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PERFORMANCE COMPARISON OF CRYPTANALYTIC

TIME MEMORY DATA TRADEOFF METHODS

Jin Hong and Byoung-Il Kim

Abstract. The execution complexities of the major time memory data
tradeoff methods are analyzed in this paper. The multi-target tradeoffs
covered are the classical Hellman, distinguished point, and fuzzy rainbow
methods, both in their non-perfect and perfect table versions for the
latter two methods. We show that their computational complexities are
identical to those of the corresponding single-target methods executed
under certain matching parameters and conclude that the perfect table
fuzzy rainbow tradeoff method is most preferable.

1. Introduction

Cryptanalytic time memory tradeoff algorithms are methods for quickly in-
verting one-way functions and these are widely used in practice to extract
passwords from password hashes. A typical tradeoff method first executes a
pre-computation phase to produce large tables, and these pre-computed ta-
bles are later utilized by the online phase, which is the attempt to recover
the input corresponding to each given inversion target. The classical Hellman
method [11] was the first of such methods, and, according to [9], Rivest intro-
duced the distinguished point (DP) method [7, 8] as a variant with a reduced
table lookup frequency. The rainbow method [18] is currently the most widely
used such method.

The subject of this paper is a closely related technique, often referred to
as the time memory data tradeoff [5], where the objective is to recover the
input corresponding to any one of multiple inversion targets. Such a setting
fits naturally with attacks on streamciphers [1, 10], as can be witnessed by its
practical application [6] on the A5/1 encryption algorithm for GSM phones.

Received September 15, 2015.
2010 Mathematics Subject Classification. Primary 68W40, 94A60.
Key words and phrases. time memory data tradeoff, multi-target tradeoff, Hellman, dis-

tinguished point, fuzzy rainbow, cryptography.
This work was supported by the Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Plan-
ning (NRF-2012R1A1B4003379). Part of this work was done while J. Hong was visiting
Department of Mathematics, U. C. Davis, and he is grateful for their hospitality.

c©2016 Korean Mathematical Society

1439



1440 J. HONG AND B.-I. KIM

The first multi-target tradeoff methods [5, 6] were straightforward multi-
target adaptations of the single-target Hellman and DP tradeoffs. A direct
adaptation of the rainbow method to the multi-target setting is known [4] to
be vastly inferior to the other two methods, and the fuzzy rainbow tradeoff [2,
3] was designed to be a multi-target rainbow tradeoff variant of comparable
performance. This method was also independently invented to be the core
component of a fully functional attack on GSM phones [16, 17].

Both the DP and fuzzy rainbow tradeoff methods have non-perfect table and
perfect table sub-versions. These four tradeoff methods and the classical Hell-
man method may be taken as the major multi-target tradeoff methods. Heuris-
tic arguments can be used to show that the five tradeoff methods, viewed as
multi-target tradeoff algorithms, perform comparably in the asymptotic sense.
In this work, we provide the first theoretical treatment of the execution com-
plexities of the multi-target tradeoffs that does not hide any small constant
factors. This information is crucial in practical comparisons of the methods
and allows for educated decisions in choosing one method over another.

This work relies heavily on the recent analyses [12, 13, 14, 15] of the five
methods that were carried out in the single-target setting. Based on an in-depth
understanding of these previous results, we extract just the core arguments and
cleverly adjust them to be applicable to the multi-target setting, treating all
five methods simultaneously. We come to the conclusion that, when placed
in the right perspective, the previous performance comparisons made of these
methods in the single-target setting can be understood to be valid even in the
multi-target setting.

The remainder of this paper is organized as follows. In Section 2, we show
how the Hellman and DP methods may roughly be seen as degenerate cases
of the fuzzy rainbow method, so that all methods can be treated in a uni-
form manner. The complexity analysis of the multi-target tradeoffs is given in
Section 3, and the work is summarized in Section 4.

2. Preliminaries

In this section, we will present the five tradeoff methods in a manner that
hides all the complicated details. This will allow us to see that it suffices
to treat just one algorithm in order to cover all five tradeoff methods. We
assume that the reader is familiar with the basic algorithms, at least in their
single-target versions. In particular, we assume that the reader is aware of the
pre-computation matrix structures of the classical Hellman, distinguished point
(DP), and fuzzy rainbow tradeoff methods in their non-perfect and perfect table
versions. However, we will put in effort to clarify the more obscure aspects of
the online phase algorithms.

Standard notation for algorithm parameters, such as m, t, ℓ, and s, will
be used. The reader can refer to the beginning sections of [12, 13, 14, 15] for
a streamlined review of the notation and details of the single-target tradeoff
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methods. We will use D to denote the number of targets given to a multi-target
tradeoff method.

