. Int-soft filters

In what follows, let S(U,L) denote the set of all soft sets of L over U where
L is a lattice implication algebra unless otherwise specified.

Definition. A soft set (α̃, L) ∈ S(U,L) is an int-soft filter of L over U if the ε-
inclusive set iL(α̃; ε) of (α̃, L) is a filter of L for all ε ∈ P(U) with iL(α̃; ε) 6= ∅.

Example 3.1. Let L = {0, a, b, c, d, 1} be a set with the following Hasse dia-
gram and Cayley tables:
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1 0 a b c d 1
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Then L is a lattice implication algebra (see [29]). Let (α̃, L) be a soft set over
U = Z in L given as follows:

α̃ : L → P(U), x 7→

{

2Z if x ∈ {a, 1},
2N otherwise.

Then (α̃, L) is an int-soft filter of L over U .

Theorem 3.2. A soft set (α̃, L) ∈ S(U,L) is an int-soft filter of L over U if

and only if the following assertions are valid.

(∀x ∈ L) (α̃(1) ⊇ α̃(x)) ,(3.1)

(∀x, y ∈ L) (α̃(y) ⊇ α̃(x) ∩ α̃(x → y)) .(3.2)

Proof. Let (α̃, L) ∈ S(U,L) be satisfy the conditions (3.1) and (3.2). Let
ε ∈ P(U) be such that iL(α̃; ε) 6= ∅. Then there exists a ∈ iL(α̃; ε), and so
α̃(a) ⊇ ε. It follows from (3.1) that α̃(1) ⊇ α̃(a) ⊇ ε and so that 1 ∈ iL(α̃; ε).
Let x, y ∈ L be such that x ∈ iL(α̃; ε) and x → y ∈ iL(α̃; ε). Then ε ⊆ α̃(x)
and ε ⊆ α̃(x → y). Using (3.2), we get α̃(y) ⊇ α̃(x) ∩ α̃(x → y) ⊇ ε. Thus y ∈
iL(α̃; ε), and hence iL(α̃; ε) is a filter of L for all ε ∈ P(U) with iL(α̃; ε) 6= ∅.
Therefore (α̃, L) is an int-soft filter of L over U .

Conversely, suppose that (α̃, L) is an int-soft filter of L over U . For any
x ∈ L, let α̃(x) = εx. Then x ∈ iL(α̃; εx), and so iL(α̃; εx) 6= ∅. Hence
iL(α̃; εx) is a filter of L, and thus 1 ∈ iL(α̃; εx). Hence α̃(1) ⊇ εx = α̃(x) for
all x ∈ L. For any x, y ∈ L, let α̃(x) ∩ α̃(x → y) = δ. Then α̃(x) ⊇ δ and
α̃(x → y) ⊇ δ, that is, x ∈ iL(α̃; δ) and x → y ∈ iL(α̃; δ). It follows from (F2)
that y ∈ iL(α̃; δ) and so that α̃(y) ⊇ δ = α̃(x) ∩ α̃(x → y) for all x, y ∈ L. �

Proposition 3.3. Every int-soft filter (α̃, L) of L over U satisfies:

(∀x, y ∈ L) (x → y = 1 ⇒ α̃(x) ⊆ α̃(y)) .(3.3)

Proof. Let x, y ∈ L be such that x → y = 1. Then

α̃(y) ⊇ α̃(x) ∩ α̃(x → y) = α̃(x) ∩ α̃(1) = α̃(x)

by (3.2) and (3.1). �

Theorem 3.4. A soft set (α̃, L) ∈ S(U,L) is an int-soft filter of L over U if

and only if it satisfies (3.1) and

(∀x, y, z ∈ L) (α̃(x → z) ⊇ α̃(x → y) ∩ α̃(y → z)) .(3.4)

Proof. Assume that (α̃, L) is an int-soft filter of L over U . Since

(x → y) → ((y → z) → (x → z)) = 1

for all x, y, z ∈ L, it follows from (3.3) that α̃(x → y) ⊆ α̃((y → z) → (x → z))
and so from (3.2) that

α̃(x → z) ⊇ α̃(y → z) ∩ α̃((y → z) → (x → z))

⊇ α̃(y → z) ∩ α̃(x → y)
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for all x, y, z ∈ L.
Conversely, let (α̃, L) satisfy (3.1) and (3.4). Taking x = 1 in (3.4) and using

(a1), we have

α̃(z) = α̃(1 → z) ⊇ α̃(1 → y) ∩ α̃(y → z)

= α̃(y) ∩ α̃(y → z)

for all y, z ∈ L. Therefore (α̃, L) is an int-soft filter of L over U . �

Theorem 3.5. For any (α̃, L) ∈ S(U,L), the following assertions are equiva-

lent.

