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COMBINATORIAL ENUMERATION OF THE REGIONS OF

SOME LINEAR ARRANGEMENTS

Seunghyun Seo

Abstract. Richard Stanley suggested the problem of finding combinato-
rial proofs of formulas for counting regions of certain hyperplane arrange-
ments defined by hyperplanes of the form xi = 0, xi = xj , and xi = 2xj

that were found using the finite field method. We give such proofs, using
embroidered permutations and linear extensions of posets.

1. Introduction

Much work has been devoted in recent years to studying hyperplane ar-
rangements, especially finding their characteristic polynomials and number of
regions. Several authors have worked on computing the number of regions of
specific hyperplane arrangements. See for example [1, 2, 7].

Stanley’s paper [10] on hyperplane arrangements contains classic and more
recent results in this field, together with numerous problems. We consider the
following problems [10, p. 469, problem 9] of counting the regions of certain
linear arrangements.

(α) Let αn be the arrangement in R
n with hyperplanes xi = 0 for all i,

xi = xj for all i < j, and xi = 2xj for all i 6= j. Show that the number
of regions r(αn) of αn is given by r(αn) = 2(2n+ 1)!/(n+ 2)!.

(β) Let βn be the arrangement in R
n with hyperplanes xi = xj for all i < j,

and xi = 2xj for all i 6= j. Show that r(βn) = 6n2(2n− 1)!/(n+ 2)!.
(γ) Let γn be the arrangement in R

n with hyperplanes xi = 0 for all i,
xi = xj for all i < j, and xi = 2xj for all i < j. Find r(γn).

(δ) Let δn be the arrangement in R
n with hyperplanes xi = xj for all i < j,

and xi = 2xj for all i < j. Find r(δn).

Received May 28, 2015; Revised September 16, 2015.
2010 Mathematics Subject Classification. 05A19, 52C35, 06A07.
Key words and phrases. hyperplane arrangement, embroidered permutation, linear ex-

tensions of poset.
This study is supported by 2014 Research Grant from Kangwon National University(No.

120141432).

c©2016 Korean Mathematical Society

1281



1282 SEUNGHYUN SEO

Note that problems (α), (β), (γ) are actually in Stanley’s paper, while problem
(δ) is not. But the problem comes along naturally, so we add (δ) to the problem
list.

By finite field methods (see [2, 3, 10]), one can solve these problems without
much difficulty. But Stanley asked for combinatorial proofs, i.e., bijections be-
tween the regions of the hyperplane arrangements and objects that are counted
by the corresponding formulas.

The present paper aims to solve these 4 problems in bijective way. In Section
2, we introduce the basic notations of hyperplane arrangements and partially
ordered sets. In Section 3, we describe bijections from regions of certain hyper-
plane arrangement to linear extensions of posets (for problem (α) and (β)) or
permutations (problems (γ) and (δ)). In Section 4, we discuss the characteristic
polynomial of the four kinds of hyperplane arrangements.

2. Preliminaries

We recall some of the basic concepts of hyperplane arrangements and par-
tially ordered sets. For a more thorough introduction, see [6, 10] for hyperplane
arrangements and [9, Ch. 3] for partially ordered sets.

Given a field K and a positive integer n, a hyperplane arrangement of di-
mension n over K is a finite set of affine hyperplanes in Kn. We will refer
to hyperplane arrangements simply as arrangements. We will say that an ar-
rangement A is linear if every hyperplane H in A is an (n − 1)-dimensional
subspace of Kn, i.e.,

H = { v ∈ Kn | ξ · v = 0 },

for some nonzero vector ξ in Kn, where ξ · v is the usual inner product.
Now, let K = R. A region of an arrangement A is a connected component

of the complement X of the hyperplanes:

X = R
n −

⋃

H∈A

H.

Let R(A) denote the set of regions of A, and let r(A) be the number of regions.
A linear extension of a poset P is an extension of P to a total order, that is,

a total order <T on the underlying set of P such that if x <P y, then x <T y.
It is convenient to represent the total order <T as a listing of the elements of
P , so a linear extension of P is a listing of the elements of P in which x comes
before y whenever x <P y. Let E(P ) denote the set of linear extensions of P .
From now on we will write {1, 2, . . . , n} as [n], and {m,m+1, . . . , n} as [m,n].

3. Bijective proofs

3.1. Problem (α)

Given a positive integer n, let αn be the arrangement in R
n with hyperplanes

xi = 0 for all i, xi = xj for all i < j, xi = 2xj for all i 6= j.
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Let R0(αn) be the set of regions of αn contained in x1 < x2 < · · · < xn. Note
that |R(αn)| = n! |R0(αn)|.