Algorithm 1: Online phase of Hellman and DP methods

for j = 1 to ℓ do
for k = 1 to D do

generate the online chain associated with the k-th target for the
j-th table;

resolve alarm whenever encountered;

terminate whenever answer is found;

end

end

Algorithm 2: Online phase of fuzzy rainbow method

for i = s to 1 do
for j = 1 to ℓ do

for k = 1 to D do
generate the online chain associated with the k-th target for
the j-th table that starts from the i-color;

resolve alarm if encountered;

terminate if answer is found;

end

end

end

The only difference between the pre-computation phases of a single-target
tradeoff method and its multi-target version is in the rough order of ℓ, the
number of tables. The online phases of the classical Hellman method and
the non-perfect and perfect table versions of the DP method may roughly
be presented as Algorithm 1, and the same for the non-perfect and perfect
fuzzy rainbow methods are given by Algorithm 2. The explicit operations done
within the inner-most loops of Algorithm 1 and Algorithm 2 are actually more
structured than seen here and varies among the different tradeoff methods, but
these details will not be important for this paper. The deliberate obscuring
of these inner details is crucial in making the uniform approach of this paper
possible.

Setting D = 1 in Algorithm 1 and Algorithm 2 essentially removes the
inner-most loop and reduces these algorithms to the single-target versions of
the various tradeoff methods’ online phase algorithms. Some parts of this
paper may be easier to understand if each algorithm is viewed as a family of
algorithms, with each value of integer parameter D corresponding to a different
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algorithm. Each single-target tradeoff algorithm is then just a specific instance
of the corresponding family of tradeoff algorithms.

Notice that, in Algorithm 2, the j-loop, corresponding to different pre-
computation tables, is placed inside the i-loop, corresponding to the starting
color for the online chain. As with the original rainbow tradeoff [18], this choice
of nesting is logical, as it is expected to reduce the computational complexity
of the online phase.

There is no such generally accepted practice for the placement of the k-loop,
the loop associated with the inversion targets, appearing in Algorithm 1 and
Algorithm 2. However, the choice given here is reasonable in that, when the
pre-computation tables are too large to be fully loaded into fast memory, it is
much more practical to handle frequent changes of the targets than to handle
frequent changes of the tables one is accessing.

Note that, when we set s = 1 in Algorithm 2, the outer loop is removed
and Algorithm 2 reduces essentially to Algorithm 1. Hence, in the remainder
of this paper, we will deal only with Algorithm 2, and any argument made for
Algorithm 2 may be understood to be an argument that is also applicable to
Algorithm 1 by taking s = 1.

We will use the usual notation for search space size N , online computational
time complexity T , storage complexity M , and pre-computation time complex-
ity P . For a tradeoff method of D targets, its tradeoff coefficient is defined
to be TM2D2/N2 and its pre-computation coefficient is defined to be PD/N .
These two definitions reduce to their corresponding single-target definitions
given by [12, 13, 14, 15] when D = 1.

3. Analysis

In the previous section, we explained that it suffices to work with just Algo-
rithm 2 in order to cover all of the classical Hellman, non-perfect DP, perfect
DP, non-perfect fuzzy rainbow and perfect fuzzy rainbow tradeoff methods.
When the Hellman or DP tradeoff methods are mentioned below, we are im-
plicitly assuming the dummy parameter s = 1.

Our main interest lies with the computational complexity of Algorithm 2.
Let us write |Mi| to denote the expected number of distinct entries contained
in the i-th colored DP sub-matrix for the j-th pre-computation matrix. Note
that we have suppressed the index j in the notation |Mi|, because the expected
numbers are independent of the specific tables. More precisely, this value will
be a function of the tradeoff algorithm parameters m, t, and s, in addition to
the color index i.

Using this notation, the probability for the operations inside the inner-most
loop corresponding to a specific i = x, j = y, k = z index triple to be executed
during the online phase may be written as

(1) Px,y,z :=

s
∏

i=x+1

(

1−
|Mi|

N

)ℓD

·
(

1−
|Mx|

N

)(y−1)D

·
(

1−
|Mx|

N

)z−1

.
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Here, the first product term is the probability for none of the answers corre-
sponding to the D inversion targets to exist among the DP sub-matrices of all
colors appearing strictly after the x-th color for all ℓ pre-computation tables.
The second term is the probability for none of the D answers to be among the
x-th color DP sub-matrices corresponding to the first y − 1 tables. The final
term is the probability for the answers to the first z− 1 inversion targets to be
not present in the x-th color DP sub-matrix for the y-th table.

Let us next briefly consider the expected number of one-way function itera-
tions required of carrying out the operations appearing in the inner-most loop
of Algorithm 2. Note that this number is a function of algorithm parameters
m, t, and s, but is independent of the specific table and also of the specific
inversion target. Hence, we can use notation Wi to denote the work factor
associated with the operations corresponding to indices i, j, and k. That is, as
with our discussion concerning |Mi|, the indices j and k need not be associated
with this expected number.

