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GENERALIZED KKM-TYPE THEOREMS FOR BEST

PROXIMITY POINTS

Hoonjoo Kim

Abstract. This paper is concerned with best proximity points for mul-
timaps in normed spaces and in hyperconvex metric spaces. Using the
generalized KKM theorem, we deduce new best proximity pair theorems
for a family of multimaps with unionly open fibers in normed spaces. And
we prove a new best proximity point theorem for quasi-lower semicontin-
uous multimaps in hyperconvex metric spaces.

1. Introduction and preliminaries

A multimap (or map) F : X ⊸ Y is a function from a set X into the power
set 2Y of Y ; that is, a function with the values F (x) ⊂ Y for x ∈ X . For
A ⊂ X , let F (A) =

⋃

{F (x) : x ∈ A}. Let denote the closure of F .
Throughout this paper, we assume that multimaps have nonempty values

otherwise explicitly stated or obvious from the context.
Let (M,d) be a metric space and let A and B be nonempty subsets of M .
For a multimap F : A ⊸ M , a point x0 ∈ A is called a best proximity

point of F if d(x0, F (x0)) = d(A,B). In this case, (x0, F (x0)) is called a best

proximity pair for F . Note that if d(A,B) = 0 and F is a single valued map,
then the best proximity point is a fixed point of F .

The following notations are used in the sequel.

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

The pair (A,B) is said to be a proximal pair if, for each (x, y) ∈ A × B,
there exists (x̃, ỹ) ∈ A×B such that d(x, ỹ) = d(x̃, y) =d(A,B). A pair (A,B)
is a proximal pair if and only if A = A0 and B = B0.

Sanka Raj and Somasundaram introduced R-KKM maps and proved an
extended version of the Fan-Browder multivalued fixed point theorem with
best proximity points setting;
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Theorem 1.1 ([14, Theorem 3.3]). Let (A,B) be a nonempty compact convex

proximal pair in a normed space M . Let F : A ⊸ B be a multimap such that

(1) F (x) is a convex subset of B for each x ∈ A; and
(2) F−1(y) is open for each y ∈ B.

Then there is a w ∈ A such that d(w,F (w)) = d(A,B).

Recently the author [7] proved the generalized KKM theorem in abstract
convex spaces. The concept of abstract convex spaces is a far-reaching gener-
alization of convex structures and it was introduced by Park [13].

In Section 2, using the generalized KKM theorem in [7] and the fact that
R-KKM maps are generalized KKM maps, we shall deduce new best proximity
pair theorems for a family of multimaps with unionly open fibers in normed
spaces. These Theorems generalize Theorem 1.1.

A metric space (M,d) is said to be hyperconvex if
⋂

α

B(xα, γα) 6= ∅

for any collection {B(xα, γα)} of closed balls in M for which d(xα, xβ) ≤ γα +
γβ .

In Section 3, we obtain a new best proximity points theorem in hyperconvex
metric spaces which generalizes Kirk et al. ([9, Theorem 2.11]).

2. Best proximity points theorems in normed spaces

Let 〈X〉 denote the set of all nonempty finite subsets of X .
An abstract convex space (X,D; Γ) consists of a topological space X , a non-

empty set D, and a multimap Γ : 〈D〉 ⊸ X with nonempty values ΓA := Γ(A)
for A ∈ 〈D〉. When in case X = D, let (X ; Γ) := (X,X ; Γ).

Let (X,D; Γ) be an abstract convex space. If a map F : D ⊸ X satisfies
ΓA ⊂ F (A) for all A ∈ 〈D〉, then F is called a KKM map.

The partial KKM principle for an abstract convex space (X,D; Γ) is the
statement that, for any closed-valued KKM map F : D ⊸ X , the family
{F (z)}z∈D has the finite intersection property.

Any convex subset X of a topological vector space is an abstract convex
space satisfying the partial KKM principle (X,Γ) by putting ΓA = coA, the
convex hull of A. Other examples of an abstract convex space satisfying the
partial KKM principle are any convex space, any pseudo-convex space, any
homeomorphic image of a convex space, any contractible space, any C-space,
any generalized convex space, and so on. See [13].

Let (X,D; Γ) be an abstract convex space and Z be a nonempty set. A map
F : Z ⊸ X is called a generalized KKM map provided that for each N ∈ 〈Z〉,
there exists a function σ : N → D such that Γσ(M) ⊂ F (M) for each M ∈ 〈N〉.
If σ is an identity function on D, then F is a KKM map. For details, see [7].