For positive integers l and m, let Pl,m be the poset on the set {l, l + 1,
. . . ,m} ∪ {l′, (l + 1)′, . . . ,m′} such that l <P l + 1 <P · · · <P m and l′ <P

(l + 1)′ <P · · · <P m′, where any two elements i ∈ {l, l + 1, . . . ,m} and
j′ ∈ {l′, (l + 1)′, . . . ,m′} are not comparable. Let P−

l,m be the poset obtained

from Pl,m by adding i′ <P i for all i ∈ [l,m]. Similarly, let P+
l,m be obtained

from Pl,m by adding i <P i′ for all i ∈ [l,m]. If l is greater than m, then we

take Pl,m = P−
l,m = P+

l,m to be a poset with one element (and therefore one

linear extension).
Recall that E(P ) is the set of linear extensions of a finite poset P . For a

nonnegative integer 0 ≤ k ≤ n, let Uk be the set E(P−
1,k)× E(P+

k+1,n).

Lemma 3.1. For n ≥ 1, there is a bijection from R0(αn) to
⋃n

k=0 Uk.

Proof. Let R0 be a region in R0(αn) and let (x1, . . . , xn) be a point in R0. Let
k be the largest number such that x1, . . . , xk are negative; if x1 is positive, take
k = 0. Arrange the numbers x1, . . . , xk, 2x1, . . . , 2xk in increasing order and
then replace each xi with i and each 2xi with i′, and take the resulting list to
be a total order A of {1, . . . , k}∪{1′, . . . , k′}. Since x1 < · · · < xk and 2xi < xi

for all i, this total order is an element of E(P−
1,k).

Similarly, the positive coordinates xk, . . . , xn give an elementB ofE(P+
k+1,n).

It is easy to show that points in the same region give the same pair (A,B)
in E(P−

1,k)×E(P+
k+1,n), that points in different regions give different pairs, and

that every element of E(P−
1,k) × E(P+

k+1,n) comes from some region. Thus we
have a desired bijection.

We show that for any A in E(P−
1,k), there is a corresponding point (x1, . . . ,

xk). We proceed by induction on k. (A very similar argument works for
E(P+

k+1,n).) The cases k = 0 and 1 are trivial. Suppose that k > 1. Let

A be a linear of extension of P−
1,k, represented as a list. Removing k and k′

from this list gives an element Ã of E(P−
1,k−1). By induction, there is some

point (x1, x2, . . . , xk−1), with negative coordinates, corresponding to Ã. Then

A may be obtained from Ã by inserting k′ anywhere to the right of (k − 1)′

and then inserting k at the right end of the list. We now need to choose xk

with xk−1 < xk < 0 so that a < 2xk < b for certain numbers a and b, where
xk−1 ≤ a < b ≤ 0, and it is clear that we can do this. �

Let Cn be the nth Catalan number 1
n+1

(

2n
n

)

, with C−1 = 0. Let Dn be the
set of Dyck words of length 2n, i.e.,

Dn :=
{

(d1, . . . , dn) ∈ {−1, 1}
n |

∑j
i=1 di ≥ 0, ∀ j ≤ n− 1 and

∑n
i=1 di = 0

}

.

It is well known that |Dn| = Cn.

Theorem 3.2. For n ≥ 1, we have |R0(αn)| = Cn+1.
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Proof. There is a well known bijection from E(P−
1,k) to Dk: We define φ :

E(P−
1,k) → Dk by replacing i′ with 1 and i with −1 for each i ∈ [k] in a

linear extension of P−
1,k. Thus we have |E(P−

1,k)| = Ck. Similarly we have

|E(P+
k+1,n)| = Cn−k. So |Uk| = Ck Cn−k. From Lemma 3.1 we obtain

|R0(αn)| =
n
∑

k=0

|Uk| =
n
∑

k=0

Ck Cn−k

= Cn+1 ,

which completes the proof. �

Corollary 3.3. The number of regions of αn is given by

|R(αn)| =
2(2n+ 1)!

(n+ 2)!
.

Proof.

|R(αn)| = n! |R0(αn)| = n!Cn+1 =
2(2n+ 1)!

(n+ 2)!
.

�

3.2. Problem (β)

Fix a positive integer n. Let βn be the arrangement in R
n with hyperplanes

xi = xj for all i < j and xi = 2xj for all i 6= j.

Let R(βn) be the set of regions of βn, and R0(βn) be the set of regions of βn

contained in x1 < x2 < · · · < xn. Note that |R(βn)| = n! |R0(βn)|.
Let P×

l,m be the refined poset of Pl,m by adding relations k < (k + 1)′ and

k′ < (k+1) for all k ∈ [l,m]. For nonnegative integers i, j satisfying i+ j ≤ n,
let Vi,j be the set of pairs (A,B) in E(P−

1,i) × E(P+
n−j+1,n) such that A does

not end with i′i and B does not begin with (n− j + 1)(n− j + 1)′.