Now, using the expression (1) for the execution probabilities, the expected
online computational complexity

(2) T =

s
∑

i=1

ℓ
∑

j=1

D
∑

k=1

Pi,j,k ·Wi

can be written in the form

(3) T =

s
∑

i=1

Wi ·
N

|Mi|

{

1−
(

1−
|Mi|

N

)Dℓ}
s
∏

h=i+1

(

1−
|Mh|

N

)Dℓ

after some easy simplifications.
This is certainly a function of the algorithm parameters m, t, ℓ, s, and D,

but we can make the crucial observation that this expression could also be
understood as a function of m, t, s, and Dℓ. That is, if D and ℓ were changed
in such a way that the product Dℓ remains the same, then the online time
complexity T remains the same.

To summarize this finding, we introduce the notion of matching parameter
sets. Let us fix any one of the classical Hellman, non-perfect DP, perfect
DP, non-perfect fuzzy rainbow, and perfect fuzzy rainbow tradeoff methods.
Consider a set of parameters m, t, s, and ℓ for the single-target version of this
tradeoff method. Next, consider the multi-target version of the same tradeoff
method that aims to invert just one of D targets, and let us associate the set
of parameters m, t, s, and ℓ

D
to this method. In the remainder of this paper,

we will refer to these two sets of parameters as matching parameter sets for the
single-target and multi-target versions of the same tradeoff method. In other
words, the matching parameter sets associated with a single-target tradeoff
method and the corresponding multi-target tradeoff method differ only in their
numbers of tables, with the table count for the single-target version being equal
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to the product of the table count and the target count for the multi-target
version.

As was observed above, expression (3) for the computational complexity of
Algorithm 2 implies the following.

Proposition 3.1. The online time complexity of a single-target tradeoff method

and that of the corresponding multi-target tradeoff method, executed under

matching parameter sets, are equal.

One consequence of this result is that the explicit formulas for time complex-
ities associated with any set of parameters that were obtained in [12, 13, 14, 15]
for the single-target tradeoff methods can easily be understood to be those for
the multi-target tradeoff methods. It suffices to replace every table count ℓ
appearing in those formulas with the product of table count and target count
being used by the multi-target tradeoff method.

We have tested the correctness of the above claim with computer program
experiments for the non-perfect DP and the perfect fuzzy rainbow tradeoff
methods. For each of the two tradeoff methods, we experimented with both
small and large target sets, comparing the experimentally obtained online times
with the theoretical time complexities that were stated by [12] and [14] for the
single-target setting.

It is rather straightforward to argue that the success rates of single-target
and multi-target tradeoff methods executed under matching parameter sets are
equal, both being

(4) 1−
s
∏

i=1

(

1−
|Mi|

N

)ℓ

,

where ℓ is the number of tables for the single-target tradeoff method. It is also
true that, when executed under matching parameter sets, the pre-computation
complexities and storage complexities of a single-target tradeoff method is
larger by a factor of D, the number of targets, than the multi-target trade-
off method. To see this, it suffices to note that both complexities are linear in
the number of tables. We have thus arrived at the following claim, where the
two coefficients are as they were defined at the end of Section 2.

Theorem 3.2. The success rate of a single-target tradeoff method and that of

a corresponding multi-target tradeoff method, executed with matching parame-

ter sets, are equal. Corresponding statements concerning the pre-computation

coefficients and the tradeoff coefficients are also true.

Recall that the performances of different single-target tradeoff methods could
be compared [12, 15] based on the range of pre-computation coefficient and
tradeoff coefficient pairs that are made available by each method through var-
ious parameter choices achieving a common success rate. Since any storage
optimization technique that reduces the number of bits required to record each
pre-computation table entry does not depend on the number of targets, we
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can apply the same performance comparison strategy to multi-target tradeoff
methods. The above theorem implies that, for each of the five tradeoff meth-
ods under consideration, the range of these pairs is the same regardless of the
number of inversion targets. Thus, the performance comparisons carried out
by [12, 13, 14, 15] remain valid without change for the multi-target versions of
the five methods.

4. Conclusion

In this work, we analyzed the execution behaviors of the classical Hellman,
non-perfect DP, perfect DP, non-perfect fuzzy rainbow, and perfect fuzzy rain-
bow tradeoff methods in their multi-target settings. We showed that the online
time complexity of each multi-target tradeoff method is identical to that of the
corresponding single-target tradeoff method executed under a certain matching
parameter set. This implies that previous performance comparisons of tradeoff
methods done under the single-target setting remain valid in the multi-target
setting. In particular, referring to the claim of [14], we can conclude that the
perfect table fuzzy rainbow multi-target tradeoff method performs the best
among the major multi-target tradeoff methods. This is a meaningful conclu-
sion, as the fuzzy rainbow tradeoff, in both its single-target and multi-target
versions, has yet to receive the attention it deserves.
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