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ON FINITE BARELY NON-ABELIAN p-GROUPS

DonG SEuNG KANG

ABSTRACT. We will classify the finite barely non-abelian p-groups.

1. Introduction

It is an important theme to determine the structure of a group by using its
subgroup in the group theory. Let p be prime and let G be a finite p-group. An
old group-theoretic result of Redei [3] proved that if every proper subgroup of
G is abelian then either abelian or minimal non-abelian. Blackburn [1] showed
that if every proper subgroup of G is generated by two elements then G is either
metacyclic or a 3-group of maximal class with a few exceptions. Minimal non-
abelian p-groups have been investigated in recent years; see [6], [7] and [8].

We will say that a p-group G is barely non-abelian if it satisfies the following
conditions: (1) every proper subgroup of G is abelian and (2) if Hy ¢ H C G
are subgroups, where H is cyclic and Hy is normal in G, then G/Hj is abelian.
For p = 2, this class of groups naturally came up in [2]. The main result of [2]
relies on the classification of barely non-abelian 2-groups; see [2, Proposition
4.6]. The proof of [2, Proposition 4.6] depends, in turn, on a result of Redei;
see [3]. The purpose of this paper is to classify barely non-abelian p-groups for
every prime p. Our main result is as follows.

Theorem 1.1. A non-abelian p-group G is barely non-abelian if and only if
|G| = p® or G is isomorphic to M(p*), where k > 4.

The remainder of this paper will be devoted to proving this theorem. Our
proof will be entirely elementary; we will not appeal to Redei’s theorem. In
particular, for p = 2 we will give a new elementary proof of [2, Proposition 4.6].

2. Barely non-abelian p-groups

In this section, we introduce a barely non-abelian p-group G and investigate
the properties of G.
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Definition 2.1. We call a finite non-abelian p-group G barely non-abelian
p-group if it satisfies the following conditions:

(1) every proper subgroup of G is abelian,

(2) if Hy & H C G are subgroups, where H is cyclic and Hy is normal in G,
then G/Hy is abelian.

Example 2.2. Let p = 2. Qg, Dg and M (2n) (n > 4 a power of 2) are barely
non-abelian 2-groups. We define the group M (2n) as the semidirect product of
Z/nZ >7Z/27Z, where the nontrivial element of Z/2Z acts on Z/nZ by sending
1 to 5§ + 1. Equivalently,

(2.1) M(Qn) = {T, s | P g2 — 1, sr = Tn/2+1s}.

Note that M (8) is the dihedral group Ds; see [2, Proposition 4.6].

Let p be an odd prime. There are two barely non-abelian p-groups of order
p’.

G, = <r,s|rp2 =sP =1, sr=1rPTls),
Go=(r,s|rP =s?P =cP =1, rc=cr, sc=cs, sr=crs)

We know that the barely non-abelian p-groups of order p? is isomorphic to the
semidirect product of Z/p?Z and Z/pZ for Gy and Z/pZ x Z./pZ and 7Z/pZ for
(2, respectively.

Now, we define the group M (p™) as the semidirect product of Z/p"~17Z >
Z/pZ, that is,
(2.2) M(p™) ={r,s]| P =P =1, sr = Tpni%rls},
where n > 4. Note that M (p?) = G1.
Lemma 2.3. (a) Every proper subgroup of M(p™) is abelian.

(b) Every proper quotient of M (p™) is abelian.

(c) M(p™) is barely non-abelian for any n > 4.
Proof. (a) Let S be a proper subgroup of M (p™). If S contains the index p
subgroup (r), then S = (r) and hence S is abelian. If not, let Sp = SN (r).
Then Sy C (rP) is central in M (p™). Hence

5/S0 C M(p"™)/(r) ~ Z/pZ,

that is, S/Sy is cyclic. Thus S is abelian, as desired.

(b) Assume M (p™)/N is not abelian for some non-trivial normal subgroup
N of M(p™). Then N cannot contain #?" . Otherwise,

(sN)(rN) = srN = P TGN = (rN)(sN).
Hence we have
NN (ry={1}.