Lemma 3.4. For n ≥ 1, we have a bijection between the following two sets:

R0(βn)
bij
←→

⊔

i,j

Vi,j , (disjoint union)

where the (disjoint) union is over all nonnegative integers i and j such that

i+ j ≤ n.

Proof. Fix a region R0 in R0(βn). Let i be the largest number such that
x1, . . . , xi are always negative in R0. If there is no such i, take i = 0. Similarly,
let j be the largest number such that xn−j+1, . . . , xn are always positive in
R0. Clearly we have i + j ≤ n. The region R0 is determined by xl < 2xm,
which gives a relation l <P m′ on the set P1,n. Then the negative coordinate

part of R0 corresponds to an element A of E(P−
1,i) which doesn’t end with

i′i – otherwise, xi may have both signs. Similarly, the positive coordinate
part of R0 corresponds to an element B of E(P+

n−j+1,n) which doesn’t begin

with (n− j + 1)(n − j + 1)′. The middle part of R0 corresponds to the poset
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P×
i+1,n−j , which is only one choice. It is easy to show that this correspondence

R0 to (A,B) is well-defined and invertible. �

Theorem 3.5. For n ≥ 1, we have

|R0(βn)| = Cn+1 − Cn .

Proof. Recall that φ : E(P−
1,i)→ Di is a bijection. Moreover, A ∈ E(P−

1,i) ends

with i′i if and only if φ(A) ends with (+1)(−1). Thus

(1)
∣

∣{A ∈ E(P−
1,i) | A does not end with i′i}

∣

∣ = Ci − Ci−1 .

Similarly we also get
(2)
∣

∣{B ∈ E(P+
n−j+1,n) | B does not begin with (n−j+1)(n−j+1)′}

∣

∣=Cj−Cj−1 .

From (1) and (2), we have |Vi,j | = (Ci −Ci−1) (Cj −Cj−1). By Lemma 3.4 we
obtain

|R0(βn)| =
∑

i+j≤n

|Vi,j |

=
∑

i+j≤n

(Ci − Ci−1) (Cj − Cj−1)

=

n
∑

i=0

(Ci − Ci−1)

n−i
∑

j=0

(Cj − Cj−1)

=

n
∑

i=0

(Ci − Ci−1)Cn−i

= Cn+1 − Cn ,

where the last equality is due to the identity
∑n

i=0 Ci Cn−i = Cn+1. �

Corollary 3.6. The number of regions of βn is given by

|R(βn)| =
6n2 (2n− 1)!

(n+ 2)!
.

Proof.

|R(βn)| = n! |R0(βn)| = n! (Cn+1 − Cn) =
6n2 (2n− 1)!

(n+ 2)!
.

�

3.3. Problem (γ)

Fix a positive integer n. Let γn be the arrangement in R
n with hyperplanes

xi = 0 for all i, xi = xj for all i < j, xi = 2xj for all i < j.

Let R(γn) be the set of regions of γn. Given a subset T of [n], let RT (γn)
be the set of regions R of γn such that the set of negative coordinates of R is
{xt | t ∈ T }.
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Given a subset T of [n], an embroidered permutation of T consists of a
permutation π of T together with a collection ε of arcs (i, j) such that:

(1) 1 ≤ i < j ≤ |T | for all (i, j) ∈ ε.
(2) If i ≤ h ≤ k ≤ j, then (i, j) = (h, k). (nonnesting condition)
(3) If (i, j) ∈ ε, then πi < πj .

For a subset T of [n], let ST be the set of permutation on T , and ET be the
set of embroidered permutation on T . For example, given T = {1, 3} ⊂ [3], we
have

ET = {(13, ∅), (13, {(1, 2)}), (31, ∅)}.

By convention, set S∅ := {∅} and E∅ := {∅}.

Lemma 3.7. For each subset T of [n], we have a bijection between the following

two sets:

RT (γn)
bij
←→ ET × E[n]\T .

Proof. Fix a region R in RT (γn). Set w = w1w2 · · ·wk ∈ ST and w′ =
w′

1w
′
2 · · ·w

′
n−k ∈ S[n]\T defined by

xw1
< xw2

< · · · < xwk
< 0 < xw′

n−k
< · · · < xw′

2
< xw′

1
,

where (x1, x2, . . . , xn) ∈ R. Draw an arc (i, j) in w if i < j and xi < 2xj ,
and remove redundant arcs (among nesting arcs, outer one). This defines
an embroidered permutation A on T . Similarly, draw an arc (i′, j′) in w′ if
i′ < j′ and xi > 2xj , and remove redundant arcs. This defines an embroidered
permutation B on [n] \ T . �

Since the number of embroidered permutations on a k-set T is given by
(k + 1)k−1 (see [10, p. 468]), we have

(3) |RT (γn)| = |ET × E[n]\T | = (k + 1)k−1 (n− k + 1)n−k−1 .