(1) (α̃, L) is an int-soft filter of L over U.
(2) (∀x, y, z ∈ L) (x → (y → z) = 1 ⇒ α̃(z) ⊇ α̃(x) ∩ α̃(y)) .

Proof. Suppose that (α̃, L) is an int-soft filter of L over U. Let x, y, z ∈ L
be such that x → (y → z) = 1. Using (3.2) and (3.3) implies that α̃(z) ⊇
α̃(y) ∩ α̃(y → z) ⊇ α̃(y) ∩ α̃(x).

Assume that the second condition is valid. Since x → (x → 1) = 1 for
all x ∈ L,we have α̃(1) ⊇ α̃(x) ∩ α̃(x) = α̃(x) for all x ∈ L. Note that
y → ((y → x) → x) = 1 for all x, y ∈ L. Hence α̃(x) ⊇ α̃(y) ∩ α̃(y → x) for all
x, y ∈ L. Therefore (α̃, L) is an int-soft filter of L over U. �

Theorem 3.6. A soft set (α̃, L) ∈ S(U,L) is an int-soft filter of L over U if

and only if it satisfies (3.1), (3.3) and

(∀x, y ∈ L) (α̃((x → y′)′) ⊇ α̃(x) ∩ α̃(y)) .(3.5)

Proof. Assume that (α̃, L) is an int-soft filter of L over U . Then the conditions
(3.1) and (3.3) are valid by Theorem 3.2 and Proposition 3.3. Using (3.1), (3.2)
and (I2), we have

α̃((x → y′)′) ⊇ α̃(y) ∩ α̃(y → (x → y′)′)

⊇ α̃(y) ∩ α̃(x) ∩ α̃(x → (y → (x → y′)′))

= α̃(y) ∩ α̃(x) ∩ ((x → y′)′ → (x → y′)′)

= α̃(x) ∩ α̃(y) ∩ α̃(1)

= α̃(x) ∩ α̃(y)

for all x, y ∈ L. Hence (3.5) is valid.
Conversely, let (α̃, L) ∈ S(U,L) satisfy conditions (3.1), (3.3) and (3.5).

Note that (x → (x → y)′)′ → y = 1 for all x, y ∈ L. It follows from (3.3) and
(3.5) that

α̃(y) ⊇ α̃((x → (x → y)′)′) ⊇ α̃(x) ∩ α̃(x → y)

for all x, y ∈ L. Therefore (α̃, L) is an int-soft filter of L over U by Theorem
3.2. �
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Theorem 3.7. A soft set (α̃, L) ∈ S(U,L) is an int-soft filter of L over U if

and only if it satisfies (3.1) and

(∀x, y, z ∈ L) (α̃(z → x) ⊇ α̃((z → y) → x) ∩ α̃(y)) .(3.6)

Proof. Suppose that (α̃, L) is an int-soft filter of L over U . Then the condition
(3.1) is valid by Theorem 3.2. Let x, y, z ∈ L. Since x → (z → x) = 1 and
y → (z → y) = 1, we have ((z → y) → x) → (y → (z → x)) = 1. It follows
from (3.2) and (3.3) that

α̃(z → x) ⊇ α̃(y) ∩ α̃(y → (z → x))

⊇ α̃(y) ∩ α̃((z → y) → x).

Hence (3.6) is valid.
Conversely, let (α̃, L) ∈ S(U,L) satisfy conditions (3.1) and (3.6). If we take

z = 1 in (3.6) and use (a1), then

α̃(x) = α̃(1 → x) ⊇ α̃((1 → y) → x) ∩ α̃(y) = α̃(y → x) ∩ α̃(y)

for all x, y ∈ L. Therefore (α̃, L) is an int-soft filter of L over U by Theorem
3.2. �

Let (α̃, L) ∈ S(U,L) and a ∈ L. We consider the set

[α̃(a)) := {x ∈ L | α̃(a) ⊆ α̃(x)} .