When A is a nonempty subset of a normed space M and y ∈ M , let PA(y) =
{x ∈ A : ||x− y|| = d(y,A)}.
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We extend the notion of R-KKM maps defined by Sankar Raj and Soma-
sundaram [14] as follows:

Let I = {1, . . . , n}, A be a nonempty convex subset of a normed space M ,
and Bi be a nonempty subset of M for each i ∈ I such that

⋂

i∈I PA(yi) 6= ∅
for each (y1, . . . , yn) ∈ B :=

∏

I Bi. The map F : B ⊸ A is said to be an R-
KKM map if for any {y1 = (y11 , . . . , y

1
n), . . . , y

m = (ym1 , . . . , ymn )} ∈ 〈B〉, there

exists an xj ∈
⋂

i∈I PA(y
j
i ) for each j = 1, . . . ,m such that co{x1, . . . , xm} ⊂

⋃

j=1,...,m F (yj).
Note that R-KKM maps are generalized KKM maps.
Consider the following related three conditions for F : Z ⊸ X ;
(a)

⋂

z∈Z F (z) =
⋂

z∈Z F (z) (F is intersectionally closed-valued [11]).

(b)
⋂

z∈Z F (z) =
⋂

z∈Z F (z) (F is transfer closed-valued).
(c) F is closed-valued.
Luc et al. [11] noted that (c) =⇒ (b) =⇒ (a).
A multimap F : Z ⊸ X is said to be unionly open-valued (resp., transfer

open-valued) on Z if and only if the multimap G : Z ⊸ X , defined by G(z) =
X\F (z) for every z ∈ Z, is intersectionally closed-valued (resp., transfer closed-
valued) on Z. See [11] and Tian [15].

The following KKM type theorem is due to the author [7];

Theorem 2.1. Let B be a nonempty set, (X,D; Γ) be an abstract convex space

satisfying the partial KKM principle, and F : B ⊸ X be a multimap satisfying

(1) F is a generalized KKM map.

Then {F (z)}z∈B has the finite intersection property.

Further, if

(2) F is intersectionally closed-valued; and

(3) there exists a nonempty compact subset K of X such that
⋂

z∈N F (z) ⊂
K for some N ∈ 〈B〉.

Then
⋂

z∈B F (z) 6= ∅.

Since an R-KKM map is a generalized KKM map, we obtain the following
theorem which generalizes Theorem 3.2 in [14];

Theorem 2.2. Let A be a nonempty convex subset of a normed space M ,

and Bi be a nonempty subset of M for each i ∈ I := {1, . . . , n} such that
⋂

i∈I PA(yi) 6= ∅ for each (y1, . . . , yn) ∈ B :=
∏

I Bi. Let F : B ⊸ A be a

multimap satisfying

(1) F is an R-KKM map.

Then {F (z)}z∈B has the finite intersection property.

Further, if

(2) F is intersectionally closed-valued; and

(3) there exists a nonempty compact subset K of A such that
⋂

z∈N F (z) ⊂
K for some N ∈ 〈B〉.
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Then
⋂

z∈B F (z) 6= ∅.

The following is an existence theorem for the best proximity pairs;

Theorem 2.3. Let I = {1, . . . , n} and for each i ∈ I, (A,Bi) be a nonempty

convex proximal pair in a normed space M such that
⋂

i∈I PA(yi) 6= ∅ for each

(y1, . . . , yn) ∈ B =
∏

Bi. Let A be compact. For each i ∈ I, let Fi : A ⊸ Bi

be a multimap such that

(1) Fi(x) is convex for each x ∈ A; and
(2) F−1

i (yi) is unionly open for each yi ∈ Bi.

Then there is a w ∈ A such that d(w,Fi(w)) = d(A,Bi) for each i ∈ I.

Proof. Define F : A ⊸ B and G : B ⊸ A by

F (x) =
∏

Fi(x) and G(y1, . . . , yn) = A\F−1(y1, . . . , yn).

Then G(y1, . . . , yn) = {x ∈ A : yi /∈ Fi(x) for some i ∈ I} =
⋃

I(A\F
−1
i (yi)).

