Bull. Korean Math. Soc. **53** (2016), No. 5, pp. 1395–1399

http://dx.doi.org/10.4134/BKMS.b150719 pISSN: 1015-8634 / eISSN: 2234-3016

ON FINITE BARELY NON-ABELIAN p-GROUPS

Dong Seung Kang

Abstract. We will classify the finite barely non-abelian p-groups.

1. Introduction

It is an important theme to determine the structure of a group by using its subgroup in the group theory. Let p be prime and let G be a finite p-group. An old group-theoretic result of Rèdei [3] proved that if every proper subgroup of G is abelian then either abelian or minimal non-abelian. Blackburn [1] showed that if every proper subgroup of G is generated by two elements then G is either metacyclic or a 3-group of maximal class with a few exceptions. Minimal non-abelian p-groups have been investigated in recent years; see [6], [7] and [8].

We will say that a p-group G is barely non-abelian if it satisfies the following conditions: (1) every proper subgroup of G is abelian and (2) if $H_0 \subsetneq H \subset G$ are subgroups, where H is cyclic and H_0 is normal in G, then G/H_0 is abelian. For p=2, this class of groups naturally came up in [2]. The main result of [2] relies on the classification of barely non-abelian 2-groups; see [2, Proposition 4.6]. The proof of [2, Proposition 4.6] depends, in turn, on a result of Rèdei; see [3]. The purpose of this paper is to classify barely non-abelian p-groups for every prime p. Our main result is as follows.

Theorem 1.1. A non-abelian p-group G is barely non-abelian if and only if $|G| = p^3$ or G is isomorphic to $M(p^k)$, where $k \ge 4$.

The remainder of this paper will be devoted to proving this theorem. Our proof will be entirely elementary; we will not appeal to Rèdei's theorem. In particular, for p=2 we will give a new elementary proof of [2, Proposition 4.6].

2. Barely non-abelian p-groups

In this section, we introduce a barely non-abelian p-group G and investigate the properties of G.

Received September 3, 2015; Revised November 18, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ 20{\rm D}15,\ 11{\rm E}04.$

 $Key\ words\ and\ phrases.$ minimal non-abelian groups, metacyclic, barely non-abelian groups, p-groups.

Definition 2.1. We call a finite non-abelian p-group G barely non-abelian p-group if it satisfies the following conditions:

- (1) every proper subgroup of G is abelian,
- (2) if $H_0 \subsetneq H \subset G$ are subgroups, where H is cyclic and H_0 is normal in G, then G/H_0 is abelian.

Example 2.2. Let p = 2. Q_8 , D_8 and M(2n) ($n \ge 4$ a power of 2) are barely non-abelian 2-groups. We define the group M(2n) as the semidirect product of $\mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, where the nontrivial element of $\mathbb{Z}/2\mathbb{Z}$ acts on $\mathbb{Z}/n\mathbb{Z}$ by sending 1 to $\frac{n}{2} + 1$. Equivalently,

(2.1)
$$M(2n) = \{r, s \mid r^n = s^2 = 1, sr = r^{n/2+1}s\}.$$

Note that M(8) is the dihedral group D_8 ; see [2, Proposition 4.6].

Let p be an odd prime. There are two barely non-abelian p-groups of order p^3 .

$$G_1 = \langle r, s | r^{p^2} = s^p = 1, \ sr = r^{p+1} s \rangle,$$

 $G_2 = \langle r, s | r^p = s^p = c^p = 1, \ rc = cr, \ sc = cs, \ sr = crs \rangle$

We know that the barely non-abelian p-groups of order p^3 is isomorphic to the semidirect product of $\mathbb{Z}/p^2\mathbb{Z}$ and $\mathbb{Z}/p\mathbb{Z}$ for G_1 and $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/p\mathbb{Z}$ for G_2 , respectively.

Now, we define the group $M(p^n)$ as the semidirect product of $\mathbb{Z}/p^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$, that is,

(2.2)
$$M(p^n) = \{r, s \mid r^{p^{n-1}} = s^p = 1, \ sr = r^{p^{n-2}+1}s\},$$

where $n \geq 4$. Note that $M(p^3) = G_1$.

Lemma 2.3. (a) Every proper subgroup of $M(p^n)$ is abelian.

- (b) Every proper quotient of $M(p^n)$ is abelian.
- (c) $M(p^n)$ is barely non-abelian for any $n \geq 4$.

