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OPTION PRICING UNDER GENERAL GEOMETRIC

RIEMANNIAN BROWNIAN MOTIONS

Yong-Chao Zhang

Abstract. We provide a partial differential equation for European op-
tions on a stock whose price process follows a general geometric Riemann-
ian Brownian motion. The existence and the uniqueness of solutions to
the partial differential equation are investigated, and then an expression
of the value for European options is obtained using the fundamental solu-
tion technique. Proper Riemannian metrics on the real number field can
make the distribution of return rates of the stock induced by our model
have the character of leptokurtosis and fat-tail; in addition, they can also

explain option pricing bias and implied volatility smile (skew).

1. Introduction

Bachelier introduced the Brownian motion to finance, and used it to describe
the stock price process [2]. Samuelson argued that the geometric Brownian
motion is a good model for stock prices [17]. Under the assumption that the
price process of a stock follows a geometric Brownian motion, Black and Scholes
intensively studied European option pricing [3]. In their model there are two
securities, the stock and the bond, whose price processes S and D satisfy the
following SDEs in the sense of Itô integral,

dSt = µStdt+ σStdWt,

dDt = rDtdt,
(1.1)

respectively. Here, σ, µ and r are some constants, and W is a standard Eu-
clidean Brownian motion.

Under some ideal conditions, Black and Scholes obtained a pricing formula
(BS formula) for European options through the method of risk hedging [3].
In their discussions, the form and the regularity of option values are a priori

assumed, and they did not provide any mathematical reasons.
Since then many extensions of the work of Black and Scholes in [3] have

been appeared. A class of the extensions is to assume that the volatility σ
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follows some stochastic processes [9, 10, 12, 18]. The option pricing PDEs
obtained in [9, 10, 12, 18] are of three dimensions. Hull and White determined
option prices in series form for the case that the volatility is independent of the
stock price [12]. Assuming the volatility is driven by an arithmetic Ornstein-
Uhlenbeck process, Elias Stein and Jeremy Stein derived an option pricing
formula in terms of a double integral [18]. Under some similar assumptions to
that of Elias Stein and Jeremy Stein, Heston obtained a closed-form solution for
European call options by applying the method of characteristic functions [9].
Hobson and Rogers defined the volatility in terms of exponentially weighted
moments of historic log-price [10]. Unlike [9, 10, 12, 18], Chan replaced W
with a general Lévy process, then obtained an option pricing equation which is
an integro-differential equation [4]. In this paper, we obtain an option pricing
PDE of two dimensions.

Because the quadratic variation 〈W 〉 of W is 〈W 〉t = t, the equations in
Black and Scholes’s model can be rewritten in the sense of Stratonovich integral
as

dSt = µStdt+ σSt ◦ dWt,

dDt = rDtdt,
(1.2)

without changing the BS option pricing formula. Note that the drift µ in (1.2)
is different from that in (1.1)

Since the stock price process S in (1.2) is driven by a Brownian motion on
a special Riemannian manifold (R, g0), where g0 ≡ 1, a direct extension of the
work of Black and Scholes in [3] is to replace W with a (Riemannian) Brownian
motion on a general Riemannian manifold (R, g). In this case, we call the price
process S follows a geometric Riemannian Brownian motion. It is shown in
[16, 5] that the distribution of realistic rates of stock return has the character
of leptokurtosis and fat-tail. We will demonstrate that a proper Riemannian
metric g on R implies a distribution which has the above character.

Hull and White pointed out that the strike prices of most options are within
ten percent of the security price. For this range of strike prices, options are
overpriced by BS formula [12]. With a proper Riemannian metric g on the real
number field R, our model can get rid of this drawback (see Table 1).