Since (r) has an index p in M (p"), this implies that |N| = p. Moreover, N and

(r) are complementary normal subgroups in M (p™). Thus M (p™) ~ N x (r) is
abelian. It is a contradiction.
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(c) follows from (a) and (b). O

Theorem 2.4. Suppose G be a barely non-abelian p-group of order > p*.
(a) The center Z(G) has index p? in G.
(b) If S is a proper subgroup of G, then [S : (SN Z(G))] < p.
(c) 2P € Z(Q) for every x € G.
Let G’ be the commutator subgroup of G.
(d) G C Z(G).
(e) |G’ = p. In the sequel we shall denote the non-identity element of G’
by ¢, that is, G' = (c) of order p.
(f) If z € G is an element of order n > p? then ™/P € G'.
(g) G is generated by two elements r and s such that rs = csr.

Proof. (a) Let H be a subgroup of index p in G| see, e.g., [4, 5.3.1(ii)]. Choose
g € G\H; applying [4, 5.3.1(ii)] once again, we can find a subgroup H' C G
such that ¢ € H' and [G : H'] = p. Since G is a barely non-abelian group,
both H and H' are abelian. Thus every x € HN H’ commutes with g and with
every element of H. Since H and g generate G, we conclude that x € Z(G),
ie.,

(2.3) HnH c Z(G).

Since G is non-abelian,

(2.4) G:Z(G)] > p?;

see, e.g., [, 6.3.4]. On the other hand, since [G : H| = [G : H'] = p, it is easy
to see that

(2.5) [G:(HNH)] =p°

Part (a) now follows from (2.3-2.5). For future reference we remark that our
argument also shows that
(2.6) HNH = Z(G).

(b) By [4, 5.3.1(ii)], S is contained in a subgroup H of index p. By (2.6),
Z(G) = HNH', where H’ is another subgroup of G of index p. Then SNZ(G) =
SN H', and the latter clearly has index < p in S.

(c) Apply part (b) to the cyclic group S = (z).

(d) Follows from the fact that the factor group G/Z(G) has order p? and,
hence, is abelian.

(e) Since G is a non-abelian p-group, it has an element 7 of order n > p.
Let H = (r) and Hy = (r"/?) be cyclic subgroups of G of orders n and p

respectively. By part (c), /P = (r"/pz)p € Z(G) and hence Hy = (r"/?) C

Z(@G). Then Hy is normal in G. Since G is a barely non-abelian group, G/H
is abelian. In other words,

(27) G c Hy.
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Thus |G’| < |Ho| = p. On the other hand, since G is non-abelian, |G’| # 1.
Thus G’ has exactly p elements, as claimed.

(f) By (2.7), 2™/? € G".

(g) Choose two non-commuting elements r and s in G. Since G is a barely
non-abelian group, these elements generate G. By part (e), rsr~1s71 € G’ =
(c). Without loss of generality, we may assume let rs = csr, as desired. O

We now proceed to give a complete list of barely non-abelian p-groups.

Theorem 2.5. Let G be a barely non-abelian p-group. Then G is one of the
following groups:

(a) |G| = p’.

(b) M (p*), where k > 4.

Proof. (a) follows from Example 2.2.

(b) Write G = (r,s), G' = (¢), and sr = crs. Denote the orders of r and
s by n and m respectively. We may assume without loss of generality that p
is an odd prime, |G| > p* and n > m. Let n = m = p. Then G/G’ is an
abelian group of order < p?. Hence |G| < p?|G’| = p®. Now let n > m > p.
By Theorem 2.4(c), we have /P € G, where the order of /7 is p. We may
assume that

G' = (r/P).
By Theorem 2.4(c) once again, s™/P € G'. Then there exists a positive integer

t
t such that s™/P = (r"/P) . Let 5= (rn/m)

t
s. We claim that

(2.8) FmP =1.

We now consider two cases.
Case I: m < n.

() = )

where /™ € Z(G), as claimed.
Case II: m = n. Then

=t \P P
sP = ((T"/m) s) = (r_ts) = cPtsPrPt,

where s? and (r~*)? are in Z(G). Hence
/p* mt m, m
gmiv = (cptspr_pt)m . cTtSF(TF)_t =1,

t
where s"/P = (rm/ p) because n = m. This proves the claim. Now observe

that G = (r,s) = (r,3) and rsr—'s™' = r5r~'57! = ¢, where ¢ = r"/P. Thus
we may replace s by 5. By (2.8), § has order < m/p. After repeating this
process a finite number of times, we may assume m = p.
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Thus G is generated by elements r and s such that »™ = s? =1 and sr =
r*/P+ls where n > p? is a power p. This completes the proof of Theorem 2.5.
O
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