Obviously, a ∈ [α̃(a)). If (α̃, L) is an int-soft filter of L over U , then 1 ∈ [α̃(a))
since α̃(1) ⊇ α̃(x) for all x ∈ L.

Let (α̃, L) ∈ S(U,L) satisfy the condition (3.1). Then there exists a ∈ L
such that [α̃(a)) is not a filter of L as seen in the following example.

Example 3.8. Consider the set L = {ai | i = 1, 2, . . . , n}. For any 1 ≤ j, k ≤
n, define

aj ∨ ak = amax{j,k},

aj ∧ ak = amin{j,k},

(aj)
′ = an−j+1,

aj → ak = amin{n−j+k,n}.

Then (L,∨,∧,′ ,→) is a lattice implication algebra which is called the  Lukasie-
wicz implication algebra (of order n) (see [29]). The  Lukasiewicz implication
algebra L = {0, a, b, c, 1} of order 5 is represented by

r 0

r a

r b

r c

r 1
x x′

0 1
a c
b b
c a
1 0

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b b c 1 1 1
c a b c 1 1
1 0 a b c 1
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Let (α̃, L) ∈ S(U,L) where U = Z and

α̃ : L → P(U), x 7→















8N if x ∈ {0, c},
4Z if x = a,
4N if x = b,
2Z if x = 1.

Then [α̃(b)) = {a, b, 1} is not a filter of L since a → c = 1 ∈ [α̃(b)) and
a ∈ [α̃(b)), but c /∈ [α̃(b)).

We provide conditions for the set [α̃(a)) to be a filter of L for a ∈ L.

Theorem 3.9. Let a ∈ L. If (α̃, L) is an int-soft filter of L over U , then

[α̃(a)) is a filter of L.

Proof. Obviously 1 ∈ [α̃(a)) by (3.1). Let x, y ∈ L be such that x → y ∈ [α̃(a))
and x ∈ [α̃(a)). Then α̃(x → y) ⊇ α̃(a) and α̃(x) ⊇ α̃(a). It follows from (3.2)
that

α̃(y) ⊇ α̃(x) ∩ α̃(x → y) ⊇ α̃(a).

Thus y ∈ [α̃(a)) and [α̃(a)) is a filter of L. �

Theorem 3.10. For any a ∈ L and (α̃, L) ∈ S(U,L), we have the following

assertions:

(1) If [α̃(a)) is a filter of L, then (α̃, L) satisfies the following implication.

(∀x, y ∈ L) (α̃(a) ⊆ α̃(x → y) ∩ α̃(x) ⇒ α̃(a) ⊆ α̃(y)) .(3.7)

(2) If (α̃, L) satisfies (3.1) and (3.7), then [α̃(a)) is a filter of L.

Proof. (1) Assume that [α̃(a)) is a filter of L for a ∈ L. Let x, y ∈ L be such
that

α̃(a) ⊆ α̃(x → y) ∩ α̃(x).

Then x → y ∈ [α̃(a)) and x ∈ [α̃(a)). Since [α̃(a)) is a filter of L, it follows
that y ∈ [α̃(a)), that is, α̃(a) ⊆ α̃(y).

(2) Suppose that (α̃, L) satisfies (3.1) and (3.7). Let x, y ∈ L be such that
x → y ∈ [α̃(a)) and x ∈ [α̃(a)). Then α̃(a) ⊆ α̃(x → y) and α̃(a) ⊆ α̃(x),
which implies that

α̃(a) ⊆ α̃(x → y) ∩ α̃(x).

It follows from (3.7) that α̃(a) ⊆ α̃(y), i.e., y ∈ [α̃(a)). Since (α̃, L) satisfies
(3.1), we have 1 ∈ [α̃(a)). Therefore [α̃(a)) is a filter of L. �

For a fixed element a ∈ L, let (α̃a, L) ∈ S(U,L) be given as follows:

α̃a : L → P(U), x 7→

{

ε1 if a → x = 1,
ε2 otherwise

where ε1, ε2 ∈ P(U) with ε1 ) ε2.
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Let L = {0, a, b, c, 1} be the lattice implication algebra in Example 3.8. For
b ∈ L, the soft set (α̃b, L) over U = {1, 2, 3, 4, 5, 6} which is given by

α̃b : L → P(U), x 7→

{

{1, 2, 3, 5} if b → x = 1,
{3, 5} otherwise

is not an int-soft filter of L over U since α̃b(a) = {3, 5} + {1, 2, 3, 5} = α̃b(c) ∩
α̃b(c → a).