As shown in [14, p. 316] and [8, pp. 38–39], a common occurrence is that
implied volatilities derived from far in-of-the-money and out-of-the-money call
options are larger than ones derived from at-the-money options. We will inves-
tigate this phenomenon (called implied volatility smile). Another phenomenon
also shown in [14, p. 316] and [8, pp. 38–39] is that implied volatilities decrease
monotonically as the strike price rises, which is usually regarded as implied
volatility skew. We will study these two patterns concerning implied volatili-
ties (see Figures 2 and 3).

The rest of this paper is organized as follows. First, we introduce some
facts of stochastic differential geometry, and then give some concrete stochastic
analyses on (R,∇), where ∇ is an affine connection. Second, we recall briefly
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the option pricing theory in continuous time. Third, we provide an option
pricing formula (see Theorem 5.5) and the corresponding PDE (see Equation
(5.8)), and show an expression of the solution to the PDE with some terminal
condition by means of the fundamental solution technique (see Corollary 5.8).
Fourth, we investigate leptokurtosis and fat-tail of the distribution of return
rates, option pricing bias and implied volatility smile (skew) by choosing proper
Riemannian metrics. Finally, we draw some conclusions.

2. An elementary introduction to stochastic differential geometry

In this section, we will introduce some facts of stochastic differential geom-
etry. For details, we refer to [11, pp. 35–49, p. 79].

Let M be a smooth differential manifold of dimension n, ∇ be an affine
connection defined on the tangent bundle TM of M , and π : F(M) → M be
the frame bundle of M . A curve ut in F(M) is called horizontal if for each
e ∈ R

n the vector field ute is parallel along πut; in this case u′(0) is called a
horizontal lift of the tangent vector (πu)′(0).

Let ei ∈ R
n, i = 1, 2, . . . , n, be the coordinate unit vectors. Then we define

the vector fields Hi, i = 1, 2, . . . , n, by

Hi(u) := the horizontal lift of uei ∈ TπuM to u,

where u ∈ F(M).
Let ut be a horizontal lift of a smooth curve xt on M . Since ẋt ∈ Txt

M , we
have u−1

t ẋt ∈ R
n. The anti-development of the curve xt is a curve wt in R

n

defined by

wt =

∫ t

0

u−1
s ẋsds.

Then the anti-development wt and the horizontal lift ut of a curve xt on M are
connected by the following ordinary differential equation on F(M),

(2.1) u̇t = Hi(ut)ẇ
i
t.

If M is a Riemannian manifold, we can define the anti-development, the
horizontal lift, etc. with respect to the orthonormal frame bundle O(M) of M .

From now on all processes are defined on a filtered probability space (Ω,F ,
{Ft}t≥0,P) with {Ft}t≥0 satisfying the usual conditions.

Because of (2.1), we consider the following SDE on the frame bundle F(M)
in the sense of Stratonovish integral,

(2.2) dUt = Hi(Ut) ◦ dW
i
t ,

where {W i
t } an R

n-value semimartingale.

Definition 2.1 ([11, p. 45, Definition 2.3.1]). (1) An F(M)-value semimatin-
gale U is said to be horizontal if there exists an R

n-value semimartingle W
such that the SDE (2.2) holds. The unique W (if its initial value is given) is
called the anti-development of U (or of its projection X = πU).
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(2) Let W be an R
n-value semimartingale and U0 be an F(M)-value, F0-

measurable random variable. The solution of the SDE (2.2) is called a devel-
opment of W in F(M). Its projection X = πU is called a development of W
in M .

(3) Let X be an M -value semimartingale. An F(M)-value horizontal semi-
martingale U such that its projection πU = X is called a (stochastic) horizontal
lift of X .

The existence of horizontal lift has been proven in [11, Section 2.3] by deriv-
ing a stochastic differential equation for it on the frame bundle F(M) driven
by X .

Assume that M is a closed submanifold of RN and regard X = {Xα} as
an R

N -value semimartinglae. For each x ∈ M , let P (x) : RN → TxM be the
orthogonal projection from R

N to its subspace TxM . Then the horizontal lift
U of X is the solution of the following equation on F(M)

(2.3) dUt = P ∗
α(Ut) ◦ dX

α
t ,

where P ∗
α(u) is the horizontal lift of Pα(πu).

