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ON FINITE BARELY NON-ABELIAN p-GROUPS

Dong Seung Kang

Abstract. We will classify the finite barely non-abelian p-groups.

1. Introduction

It is an important theme to determine the structure of a group by using its
subgroup in the group theory. Let p be prime and let G be a finite p-group. An
old group-theoretic result of Rèdei [3] proved that if every proper subgroup of
G is abelian then either abelian or minimal non-abelian. Blackburn [1] showed
that if every proper subgroup of G is generated by two elements then G is either
metacyclic or a 3-group of maximal class with a few exceptions. Minimal non-
abelian p-groups have been investigated in recent years; see [6], [7] and [8].

We will say that a p-group G is barely non-abelian if it satisfies the following
conditions: (1) every proper subgroup of G is abelian and (2) if H0  H ⊂ G
are subgroups, where H is cyclic and H0 is normal in G, then G/H0 is abelian.
For p = 2, this class of groups naturally came up in [2]. The main result of [2]
relies on the classification of barely non-abelian 2-groups; see [2, Proposition
4.6]. The proof of [2, Proposition 4.6] depends, in turn, on a result of Rèdei;
see [3]. The purpose of this paper is to classify barely non-abelian p-groups for
every prime p. Our main result is as follows.

Theorem 1.1. A non-abelian p-group G is barely non-abelian if and only if

|G| = p3 or G is isomorphic to M(pk), where k ≥ 4.

The remainder of this paper will be devoted to proving this theorem. Our
proof will be entirely elementary; we will not appeal to Rèdei’s theorem. In
particular, for p = 2 we will give a new elementary proof of [2, Proposition 4.6].

2. Barely non-abelian p-groups

In this section, we introduce a barely non-abelian p-group G and investigate
the properties of G.
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Definition 2.1. We call a finite non-abelian p-group G barely non-abelian

p-group if it satisfies the following conditions:
(1) every proper subgroup of G is abelian,
(2) if H0  H ⊂ G are subgroups, where H is cyclic and H0 is normal in G,

then G/H0 is abelian.

Example 2.2. Let p = 2. Q8, D8 and M(2n) (n ≥ 4 a power of 2) are barely
non-abelian 2-groups. We define the group M(2n) as the semidirect product of
Z/nZ>⊳Z/2Z, where the nontrivial element of Z/2Z acts on Z/nZ by sending
1 to n

2
+ 1. Equivalently,

(2.1) M(2n) = {r, s | rn = s2 = 1, sr = rn/2+1s}.

Note that M(8) is the dihedral group D8 ; see [2, Proposition 4.6].
Let p be an odd prime. There are two barely non-abelian p-groups of order

p3.

G1 = 〈r, s | rp
2

= sp = 1, sr = rp+1s〉,

G2 = 〈r, s | rp = sp = cp = 1, rc = cr, sc = cs, sr = crs〉

We know that the barely non-abelian p-groups of order p3 is isomorphic to the
semidirect product of Z/p2Z and Z/pZ for G1 and Z/pZ×Z/pZ and Z/pZ for
G2, respectively.

Now, we define the group M(pn) as the semidirect product of Z/pn−1Z >⊳
Z/pZ, that is,

(2.2) M(pn) = {r, s | rp
n−1

= sp = 1, sr = rp
n−2

+1s},

where n ≥ 4. Note that M(p3) = G1.

Lemma 2.3. (a) Every proper subgroup of M(pn) is abelian.

(b) Every proper quotient of M(pn) is abelian.

(c) M(pn) is barely non-abelian for any n ≥ 4.

Proof. (a) Let S be a proper subgroup of M(pn). If S contains the index p
subgroup 〈r〉, then S = 〈r〉 and hence S is abelian. If not, let S0 = S ∩ 〈r〉.
Then S0 ⊂ 〈rp〉 is central in M(pn). Hence

S/S0 ⊂ M(pn)/〈r〉 ≃ Z/pZ,

that is, S/S0 is cyclic. Thus S is abelian, as desired.
(b) Assume M(pn)/N is not abelian for some non-trivial normal subgroup

N of M(pn). Then N cannot contain rp
n−2

. Otherwise,

(sN)(rN) = srN = rp
n−2

+1sN = (rN)(sN).

Hence we have
N ∩ 〈r〉 = {1}.

Since 〈r〉 has an index p in M(pn), this implies that |N | = p. Moreover, N and
〈r〉 are complementary normal subgroups in M(pn). Thus M(pn) ≃ N × 〈r〉 is
abelian. It is a contradiction.
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(c) follows from (a) and (b). �

Theorem 2.4. Suppose G be a barely non-abelian p-group of order ≥ p4.

(a) The center Z(G) has index p2 in G.

(b) If S is a proper subgroup of G, then [S : (S ∩ Z(G))] ≤ p.
(c) xp ∈ Z(G) for every x ∈ G.

Let G′ be the commutator subgroup of G.

(d) G′ ⊂ Z(G).
(e) |G′| = p. In the sequel we shall denote the non-identity element of G′

by c, that is, G′ = 〈c〉 of order p.
(f) If x ∈ G is an element of order n ≥ p2 then xn/p ∈ G′.
(g) G is generated by two elements r and s such that rs = csr.

Proof. (a) Let H be a subgroup of index p in G; see, e.g., [4, 5.3.1(ii)]. Choose
g ∈ G\H ; applying [4, 5.3.1(ii)] once again, we can find a subgroup H ′ ⊂ G
such that g ∈ H ′ and [G : H ′] = p. Since G is a barely non-abelian group,
both H and H ′ are abelian. Thus every x ∈ H ∩H ′ commutes with g and with
every element of H . Since H and g generate G, we conclude that x ∈ Z(G),
i.e.,

(2.3) H ∩H ′ ⊂ Z(G).