Given a ∈ L, we provide conditions for the soft set (α̃a, L) ∈ S(U,L) to be
an int-soft filter of L over U .

Theorem 3.11. Given a ∈ L, the soft set (α̃a, L) ∈ S(U,L) is an int-soft filter

of L over U if and only if the following assertion is valid.

(∀x, y ∈ L) (a → (y → x) = 1, a → y = 1 ⇒ a → x = 1) .(3.8)

Proof. Suppose that (α̃a, L) is an int-soft filter of L over U and let x, y ∈ L be
such that a → (y → x) = 1 and a → y = 1. Then α̃a(y → x) = ε1 = α̃a(y),
and so

α̃a(x) ⊇ α̃a(y) ∩ α̃a(y → x) = ε1.

Thus a → x = 1, which satisfies the condition (3.8).
Conversely, assume that the condition (3.8) is valid. Note that

iL(α̃a; ε) =







L if ε ⊆ ε2,
{x ∈ L | a → x = 1} if ε2 ( ε ⊆ ε1,
∅ otherwise.

For the case of ε2 ( ε ⊆ ε1, obviously 1 ∈ iL(α̃a; ε). Let x, y ∈ L be such that
x ∈ iL(α̃a; ε) and x → y ∈ iL(α̃a; ε). Then a → x = 1 and a → (x → y) = 1,
which imply from the hypothesis that a → y = 1, that is, y ∈ iL(α̃a; ε). Hence
iL(α̃a; ε) is a filter of L whenever it is nonempty. Therefore (α̃a, L) is an int-soft
filter of L over U . �

Theorem 3.12. For a subset J of L, let (β̃, L) ∈ S(U,L) be given as follows:

β̃ : L → P(U), x 7→

{

ε1 if x ∈ J,
ε2 otherwise,

where ε1, ε2 ∈ P(U) with ε1 ) ε2. Then (β̃, L) is an int-soft filter of L over

U if and only if the following assertion is valid.

(∀x, y, z ∈ L) (x, y ∈ J, y → (x → z) = 1 ⇒ z ∈ J) .(3.9)

Proof. Note that

iL(β̃; ε) =







L if ε ⊆ ε2,
J if ε2 ( ε ⊆ ε1,
∅ otherwise.
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Assume that (β̃, L) is an int-soft filter of L over U . Then J = iL(β̃; ε) for
ε2 ( ε ⊆ ε1, and J is a filter of L. Let x, y, z ∈ L be such that x, y ∈ J and
y → (x → z) = 1. Since 1 ∈ J , it follows that z ∈ J .

Conversely, let (β̃, L) ∈ S(U,L) and suppose that (3.9) is valid. Since y →
(x → 1) = y → 1 = 1 for all x, y ∈ L, we have 1 ∈ J by (3.9), and so

1 ∈ iL(β̃; ε) for ε2 ( ε ⊆ ε1. Let x, y ∈ L be such that y ∈ J = iL(β̃; ε) and

y → x ∈ J = iL(β̃; ε) for ε2 ( ε ⊆ ε1. Since y → ((y → x) → x) = 1, it follows

from (3.9) that x ∈ J = iL(β̃; ε). Hence iL(β̃; ε) is a filter of L for all ε ∈ P(U)

with iL(β̃; ε) 6= ∅. Therefore (β̃, L) is an int-soft filter of L over U . �

4. Int-soft implicative filters

Definition. A soft set (α̃, L) ∈ S(U,L) is an int-soft implicative filter of L
over U if the ε-inclusive set iL(α̃; ε) of (α̃, L) is an implicative filter of L for all
ε ∈ P(U) with iL(α̃; ε) 6= ∅.