And the anti-developmentW of a horizontal semimartingale U is the solution
of the following equation

(2.4) dWt = U−1
t Pα(Xt) ◦ dX

α
t ,

where Xt = πUt.
We end this section by the following definition.

Definition 2.2 ([11, p. 79, Proposition 3.2.1]). Let M be a Riemannian man-
ifold. An M -value semimartingle is called a (Riemannian) Brownian motion if
its anti-development with respect to the Levi-Civita connection is a standard
Euclidean Brownian motion.

3. Some concrete stochastic analyses on (R,∇)

In this section, we will give some concrete stochastic analyses on (R,∇).

Lemma 3.1. Let R be equipped with an affine connection given by ∇ee = Γe,
where e is the usual unit vector field on R, i.e., for any function f ∈ C∞(R),
e(f) = f ′, and Γ ∈ C∞(R). Define

G(x) =

∫ x

0

Γ(s)ds, φ(x) =

∫ x

0

exp(G(s))ds.

Let X be a semimartingale. Then

(1) with the canonical isomorphism F(R) ∼= R × (R \ 0), the horizontal lift

which passes through (X0, y) of X is given by

(3.1) Ut = (Xt, y exp(G(X0)) exp(−G(Xt))),

(2) the anti-development Wt with W0 = 0 of X is given by

(3.2) Wt = y−1 exp(−G(X0))(φ(Xt)− φ(X0)).
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Proof. 1. Suppose that u = (x, y) ∈ F(R), xt ∈ C∞(R), and ut = (xt, yt) is
the (determinate) horizontal lift of xt such that ẋ(0) = 1 and u0 = u. Then
∇ẋt

yt = 0, i.e.,

ẏt + Γ(xt)ẋtyt = 0.

2. Since the orthogonal projection P (x) : R → TxR
∼= R is now an identity,

the horizontal lift of P (πu) at u is P ∗(u) = (ẋ(0), ẏ(0)) = (1,−yΓ(x)). There-
fore, according to (2.3), the (stochastic) horizontal lift Ut = (Xt, Yt) of Xt is
determined by

(3.3)

{

d(Xt, Yt) = (1,−YtΓ(Xt)) ◦ dXt,
(X0, Y0) = (X0, y).

3. Note that

d

∫ Xt

0

Γ(s)ds = Γ(Xt) ◦ dXt.

The following identity holds,

(3.4)

∫ t

0

Γ(Xs) ◦ dXs =

∫ Xt

0

Γ(s)ds−

∫ X0

0

Γ(s)ds.

Thus, from (3.3) and (3.4), we have

Yt = y exp

(

−

∫ t

0

Γ(Xs) ◦ dXs

)

= y exp(G(X0)) exp(−G(Xt)).

4. From Step 3 and (2.4), we find that

Wt =

∫ t

0

y−1 exp(−G(X0)) exp(G(Xs)) ◦ dXs

= y−1 exp(−G(X0))(φ(Xt)− φ(X0)).

The proof is complete. �

Corollary 3.2. Let R be equipped with a Riemannian metric g. Then

(1) with respect to the Levi-Civita connection induced by g,

dWt = y−1

√

g(Xt)

g(X0)
◦ dXt;

if the horizontal lift U of X satisfies U0 = (X0,
1√

g(X0)
), then

(3.5) dWt =
√

g(Xt) ◦ dXt.

(2) if X is a Riemannian Brownian motion, then

dXt = y

√

g(X0)

g(Xt)
dWt −

1

4
y2g(X0)

g′(Xt)

g(Xt)2
dt;
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if, in addition, the horizontal lift U of X satisfies U0 = (X0,
1√

g(X0)
), then

(3.6) dXt =
1

√

g(Xt)
dWt −

1

4

g′(Xt)

g(Xt)2
dt.