Suppose G(y1, . . . , yn) = ∅ for some (y1, . . . , yn) ∈ B. Then F−1(y1, . . . ,
yn) = A, that is, (y1, . . . , yn) ∈ F (x) for all x ∈ A. Since

⋂

i∈I PA(yi) 6= ∅ and
yi ∈ Bi = Bi0, there exists a w ∈ A such that ||yi − w|| = d(yi, A) = d(A,Bi)
for all i ∈ I. Since (y1, . . . , yn) ∈ F (w), d(w,Fi(w)) = d(A,Bi) for each i ∈ I.

Assume that G(y1, . . . , yn) is nonempty for each (y1, . . . , yn) ∈ B. Then
⋂

B

G(y1, . . . , yn) =
⋂

B

⋃

I

(A\F−1
i (yi)) =

⋃

I

⋂

yi∈Bi

(A\F−1
i (yi))

=
⋃

I

⋂

yi∈Bi

(A\F−1
i (yi)) =

⋃

I

⋂

yi∈Bi

(A\F−1
i (yi))

=
⋂

B

⋃

I

(A\F−1
i (yi)) =

⋂

B

⋃

I

(A\F−1
i (yi))

=
⋂

B

G(y1, . . . , yn),

by (2). That is, G is intersectionally closed-valued. And
⋂

B

G(y1, . . . , yn) =
⋃

I

⋂

Bi

(A\F−1
i (yi)) =

⋃

I

(A\
⋃

Bi

F−1
i (yi)) =

⋃

I

∅ = ∅.

By Theorem 2.2, G is not an R-KKMmap. So there exist {yj = (yj1, . . . , y
j
n) |

j = 1, . . . ,m} ⊂ B and xj ∈
⋂

i∈I PA(y
j
i ) for j = 1, . . . ,m such that co{x1, . . .,

xm} 6⊂
⋃

j=1,...,m G(yj). Choose w =
∑

j λjxj ∈ co{x1, . . . , xm}\
⋃

j G(yj),

then w ∈
⋂m

j=1 F
−1(yj). Therefore yji ∈ Fi(w) for each i ∈ I and j = 1, . . . ,m.

For each i ∈ I, put zi :=
∑

j λjy
j
i . Since Fi(w) is convex, zi ∈ Fi(w). For

each i ∈ I, d(A,Bi) ≤ d(w,Fi(w)) ≤ ||w − zi|| = ||
∑

j λjxj −
∑

j λjy
j
i || ≤

∑

j λj ||xj − yji || =
∑

j λjd(A, y
j
i ) = d(A,Bi).

Therefore d(w,Fi(w)) = d(A,Bi) for all i ∈ I. �
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If (A,B) is a proximal pair, then PA(y) 6= ∅ for each y ∈ B. So we obtain
the following corollary.

Corollary 2.4. Let (A,B) be a nonempty convex proximal pair in a normed

space M . Let A be compact and F : A ⊸ B be a multimap such that

(1) F (x) is convex for each x ∈ A; and
(2) F−1(y) is unionly open for each y ∈ B.

Then there is a w ∈ A such that d(w,F (w)) = d(A,B).

Corollary 2.4 improves Theorem 1.1.
If A and B are non-empty subsets of a normed space M such that d(A,B) >

0, then A0 and B0 are contained in the boundaries of A and B respectively,
see [2].

Proposition 2.5. Let A and B be nonempty subsets of a normed space M .

And let A0 and B0 be nonempty.

(1) If the sets A and B are convex, then A0 and B0 are convex.

(2) If the sets A and B are compact, then A0 and B0 are compact.

Proposition 2.5 is in the proof of Theorem 1 in Kim and Lee [8].

Proposition 2.6. For each i ∈ I = {1, . . . , n}, let A and Bi be nonempty

subsets of a normed space M such that
∏

Bi0 6= ∅ and
⋂

i∈I PA(yi) 6= ∅ for

each (y1, . . . , yn) ∈
∏

Bi0. Then
⋂

A0i 6= ∅ where A0i := {x ∈ A : ||x − y|| =
d(A,Bi) for some y ∈ Bi}.