Theorem 4.1. A soft set (α̃, L) ∈ S(U,L) is an int-soft implicative filter of L
over U if and only if it satisfies the condition (3.1) and

(∀x, y ∈ L) (α̃(x → z) ⊇ α̃(x → y) ∩ α̃(x → (y → z))) .(4.1)

Proof. The proof is similar to the proof of Theorem 3.2. �

Theorem 4.2. Every int-soft implicative filter is an int-soft filter.

Proof. Let (α̃, L) be an int-soft implicative filter of L over U . If we take x = 1
in (4.1) and use (a1), then α̃(z) ⊇ α̃(y) ∩ α̃(y → z) for all y, z ∈ L. Therefore
(α̃, L) is an int-soft filter of L over U . �

The converse of Theorem 4.2 is not true in general. In fact, consider the
lattice implication algebra L = {0, a, b, c, d, 1} in Example 3.1. Let (α̃, L) be a
soft set over U = N in L given as follows:

α̃ : L → P(U), x 7→

{

3N if x = 1,
6N otherwise.

Then (α̃, L) is an int-soft filter of L over U . But it is not an int-soft implicative
filter of L over U since α̃(d → b) ∩ α̃(d → (b → 0)) * α̃(d → 0).

Theorem 4.3. Let a ∈ L. If (α̃, L) is an int-soft implicative filter of L over

U , then [α̃(a)) is an implicative filter of L.

Proof. Obviously 1 ∈ [α̃(a)) by (3.1). Let x, y, z ∈ L be such that x → y ∈
[α̃(a)) and x → (y → z) ∈ [α̃(a)). Then α̃(x → y) ⊇ α̃(a) and α̃(x → (y →
z)) ⊇ α̃(a). It follows from (4.1) that

α̃(x → z) ⊇ α̃(x → y) ∩ α̃(x → (y → z)) ⊇ α̃(a).

Thus x → z ∈ [α̃(a)) and [α̃(a)) is an implicative filter of L. �
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We now provide conditions for an int-soft filter to be an int-soft implicative
filter.

Theorem 4.4. Let (α̃, L) ∈ S(U,L). If (α̃, L) is an int-soft filter of L over U
satisfying the condition:

(∀x, y, z ∈ L) (α̃(y → z) ⊇ α̃(x → (y → (y → z))) ∩ α̃(x)) ,(4.2)

then (α̃, L) is an int-soft implicative filter of L over U .

Proof. Note that (x → (y → z)) → ((x → y) → (x → (x → z))) = 1 for all
x, y, z ∈ L. It follows from (3.3) and (4.2) that

α̃(x → z) ⊇ α̃((x → y) → (x → (x → z))) ∩ α̃(x → y)

⊇ α̃(x → (y → z)) ∩ α̃(x → y)

for all x, y, z ∈ L. Therefore (α̃, L) is an int-soft implicative filter of L over
U . �

Theorem 4.5. For a soft set (α̃, L) ∈ S(U,L), the following are equivalent.

(i) (α̃, L) is an int-soft implicative filter of L over U .

(ii) (α̃, L) is an int-soft filter of L over U that satisfies the condition.

(∀x, y ∈ L) (α̃(x → y) ⊇ α̃(x → (x → y))) .(4.3)

(iii) (α̃, L) is an int-soft filter of L over U that satisfies the condition.

(∀x, y, z ∈ L) (α̃((x → y) → (x → z)) ⊇ α̃(x → (y → z))) .(4.4)

Proof. Suppose that (α̃, L) is an int-soft implicative filter of L over U . Then
(α̃, L) is an int-soft filter of L over U by Theorem 4.2. Using (3.1), (4.1) and
(a1), we have

α̃(x → y) ⊇ α̃(x → (x → y)) ∩ α̃(x → x)

= α̃(x → (x → y)) ∩ α̃(1)

= α̃(x → (x → y))

for all x, y ∈ L. Hence (ii) is valid.
Let (α̃, L) be an int-soft filter of L over U that satisfies the condition (4.3).