Proof. Noting that the Levi-Civita connection induced by g is

Γ(x) =
1

2
g(x)−1 ∂g

∂x
(x) =

1

2

∂

∂x
(log(g(x))),

we have

G(x) = log

√

g(x)

g(0)
and φ(x) =

1
√

g(0)

∫ x

0

√

g(s)ds.

Then, by (3.2), we find that

dWt = y−1 exp(−G(X0)) ◦ dφ(Xt)

= y−1 exp

(

− log

√

g(X0)

g(0)

)
√

g(Xt)

g(0)
◦ dXt

= y−1

√

g(Xt)

g(X0)
◦ dXt,

and, if X is a Riemannian Brownian motion,

dXt = y

√

g(X0)

g(Xt)
◦ dWt

= y

√

g(X0)

g(Xt)
dWt +

1

2
y
√

g(X0)d

(

1
√

g(Xt)

)

dWt

= y

√

g(X0)

g(Xt)
dWt −

1

4
y2g(X0)

g′(Xt)

g(Xt)2
dt.

The proof is complete. �

Remark 3.3. (1) Although all of results are described on R, one can obtain the
same results on a regular submanifold of R.

(2) We have pointed out in Section 2 that if a manifold M has a Rie-
mannian metric, the anti-development, the horizontal lift, etc. can be de-
fined with respect to the orthonormal frame bundle O(M) of M . Under

this point of view, (3.5) and (3.6) are considered in O(R), since g(x)−
1

2 :
(R, the usual Euclidean metric) → (TxR, g(x)) is unitary.
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4. An elementary introduction to option pricing

We will recall in this section some facts of option pricing in continuous time.
For details, we refer to [13, Chapter 7].

As before all processes are defined on a fixed filtered probability space
(Ω,F , {Ft}t≥0,P) satisfying the usual conditions. In addition, we assume that
F0 is the completion of the trivial σ-algebra {∅,Ω}.

The economy E consists of n assets with price process given by A={A(j)}nj=1.
We assume that A is an R

n-value semimartingale.
Now we introduce some definitions.

Definition 4.1. A self-financing trading strategy φ for the economy E is a
stochastic process φ = {φ(j)}nj=1 such that

(1) φ is {Ft}t≥0-predictable;
(2) φ has the self-financing property

φt · At = φ0 · A0 +

∫ t

0

φu · dAu.

Furthermore, the process

Gφ
t :=

∫ t

0

φu · dAu

is called a gain process.

Definition 4.2. A numeraire N for the economy E is any a.s. strictly positive
{Ft}t≥0-adapted process of the form

Nt = N0 +

∫ t

0

αu · dAu = αt · At,

where α is {Ft}t≥0-predictable.

Definition 4.3. The measure Q defined on (Ω,F , {Ft}t≥0,P) is an equivalent
martingale measure for the economy E if Q ∼ P and there exists some numeraire
N such that N−1A is an {Ft}t≥0-martingale under the measure Q. The pair
(N,Q) is then called a numeraire pair.

Definition 4.4. A self-financing trading strategy is called admissible if for any
numeraire pair (N,Q), the numeraire-rebased gain process

N−1
t Gφ

t =

∫ t

0

φu · d(N−1
u Au)

is an {Ft}t≥0-martingale under Q.

Theorem 4.5 ([13, p. 164, Corollary 7.34]). Let E be an economy with a

numeraire pair (N,Q) and let VT be some replicable claim, i.e., if there exists

some admissible trading strategy φ such that

VT = φ0 ·A0 +

∫ T

0

φu · dAu.



1418 YONG-CHAO ZHANG

Then the value of this claim at time t admits the representation

Vt = NtE
Q[N−1

T VT |Ft].

5. Pricing options under geometric Riemannian Brownian motions

Let (Ω,F , {Ft}t≥0,P) be a probability space filtered by the augmentation
{Ft}t≥0 of the natural filtration generated by a Riemannian Brownian motion
X on (R, g) with X0 = 0.