Proof. If yi ∈ Bi0, then PA(yi) ⊂ A0i. Therefore
⋂

A0i 6= ∅. �

The following is an existence theorem for the pairs {(A,Bi)}i=1,...,n which
are not proximal;

Theorem 2.7. For each i ∈ I = {1, . . . , n}, let A and Bi be nonempty compact

convex subsets of a normed space M satisfying
∏

Bi0 6= ∅. Let Fi : A ⊸ Bi be

a multimap such that

(1)
⋂

i∈I PA(yi) 6= ∅ for each (y1, . . . , yn) ∈
∏

Bi0;
(2) Fi(x) ∩Bi0 6= ∅ for each x ∈ C :=

⋂

i∈I A0i;
(3) Fi(x) is convex for each x ∈ C; and
(4) F−1

i (yi) is unionly open for each yi ∈ Bi0.

Then there is a w ∈ C such that d(w,Fi(w)) = d(A,Bi) for each i ∈ I.

Proof. By Proposition 2.6, C 6= ∅. By Proposition 2.5, A0i and Bi0 are compact
and convex, so C is also compact and convex.

For each x ∈ C, there exists a yi ∈ Bi0 such that ||x − yi|| = d(A,Bi) for
each i ∈ I. Since d(A,Bi) ≤ d(C,Bi0) ≤ ||x − yi||, ||x − yi|| = d(C,Bi0) and
d(C,Bi0) = d(A,Bi).

For (y1, . . . , yn) ∈
∏

Bi0, there exists an x ∈
⋂

i∈I PA(yi) ⊂ C such that
||x − yi|| = d(A, yi) for each i ∈ I, by condition (1). Since d(A, yi) = d(A,Bi)
and d(C,Bi0) = d(A,Bi), ||x− yi|| = d(C,Bi0).
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Therefore x ∈
⋂

i∈I PC(yi) for each (y1, . . . , yn) ∈
∏

Bi0. And also (C,Bi0)
is a proximal pair of M for each i ∈ I.

Define Si : C ⊸ Bi0 by Si(x) = Fi(x) ∩ Bi0 for each x ∈ C. Note that
S−1
i (yi) is unionly open for each yi ∈ Bi0. Since Si satisfies all the conditions

of Theorem 2.3, there is a w ∈ C such that d(w, Si(w)) = d(C,Bi0). So
d(A,Bi) ≤ d(w,Fi(w)) ≤ d(w, Si(w)) = d(C,Bi0) = d(A,Bi) for each i ∈ I.
Therefore the conclusion holds. �

Corollary 2.8. Let A and B be nonempty compact convex subsets of a normed

space M , A0 6= ∅ and F : A ⊸ B be a multimap such that

(1) F (x) ∩B0 6= ∅ for each x ∈ A0;
(2) F (x) is convex for each x ∈ A0; and
(3) F−1(y) is unionly open for each y ∈ B0.

Then there is a w ∈ A0 such that d(w,F (w)) = d(A,B).

3. Best proximity point theorems in hyperconvex metric spaces

Let (M,d) be a hyperconvex metric space.
The admissible subset of M is a set of the form

⋂

α B(xα, γα), i.e., a closed
ball intersection in M .

A subset X of M is said to be externally hyperconvex (relative to M) if
given any family {xα} of points of M and any family of {γα} of real numbers
satisfying for each α and β, d(xα, xβ) ≤ γα + γβ with d(xα, X) ≤ γα, it follows
that

⋂

α B(xα, γα) ∩X 6= ∅.
A subset X of M is said to be weakly externally hyperconvex (relative to M)

if X is externally hyperconvex relative to X ∪ {z} for each z ∈ M , that is,
given any family {xα} of points of M all but at most one of which lies in X ,
and any family of {γα} of real numbers satisfying d(xα, xβ) ≤ γα + γβ with
d(xα, X) ≤ γα if xα /∈ X , it follows that

⋂

α B(xα, γα) ∩X 6= ∅.
For any A ∈ 〈M〉, let ΓA =

⋂

{B : B is a closed ball containing A}. A
subset X of M is said to be sub-admissible if for each N ∈ 〈X〉, ΓN ⊂ X .

Note that if A is a subset of a hyperconvex metric space M , then
A is admissible

=⇒ A is externally hyperconvex
=⇒ A is weakly externally hyperconvex
=⇒ A is hyperconvex
=⇒ A is sub-admissible.

For details, see [5], Theorem 6 in [1], and Theorem 3.10 in [3].
A subset A of M is called proximinal if x ∈ M , then there exists a ∈ A such

that d(x, a) = d(x,A).
A subset A of M is called a proximinal nonexpansive retract of M if there

exists a nonexpansive retraction r of M onto A for which d(x, r(x)) = d(x,A)
for each x ∈ M . Thus d(r(x), r(y)) ≤ d(x, y) for each x, y ∈ M .
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Lemma 3.1 ([4, Theorem 4.2]). A compact subset X of a hyperconvex met-

ric space M is weakly externally hyperconvex if and only if it is a proximinal

nonexpansive retract of M .