Since G is non-abelian,

(2.4) [G : Z(G)] ≥ p2 ;

see, e.g., [5, 6.3.4]. On the other hand, since [G : H ] = [G : H ′] = p, it is easy
to see that

(2.5) [G : (H ∩H ′)] = p2.

Part (a) now follows from (2.3-2.5). For future reference we remark that our
argument also shows that

(2.6) H ∩H ′ = Z(G).

(b) By [4, 5.3.1(ii)], S is contained in a subgroup H of index p. By (2.6),
Z(G) = H∩H ′, whereH ′ is another subgroup of G of index p. Then S∩Z(G) =
S ∩H ′, and the latter clearly has index ≤ p in S.

(c) Apply part (b) to the cyclic group S = 〈x〉.
(d) Follows from the fact that the factor group G/Z(G) has order p2 and,

hence, is abelian.
(e) Since G is a non-abelian p-group, it has an element r of order n ≥ p2.

Let H = 〈r〉 and H0 = 〈rn/p〉 be cyclic subgroups of G of orders n and p

respectively. By part (c), rn/p =
(

rn/p
2

)p

∈ Z(G) and hence H0 = 〈rn/p〉 ⊆

Z(G). Then H0 is normal in G. Since G is a barely non-abelian group, G/H0

is abelian. In other words,

(2.7) G′ ⊂ H0.
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Thus |G′| ≤ |H0| = p. On the other hand, since G is non-abelian, |G′| 6= 1.
Thus G′ has exactly p elements, as claimed.

(f) By (2.7), xn/p ∈ G′.
(g) Choose two non-commuting elements r and s in G. Since G is a barely

non-abelian group, these elements generate G. By part (e), rsr−1s−1 ∈ G′ =
〈c〉. Without loss of generality, we may assume let rs = csr, as desired. �

We now proceed to give a complete list of barely non-abelian p-groups.

Theorem 2.5. Let G be a barely non-abelian p-group. Then G is one of the

following groups:
(a) |G| = p3.
(b) M(pk), where k ≥ 4.

Proof. (a) follows from Example 2.2.
(b) Write G = 〈r, s〉, G′ = 〈c〉, and sr = crs. Denote the orders of r and

s by n and m respectively. We may assume without loss of generality that p
is an odd prime, |G| ≥ p4 and n ≥ m. Let n = m = p. Then G/G′ is an
abelian group of order ≤ p2. Hence |G| ≤ p2|G′| = p3. Now let n ≥ m ≥ p2.
By Theorem 2.4(c), we have rn/p ∈ G′, where the order of rn/p is p. We may
assume that

G′ = 〈rn/p〉.

By Theorem 2.4(c) once again, sm/p ∈ G′. Then there exists a positive integer

t such that sm/p =
(

rn/p
)t

. Let s̃ =
(

rn/m
)−t

s. We claim that

(2.8) s̃m/p = 1.

We now consider two cases.
Case I: m < n.

s̃m/p =
((

rn/m
)−t

s
)m/p

=
(

rn/p
)−t

sm/p = 1,

where rn/m ∈ Z(G), as claimed.
Case II: m = n. Then

s̃ p =
((

rn/m
)−t

s
)p

=
(

r−ts
)p

= cptspr−pt,

where sp and (r−t)p are in Z(G). Hence

s̃m/p =
(

cptspr−pt
)m/p2

= c
mt
p s

m
p (r

m
p )−t = 1,

where sm/p =
(

rm/p
)t

because n = m. This proves the claim. Now observe

that G = 〈r, s〉 = 〈r, s̃〉 and rsr−1s−1 = rs̃r−1s̃−1 = c, where c = rn/p. Thus
we may replace s by s̃. By (2.8), s̃ has order ≤ m/p. After repeating this
process a finite number of times, we may assume m = p.



BARELY NON-ABELIAN p-GROUPS 1399

Thus G is generated by elements r and s such that rn = sp = 1 and sr =
rn/p+1s, where n ≥ p3 is a power p. This completes the proof of Theorem 2.5.

�

Acknowledgement. We would like to thank referee for helpful comments and
bringing Theorem 2.5 to our attention.

References

[1] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45–92.
[2] D.-S. Kang and Z. Reichstein, Trace forms of Galois field extensions in the presence of

roots of unity, J. Reine Angew. Math. 549 (2002), 79–89.
[3] L. Rédei, Das schiefe Produkt in der Gruppentheorie, Comment. Math. Helv. 20 (1947),

225–267.
[4] D. J. S. Robinson, A Course in the Theory of Groups, Second edition, Springer-Verlag,

New York, 1996.
[5] W. R. Scott, Group Theory, Dover Publications, Inc., 1987.
[6] M. Xu, A theorem on metabelian p-groups and some consequences, Chinese Ann. Math.

Ser. B 5 (1984), no. 1, 1–6.
[7] M.-Y. Xu and Q. Zhang, A classification of metacyclic 2-groups, Algebra Colloq. 13

(2006), no. 1, 25–34.

[8] Q. Zhang, X. Sun, L. An, and M. Xu, Finite p-groups all of whose subgroups of index p
2

are abelian, Algebra Colloq. 15 (2008), no. 1, 167–180.

Dong Seung Kang

Department of Mathematical Education

Dankook University

Yongin 448-701, Korea

E-mail address: dskang@dankook.ac.kr