Proof. (a) Let S be a proper subgroup of $M(p^n)$. If S contains the index p subgroup $\langle r \rangle$, then $S = \langle r \rangle$ and hence S is abelian. If not, let $S_0 = S \cap \langle r \rangle$. Then $S_0 \subset \langle r^p \rangle$ is central in $M(p^n)$. Hence

$$S/S_0 \subset M(p^n)/\langle r \rangle \simeq \mathbb{Z}/p\mathbb{Z},$$

that is, S/S_0 is cyclic. Thus S is abelian, as desired.

(b) Assume $M(p^n)/N$ is not abelian for some non-trivial normal subgroup N of $M(p^n)$. Then N cannot contain $r^{p^{n-2}}$. Otherwise,

$$(sN)(rN) = srN = r^{p^{n-2}+1}sN = (rN)(sN).$$

Hence we have

$$N \cap \langle r \rangle = \{1\}.$$

Since $\langle r \rangle$ has an index p in $M(p^n)$, this implies that |N| = p. Moreover, N and $\langle r \rangle$ are complementary normal subgroups in $M(p^n)$. Thus $M(p^n) \simeq N \times \langle r \rangle$ is abelian. It is a contradiction.

(c) follows from (a) and (b).

Theorem 2.4. Suppose G be a barely non-abelian p-group of order $\geq p^4$.

- (a) The center Z(G) has index p^2 in G.
- (b) If S is a proper subgroup of G, then $[S:(S\cap Z(G))]\leq p$.
- (c) $x^p \in Z(G)$ for every $x \in G$.

Let G' be the commutator subgroup of G.

- (d) $G' \subset Z(G)$.
- (e) |G'| = p. In the sequel we shall denote the non-identity element of G' by c, that is, $G' = \langle c \rangle$ of order p.
- (f) If $x \in G$ is an element of order $n \ge p^2$ then $x^{n/p} \in G'$.
- (g) G is generated by two elements r and s such that rs = csr.

Proof. (a) Let H be a subgroup of index p in G; see, e.g., [4, 5.3.1(ii)]. Choose $g \in G \backslash H$; applying [4, 5.3.1(ii)] once again, we can find a subgroup $H' \subset G$ such that $g \in H'$ and [G:H'] = p. Since G is a barely non-abelian group, both H and H' are abelian. Thus every $x \in H \cap H'$ commutes with g and with every element of H. Since H and g generate G, we conclude that $x \in Z(G)$, i.e.,

$$(2.3) H \cap H' \subset Z(G).$$

Since G is non-abelian,

$$[G: Z(G)] \ge p^2;$$

see, e.g., [5, 6.3.4]. On the other hand, since [G:H] = [G:H'] = p, it is easy to see that

$$[G: (H \cap H')] = p^2.$$

Part (a) now follows from (2.3-2.5). For future reference we remark that our argument also shows that

$$(2.6) H \cap H' = Z(G).$$

- (b) By [4, 5.3.1(ii)], S is contained in a subgroup H of index p. By (2.6), $Z(G) = H \cap H'$, where H' is another subgroup of G of index p. Then $S \cap Z(G) = S \cap H'$, and the latter clearly has index $\leq p$ in S.
 - (c) Apply part (b) to the cyclic group $S = \langle x \rangle$.
- (d) Follows from the fact that the factor group G/Z(G) has order p^2 and, hence, is abelian.
- (e) Since G is a non-abelian p-group, it has an element r of order $n \geq p^2$. Let $H = \langle r \rangle$ and $H_0 = \langle r^{n/p} \rangle$ be cyclic subgroups of G of orders n and p respectively. By part (c), $r^{n/p} = \left(r^{n/p^2}\right)^p \in Z(G)$ and hence $H_0 = \langle r^{n/p} \rangle \subseteq Z(G)$. Then H_0 is normal in G. Since G is a barely non-abelian group, G/H_0 is abelian. In other words,

$$(2.7) G' \subset H_0.$$

Thus $|G'| \leq |H_0| = p$. On the other hand, since G is non-abelian, $|G'| \neq 1$. Thus G' has exactly p elements, as claimed.

- (f) By (2.7), $x^{n/p} \in G'$.
- (g) Choose two non-commuting elements r and s in G. Since G is a barely non-abelian group, these elements generate G. By part (e), $rsr^{-1}s^{-1} \in G' = \langle c \rangle$. Without loss of generality, we may assume let rs = csr, as desired.