Let X be a topological space and (M,d) be a metric space. A multimap
F : X ⊸ M is called;

(1) lower semicontinuous at x ∈ X , if for each open setW with W∩F (x) 6=
∅, there is a neighborhood U(x) of x such that F (z) ∩ W 6= ∅ for all
z ∈ U(x).

(2) quasi-lower semicontinuous at x ∈ X , if for each ǫ > 0, there are
y ∈ F (x) and a neighborhood U(x) of x such that F (z) ∩ B(y, ǫ) 6= ∅
for all z ∈ U(x).

If F is lower semicontinuous (quasi-lower semicontinuous, respectively) at each
x ∈ X , F is called lower semicontinuous (quasi-lower semicontinuous, respec-
tively). Note that (1) =⇒ (2).

Lemma 3.2 ([12, Theorem 1]). Let X be a paracompact topological space, M be

a hyperconvex metric space and F : X ⊸ M be a quasi-lower semicontinuous

map with closed sub-admissible values. Then F has a continuous selection;
i.e., there is a continuous function f : X → M such that f(x) ∈ F (x) for each

x ∈ X.

Lemma 3.3 ([6], [10]). Any continuous self map of a compact admissible subset

of a hyperconvex metric space has a fixed point.

Theorem 3.4. Let (M,d) be a hyperconvex metric space, A be a compact

weakly externally hyperconvex subset of M , B be a hyperconvex subset of M
and A0 be a nonempty admissible subset of M . Let F : A ⊸ B be a quasi-

lower semicontinuous map such that

(1) for each x ∈ A, F (x) is closed sub-admissible; and
(2) F (A0) ⊂ B0.

Then there exists a best proximity point for F .

Proof. By Lemma 3.2, F has a continuous selection which we denote by f .
Let x ∈ A0, then by (2), f(x) ∈ B0. So there exists an a ∈ A0 such that
d(f(x), a) = d(B,A). Since A is a compact weakly externally hyperconvex, it
is a proximinal nonexpansive retract of M . Let r be a proximinal nonexpansive
retraction of M onto A. Then d(f(x), r ◦ f(x)) = d(f(x), A) ≤ d(f(x), a).
Therefore d(f(x), r ◦ f(x)) = d(B,A) and r ◦ f : A0 → A0.

Since A0 is an admissible subset of a compact set A, A0 is compact. By
Lemma 3.3, there exists an x0 ∈ A0 such that r◦f(x0) = x0. So d(x0, f(x0)) =
d(x0, F (x0)) = d(A,B), that is, x0 is a best proximity point for F . �

For a subset A of M , Nǫ(A) = {x ∈ M : d(x,A) ≤ ǫ}.
The Hausdorff metric dH on nonempty bounded closed subsets A,B of M

is given by

dH(A,B) = inf{ǫ > 0 : A ⊂ Nǫ(B) and B ⊂ Nǫ(A)}.
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From Theorem 3.4, we obtain the following corollary ([9, Theorem 2.11]);

Corollary 3.5. Let A and B be two convex subsets of a hyperconvex metric

space (M,d). Suppose that A is compact and weakly externally hyperconvex and

that A0 and B are admissible. Let F : (A, d) ⊸ (B, dH) be a continuous map

such that

(1) for each x ∈ A, F (x) is an externally hyperconvex subset of B; and
(2) F (A0) ⊂ B0.

Then there exists a best proximity point of F .

Proof. Note that if F : (A, d) ⊸ (B, dH) is continuous, then F : (A, d) ⊸

(B, d) is lower semicontinuous.
It is shown in ([1, Theorem 7]) and ([3, Lemma 3.8]) that the externally

hyperconvex subsets of M are proximinal in M . Therefore F (x) is closed for
each x ∈ X . �

In the proof of Corollary 3.5, Kirk et al. [9] showed that A0 is hyperconvex
and claimed that r ◦ F : A0 ⊸ A0 has a fixed point by Lemma 3.3, where r
is a proximinal nonexpansive retraction of M onto A. So the condition “A0 is
admissible” must be added in order to use Lemma 3.3.
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