Let us consider a simple economy E . In this economy, there are two assets,
the stock and the bond, whose price processes S and D satisfy the following
equations

(5.1) dSt = µStdt+ σSt ◦ dXt,

and

(5.2) dDt = rDtdt,

respectively. Here, µ, σ and r are some constants. We assume that σ > 0.
In this section we will show a pricing formula for a European option with

maturity T and payoff h(ST ) for some function h (Theorem 5.5). Then we will
provide a partial differential equation for European options (Theorem 5.7).

For the above purposes, we need to find a numeraire pair. This will be done
in Theorem 5.3.

Let us choose the bond D with one unit payoff at the maturity T as a
numeraire, i.e., Dt = exp(−r(T − t)).

By (5.1), we get

dXt = −
µ

σ
dt−

σ

2
d〈X〉t +

1

σSt

dSt.

From (3.6), we have

d〈X〉t =
1

g(Xt)
dt.

Inserting these two equalities into (3.6), we find that

dSt

St

=

(

µ+
σ2

2g(Xt)
−

σ

4

g′(Xt)

g(Xt)2

)

dt+
σ

√

g(Xt)
dWt,(5.3)

where W is a standard Euclidean Brownian motion, which is the anti-develop-
ment of X .

For any process Y , let us denote the numeraire-rebased process D−1Y by
Y D. Then

dSD
t

SD
t

=

(

µ− r +
σ2

2g(Xt)
−

σ

4

g′(Xt)

g(Xt)2

)

dt+
σ

√

g(Xt)
dWt.(5.4)

Define a process ˜W by

(5.5) ˜Wt := Wt −

∫ t

0

Cudu,
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where the process C will be determined later (see Lemma 5.1).
We insert (5.5) into (5.4), then

(5.6)
dSD

t

SD
t

=

(

µ− r +
σ2

2g(Xt)
−

σ

4

g′(Xt)

g(Xt)2
+

σ
√

g(Xt)
Ct

)

dt+
σ

√

g(Xt)
d˜Wt.

Now we need the following lemma.

Lemma 5.1. Assume that EP

[(

exp(12
∫ T

0
C2

udu)
)]

< ∞, where

Ct :=
√

g(Xt)

(

r − µ

σ
−

σ

2g(Xt)
+

1

4

g′(Xt)

g(Xt)2

)

.

Then the measure Q determined by

dQ

dP
= exp

(

∫ T

0

CudWu −
1

2

∫ T

0

C2
udu

)

is a probability measure on (Ω,FT ) satisfying Q ∼ P, and (˜Wt, 0 ≤ t ≤ T ) is
a standard Euclidean Brownian motion under Q.

Proof. The proof is straight by Novikov Theorem (see [15, p. 198, Proposition
5.12]) and Girsanov Theorem (see [15, p. 191, Theorem 5.1]). �

Corollary 5.2. The following identity holds,

dXt =

(

r − µ

σ
−

σ

2g(Xt)

)

dt+
1

√

g(Xt)
d˜Wt.

Proof. By plugging (5.5) into (3.6) and noting that

Ct =
√

g(Xt)

(

r − µ

σ
−

σ

2g(Xt)
+

1

4

g′(Xt)

g(Xt)2

)

,

we complete the proof. �

Theorem 5.3. Assume that

E
P

[

exp

(

1

2

∫ T

0

C2
udu

)]

< ∞ and E
P

[

exp

(

1

2

∫ T

0

σ2g(Xu)
−1du

)]

< ∞,

then (D,Q) is a numeraire pair of the economy E.

Proof. Under the numeraire D, the price of the bound D is identically equal
to one, and (SD

t , 0 ≤ t ≤ T ) is a martingale under Q by Novikov Theorem (see
[15, p. 198, Proposition 5.12]). �

Corollary 5.4. Assume that

E
P

[

exp

(

1

2

∫ T

0

C2
udu

)]

< ∞ and the metric g has a positive lower bound.