We now proceed to give a complete list of barely non-abelian p-groups.

Theorem 2.5. Let G be a barely non-abelian p-group. Then G is one of the following groups:

- (a) $|G| = p^3$.
- (b) $M(p^k)$, where $k \geq 4$.

Proof. (a) follows from Example 2.2.

(b) Write $G=\langle r,s\rangle,\ G'=\langle c\rangle,$ and sr=crs. Denote the orders of r and s by n and m respectively. We may assume without loss of generality that p is an odd prime, $|G|\geq p^4$ and $n\geq m.$ Let n=m=p. Then G/G' is an abelian group of order $\leq p^2$. Hence $|G|\leq p^2|G'|=p^3.$ Now let $n\geq m\geq p^2.$ By Theorem 2.4(c), we have $r^{n/p}\in G'$, where the order of $r^{n/p}$ is p. We may assume that

$$G' = \langle r^{n/p} \rangle.$$

By Theorem 2.4(c) once again, $s^{m/p} \in G'$. Then there exists a positive integer t such that $s^{m/p} = \left(r^{n/p}\right)^t$. Let $\widetilde{s} = \left(r^{n/m}\right)^{-t}s$. We claim that

$$\widetilde{s}^{m/p} = 1.$$

We now consider two cases.

Case I: m < n.

$$\widetilde{s}^{\,m/p} = \left(\left(r^{n/m} \right)^{-t} s \right)^{m/p} = \left(r^{n/p} \right)^{-t} s^{m/p} = 1,$$

where $r^{n/m} \in Z(G)$, as claimed.

Case II: m = n. Then

$$\widetilde{s}^{\,p} = \left(\left(r^{n/m} \right)^{-t} s \right)^p = \left(r^{-t} s \right)^p = c^{pt} s^p r^{-pt},$$

where s^p and $(r^{-t})^p$ are in Z(G). Hence

$$\widetilde{s}^{m/p} = \left(c^{pt}s^pr^{-pt}\right)^{m/p^2} = c^{\frac{mt}{p}}s^{\frac{m}{p}}(r^{\frac{m}{p}})^{-t} = 1,$$

where $s^{m/p} = \left(r^{m/p}\right)^t$ because n = m. This proves the claim. Now observe that $G = \langle r, s \rangle = \langle r, \widetilde{s} \rangle$ and $rsr^{-1}s^{-1} = r\widetilde{s}r^{-1}\widetilde{s}^{-1} = c$, where $c = r^{n/p}$. Thus we may replace s by \widetilde{s} . By (2.8), \widetilde{s} has order $\leq m/p$. After repeating this process a finite number of times, we may assume m = p.

Thus G is generated by elements r and s such that $r^n = s^p = 1$ and $sr = r^{n/p+1}s$, where $n \ge p^3$ is a power p. This completes the proof of Theorem 2.5.

Acknowledgement. We would like to thank referee for helpful comments and bringing Theorem 2.5 to our attention.

References

- [1] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45–92.
- [2] D.-S. Kang and Z. Reichstein, Trace forms of Galois field extensions in the presence of roots of unity, J. Reine Angew. Math. 549 (2002), 79–89.
- [3] L. Rédei, Das schiefe Produkt in der Gruppentheorie, Comment. Math. Helv. 20 (1947), 225–267.
- [4] D. J. S. Robinson, A Course in the Theory of Groups, Second edition, Springer-Verlag, New York, 1996.
- [5] W. R. Scott, Group Theory, Dover Publications, Inc., 1987.
- [6] M. Xu, A theorem on metabelian p-groups and some consequences, Chinese Ann. Math. Ser. B 5 (1984), no. 1, 1–6.
- [7] M.-Y. Xu and Q. Zhang, A classification of metacyclic 2-groups, Algebra Colloq. 13 (2006), no. 1, 25–34.
- [8] Q. Zhang, X. Sun, L. An, and M. Xu, Finite p-groups all of whose subgroups of index p^2 are abelian, Algebra Colloq. 15 (2008), no. 1, 167–180.

Dong Seung Kang Department of Mathematical Education Dankook University Yongin 448-701, Korea

 $E ext{-}mail\ address: dskang@dankook.ac.kr}$