Theorem 3.8. For n ≥ 1, we have

|R(γn)| = 2 (n+ 2)n−1 .

Proof. Since {RT (γn) | T ⊆ [n] } consists of a disjoint union of R(γn), we have

|R(γn)| =
∑

T⊆[n]

|RT (γn)|

=
n
∑

k=0

(

n

k

)

(k + 1)k−1 (n− k + 1)n−k−1(4)

= 2 (n+ 2)n−1 .

Since the number of x-parking functions for x = (2, 1, . . . , 1) ∈ P
n is counted

by (4), the last equation holds. �
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Note that the last identity in (4) is the case x = y = 1 of the well-known
Abel identity (see [8, p. 18])

n
∑

k=0

(

n

k

)

x(x+ k)k−1y(y + n− k)n−k−1 = (x + y)(x+ y + n)n−1.

For more information of x-parking functions, see [4, 5, 11].

3.4. Problem (δ)

Let δn be the arrangement in R
n with hyperplanes

xi = xj for all i < j and xi = 2xj for all i < j.

Let R(δn) be the set of regions of δn. Given disjoint subsets S, T of [n], let
RS,T (δn) be the set of regions R of δn such that the set of negative coordinates
of R is S and the set of positive coordinates of R is T .

Suppose w be an embroidered permutation (π, ε), where π = π1π2 · · ·πl is
an underlying permutation and ε is a set of nonnesting arcs. We call w proper

if for some i ∈ [1, l − 1] there exists an arc (i, l) ∈ ε. Let QS,T be the set of
pairs (A,B) in ES×ET such that both A and B are proper. Then the following
lemma can be proved similarly to Lemma 3.7.

Lemma 3.9. For disjoint subsets S and T of [n], we have a bijection between

the following two sets:

RS,T (δn)
bij
←→ QS,T × S[n]\(S∪T ) .

Note that the number of proper embroidered permutations on a k-set T (say
Ek) is given by

E0 = 1, and Ek = (k + 1)k−1 − kk−1 (k ≥ 1) .

Thus if |S| = k and |T | = l, then we have

(5) |RS,T (δn)| = |QS,T | · |S[n]\(S∪T )| = Ek El · (n− k − l)! .

Theorem 3.10. For n ≥ 1, we have

|R(δn)| = 2 (n+ 2)n−1 − 2n (n+ 1)n−2 .

Proof. Let B = { (S, T ) ∈ 2[n] × 2[n] | S ∩ T = ∅ }. Since {RS,T (δn) | (S, T ) ∈
B } is a disjoint union of R(δn), from (5) we have

|R(δn)| =
∑

(S,T )∈B

|RS,T (δn)|

=
∑

k+l+m=n

(

n

k, l,m

)

Ek El m!

= n!

n
∑

k=0

Ek

k!

n−k
∑

l=0

El

l!
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= n!

n
∑

k=0

Ek

k!

[

1 +

n−k
∑

l=1

(

(l + 1)l−1

l!
−

ll−2

(l − 1)!

)

]

= n!

n
∑

k=0

Ek

k!

(n− k + 1)n−k−1

(n− k)!

= (n+ 1)n−1 + n!

n
∑

k=1

(

(k + 1)k−1

k!
−

kk−2

(k − 1)!

)

(n− k + 1)n−k−1

(n− k)!

=

n
∑

k=0

(

n

k

)

(k + 1)k−1(n− k + 1)n−k−1−
n
∑

k=1

(

n

k

)

kk−3(n− k + 1)n−k−1

= 2 (n+ 2)n−1 − 2n (n+ 1)n−2 ,

where the last equality is by (4). �

4. Remarks

By the finite field method one can obtain the characteristic polynomials of
hyperplane arrangements αn and βn, which are given by

χαn
(t) = (t− 1) · (t− n− 2)n−1,

χβn
(t) = (t− 1) · (t2 − (3n− 1)t+ 3n2 − 3n) · (t− n− 2)n−3,

where (x)m = x(x− 1) · · · (x−m+1). Note that r(A) can be derived from its
characteristic polynomial χA(t) by Zaslavsky’s formula [12]

r(A) = (−1)nχA(t).

Thus it would be interesting to find combinatorial proof for the characteristic
polynomials of αn and βn, which will be a generalization of our results. Also, a
combinatorial enumeration of the characteristic polynomials of γn and δn can
be asked for.
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