Let h be an at most linear growth function. Then the contingent claim h(ST )
is replicable.
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Proof. 1. Note that ST ∈ L2(Ω,FT ,Q) according to [1, p. 373, Corollary 6.2.4].
We have h(ST ) ∈ L2(Ω,FT ,Q), since h is an at most linear growth function.
Then we can appeal to the martingale representation theorem (see [1, p. 303,
Theorem 5.3.5]) in the probability space (Ω,FT ,Q) to deduce that there is a
square integrable process ρ := (ρt, 0 ≤ t ≤ T ) such that

dHD
t = ρtd˜Wt,

where Ht := exp(−r(T − t))EQ[h(ST )|Ft].

2. Define φ1
t := ρt

√

g(Xt)/(σS
D
t ) and φ2

t := HD
t −φ1

tS
D
t . Then we find that

h(ST ) = HD
T = φ1

TST + φ2
TDT

and
φ1(t)SD

t + φ2
t = HD

t ,

which implies that the numeraire-rebased gain process (φ1
tS

D
t + φ2

t , 0 ≤ t ≤ T )
is a martingale under the probability measure Q.

Therefore, in order to prove the claim h(ST ) is replicable, we only need to
verify that the process φ := (φ1, φ2) is self-financing.

Note that Ht = DtH
D
t . Then we have

dHt = HD
t dDt +DtdH

D
t

= (φ1
tS

D
t + φ2

t )dDt +Dtφ
1
t

σSD
t

√

g(Xt)
d˜Wt

= φ1
t

(

SD
t dDt +Dt

σSD
t

√

g(Xt)
d˜Wt

)

+ φ2
tdDt

= φ1
td(DtS

D
t ) + φ2

tdDt

= φ1
tdSt + φ2

tdDt,

where we have used (5.6) for the third equality.
Thus we have verified that the process φ is self-financing. �

Theorem 5.5. Let V be a replicable European option with maturity T and

payoff h(ST ) for some function h. Then the value of V at time zero is given by

V0 = exp(−rT )EQ[h(ST )],

where

(5.7) ST = exp(rT )S0 exp

(

∫ T

0

σ
√

g(Xu)
d˜Wu −

1

2

∫ T

0

σ2

g(Xu)
du

)

.

Proof. By (5.6), we have

SD
T = SD

0 exp

(

∫ T

0

σ
√

g(Xu)
d˜Wu −

1

2

∫ T

0

σ2

g(Xu)
du

)

.

Note that
SD
T = ST , S

D
0 = exp(rT )S0.
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These imply (5.7). The proof is completed by Theorem 4.5. �

In the rest of this section, we will provide a partial differential equation for
European options. The following lemma tells us the form of European option
values.

Lemma 5.6. The value of the option V in Theorem 5.5 at time t takes the

following form

Vt = H(t, St) for some function H.

Proof. 1. Note that σ > 0. Then from Equation (5.1), we have

dXt = −
µ

σ
dt+

1

σSt

◦ dSt.

It follows that Ft ⊂ FS
t , where {FS

t }t≥0 is the augmentation of the natural
filtration generated by the process S. On the other hand, Equation (5.1) implies
FS

t ⊂ Ft. Thus FS
t = Ft.

2. Now we have

Vt = exp(−r(T − t))EQ[h(ST )|Ft]

= exp(−r(T − t))EQ[h(ST )|F
S
t ]

= exp(−r(T − t))EQ[h(ST )|St]

= H(t, St) for some function H,

where we have used the Markov property of the process S for the third equality
and Doob-Dynkin lemma for the last equality. �

Theorem 5.7. Assume that g, the derivative g′ and the inverse 1/g of g are

bounded smooth functions and h is an at most linear growth function. Then

the function H in Lemma 5.6 is the unique solution of the following PDE

(5.8)
∂H

∂ t
+

1

2

σ2x2

g( 1
σ
(log x− logS0 − µt))

∂2H

∂ x2
+ rx

∂H

∂ x
− rH = 0

with the terminal condition H(T, x) = h(x).