Since (x → (y → z)) → (x → ((x → y) → (x → z))) = 1 for all x, y, z ∈ L, it
follows from (3.3), (I1) and (4.3) that

α̃((x → y) → (x → z)) = α̃(x → ((x → y) → z))

⊇ α̃(x → (x → ((x → y) → z)))

= α̃(x → ((x → y) → (x → z)))

⊇ α̃(x → (y → z))

for all x, y, z ∈ L. Therefore (iii) is valid.
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Assume that (α̃, L) is an int-soft filter of L over U satisfying the condition
(4.4). Then

α̃(x → z) ⊇ α̃((x → y) → (x → z)) ∩ α̃(x → y)

⊇ α̃(x → (y → z)) ∩ α̃(x → y)
(4.5)

for all x, y, z ∈ L by (3.2) and (iii). Therefore (α̃, L) is an int-soft implicative
filter of L over U . �

For a non-empty subset F of L and a fixed element b ∈ L, let (α̃b
F , L) ∈

S(U,L) be given as follows:

α̃b
F : L → P(U), x 7→

{

ε1 if b → x ∈ F,
ε2 otherwise,

where ε1, ε2 ∈ P(U) with ε1 ) ε2. We know that there exists a filter F of L
and an element b ∈ L such that α̃b

F may not be an int-soft filter of L over U as
seen in the following example.

Example 4.6. Let L = {0, a, b, c, 1} be the  Lukasiewicz implication algebra of
order 5 in Example 3.8. Consider a filter F := {1} and an element b ∈ L. Then

α̃b
F (a) = ε2 ( ε1 = α̃b

F (b → a) ∩ α̃b
F (b).

Hence α̃b
F is not an int-soft filter of L over U .

We provide a condition for the soft set (α̃b
F , L) to be an int-soft filter of L

over U .

Theorem 4.7. Let F be a filter of L. Then (α̃b
F , L) is an int-soft filter of L

over U for all b ∈ L if and only if F is an implicative filter of L.

Proof. Assume that F is an implicative filter of L and let b be any element of
L. Since b → 1 = 1 ∈ F , we have α̃b

F (1) = ε1 ⊇ α̃b
F (x) for all x ∈ L. Let

x, y ∈ L be such that either b → (x → y) /∈ F or b → x /∈ F . Then either
α̃b
F (x → y) = ε2 or α̃b

F (x) = ε2. Hence α̃b
F (y) ⊇ ε2 = α̃b

F (x → y) ∩ α̃b
F (x). Let

x, y ∈ L be such that b → (x → y) ∈ F and b → x ∈ F . Then b → y ∈ F by
(F3), and so α̃b

F (y) = ε1 = α̃b
F (x → y)∩ α̃b

F (x). Therefore (α̃b
F , L) is an int-soft

filter of L over U for all b ∈ L.
Conversely, suppose that (α̃b

F , L) is an int-soft filter of L over U for all b ∈ L.
Assume that x → (y → z) ∈ F and x → y ∈ F for all x, y, z ∈ L. Taking
b = x implies that α̃b

F (y → z) = ε1 = α̃b
F (y), and thus α̃b

F (z) ⊇ α̃b
F (y →

z) ∩ α̃b
F (y) = ε1. Hence α̃b

F (z) = ε1, and so x → z = b → z ∈ F . Therefore F
is an implicative filter of L. �

Theorem 4.8 (Extension property for int-soft implicative filters). Let (α̃, L)

and (β̃, L) be int-soft filters of L over U such that α̃(1) = β̃(1) and α̃ ⊆ β̃, that

is, α̃(x) ⊆ β̃(x) for all x ∈ L. If (α̃, L) is an int-soft implicative filter of L over

U , then so is (β̃, L).
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Proof. For any x, y, z ∈ L, we have

β̃((x → (y → z)) → ((x → y) → (x → z)))

= β̃((x → y) → ((x → (y → z)) → (x → z)))

= β̃((x → y) → (x → ((x → (y → z)) → z)))

⊇ α̃((x → y) → (x → ((x → (y → z)) → z)))

⊇ α̃(x → (y → ((x → (y → z)) → z)))

= α̃((x → (y → z)) → (x → (y → z)))

= α̃(1) = β̃(1).

It follows from (3.1) and (3.2) that

β̃((x → y) → (x → z))

⊇ β̃((x → (y → z)) → ((x → y) → (x → z))) ∩ β̃(x → (y → z))

⊇ β̃(1) ∩ β̃(x → (y → z)) = β̃(x → (y → z)).

Using Theorem 4.5, we conclude that (β̃, L) is an int-soft implicative filter of
L over U . �
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