Proof. 1. Note that H is a solution of Equation (5.8) with the terminal condi-
tion H(T, x) = h(x) if and only if F (t, y) := H(T − t, exp(y)) is a solution of
the following initial value problem























∂F

∂ t
=

1

2

σ2

g( 1
σ
(y − logS0 − µ(T − t)))

∂2F

∂ y2

+

(

r −
1

2

σ2

g( 1
σ
(y − logS0 − µ(T − t)))

)

∂F

∂ y
− rF

F (0, y) = h(exp(y)).

According to [7, pp. 141–142, Theorem 4.5], the above initial value problem
has a solution, say F . In addition, F is at most exponential growth with respect
to y. Thus there exists a solution, say H , to Equation (5.8) with the terminal
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condition H(T, x) = h(x). Furthermore, H is of at most linear growth with
respect to x.

2. Equation (5.3) can be written as

dSt

St

= rdt +
σ

√

g( 1
σ
(logSt − logS0 − µt))

d˜Wt.

Therefore, by Feynman-Kac formula (see, for example, [15, p. 366, Theorem
7.6]), the function H in Lemma 5.6 is the unique solution of Equation (5.8)
with the terminal condition H(T, x) = h(x). �

It is not easy to obtain explicit solutions of Equation 5.8 for general Rie-
mannian metric g. We here provide a semi-explicit expression for the solution
using the fundamental solution technique.

Define U(t, x) := exp(rt)H(T − t, S0 exp(µ(T − t) + σx)). Then U satisfies






∂U

∂ t
=

1

2g(x)

∂2U

∂ x2
−

σ

2g(x)

∂U

∂ x
U(0, y) = h(S0 exp(rT + σx)).

We follow [6, Chapter 9] to construct the fundamental solution of the equa-
tion

(5.9)
∂U

∂ t
=

1

2g(x)

∂2U

∂ x2
−

σ

2g(x)

∂U

∂ x
.

First, let Z(t, x− ξ; τ, y) be the fundamental solution of the equation

∂u

∂ t
=

1

2g(y)

∂2u

∂ x2
,

i.e.,

Z(t, x− ξ; τ, y) =

√

g(y)

2π(t− τ)
exp

[

−
g(y)(x− ξ)2

2(t− τ)

]

.

Second, define K as follows:

K(t, x; τ, ξ) :=

(

1

2g(x)

∂2

∂ x2
−

σ

2g(x)

∂

∂ x
−

∂

∂ t

)

Z(t, x− ξ; τ, ξ).

Third, define Φ through

Φ(t, x; τ, ξ) =
∞
∑

n=1

Kn(t, x; τ, ξ),

where K1 = K and for n ≥ 2,

Kn(t, x; τ, ξ) =

∫ t

τ

∫

R

K1(t, x; θ, y)Kn−1(θ, y; τ, ξ)dydθ.

Finally, the fundamental solution Γ of Equation (5.9) is

Γ(t, x; τ, ξ) = Z(t, x− ξ; τ, ξ) +

∫ t

τ

∫

R

Z(t, x− y; θ, y)Φ(θ, y; τ, ξ)dydθ.
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Now we get a consequence which shows a form of the function H in Theorem
5.7.

Corollary 5.8. Assume that the conditions in Theorem 5.7 are fulfilled. Then

the following equality holds,

H(t, x) = exp(−r(T − t))

∫

R

Γ(T − t, σ−1(log(x/S0)− µt); 0, ξ)

× h(S0 exp(rT + σξ))dξ.

6. Choices of Riemannian metric on R

The distribution of realistic rates of stock return has a character of leptokur-
tosis and fat-tail. A proper Riemannian metric g on R implies a distribution
which has the above character. Here is a numerical experiment.

In this numerical experiment, we choose the parameters as follows, µ = 0.09,
σ = 0.2, and g(x) = 0.1 + 3 sin2(8x). See Figure 1.
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We investigate option pricing bias and implied volatility smile. In this nu-
merical experiment, we consider a European call option and choose the pa-
rameters as follows, µ = 0.09, σ = 0.2, r = 0.08, S0 = 100, T = 0.25 and
g(x) = 1.5− sin2(2x). See Table 1 and Figure 2.

Table 1. Pricing options by BS formula and Equation (5.8)

Strike price 90 92 94 96 98 100
BS formula 12.2533 10.5627 8.9767 7.5143 6.1909 5.0170

Equation (5.8) 12.2233 10.4518 8.7539 7.1636 5.7193 4.4562
Strike price 102 104 106 108 110
BS formula 3.9972 3.1302 2.4088 1.8216 1.3537

Equation (5.8) 3.3976 2.5484 1.8943 1.4069 1.0514

We examine implied volatility skew by considering a European call option
and choosing the parameters as follows, µ = 0.09, σ = 0.2, r = 0.08, S0 = 100,
T = 0.25 and g(x) = 1/(1 + (x− 1)2). See Figure 3.

7. Conclusions

In this paper, we have introduced a new class of models for stock prices
(see Equation (5.1)). The dynamic equation (5.1) of price processes is chosen
by the motivation that the model satisfies the three criteria: (1) explaining
the character of leptokurtosis and fat-tail of the distribution of realistic rates
of stock return, (2) explaining option pricing bias and implied volatility smile
(skew), and (3) obtaining a simple pricing equation for European options (see
Equation (5.8)).

With proper choices of parameters, our model achieves (1) and (2) men-
tioned above (see Section 6). We also have investigated the existence and the
uniqueness of solutions to the partial differential equation (5.8), and provided
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an expression of the solution to the equation with some terminal condition by
means of the fundamental solution technique.
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Probab. 9 (1999), no. 2, 504–528.
[5] E. F. Fama, The behavior of stock market prices, J. Business 38 (1965), no. 1, 34–105.
[6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood

Cliffs, NJ, 1964.
[7] , Stochastic Differential Equations and Applications, vol. 1, Academic Press,

New York, 1975.
[8] R. Hafner, Stochastic Implied Volatility: A Factor-Based Model, Springer-Verlag, Berlin,

2004.
[9] S. L. Heston, A closed-form solution for options with stochastic volatility with applica-

tions to bond and currency options, The Review of Financial Studies 6 (1993), no. 2,
327–343.

[10] D. G. Hobson and L. C. G. Rogers, Complete models with stochastic volatility, Math.
Finance 8 (1998), no. 1, 27–48.

[11] E. P. Hsu, Stochastic Analysis on Manifolds, American Mathematical Society, Provi-
dence, RI, 2002.

[12] J. Hull and A. White, The pricing of options on assets with stochastic volatility, J.
Finance 42 (1987), no. 2, 281–300.

[13] P. J. Hunt and J. E. Kennendy, Financial Derivatives in Theory and Practice, Revised
ed., John Wiley & Sons, Ltd, Chichester, 2004.

[14] L.-S. Jiang, Mathematical Modeling and Methods of Option Pricing, Higher Education
Press, Beijing, 2003.

[15] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2 ed., Springer-
Verlag, New York, 1991.

[16] B. Mandelbrot, The variation of certain speculative prices, J. Business 36 (1963), no.
4, 394–419.

[17] P. A. Samuelson, Proof that properly anticipated prices fluctuate randomly, Industrial
Management Review 6 (1965), no. 2, 41–49.

[18] E. M. Stein and J. C. Stein, Stock price distributions with stochastic volatility: an ana-

lytic approach, The Review of Financial Studies 4 (1991), no. 4, 727–752.

Yong-Chao Zhang

School of Mathematics and Statistics

Northeastern University at Qinhuangdao

Taishan Road 143

Qinhuangdao 066004, P. R. China

E-mail address: ldfwq@163.com




