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Investigating students’ lived mathematical experiences presents dual challenges for the 

researcher. On the one hand, we must respect that students’ experiences are not directly 

accessible to us and are likely very different from our own experiences. On the other 

hand, we might not want to rely upon the students’ own characterizations of what consti-

tutes mathematics because these characterizations could be limited to the formal products 

students learn in school. I suggest a characterization of mathematics as objectified action, 

which would lead the researcher to focus on students’ operations—mental actions orga-

nized as objects within structures so that they can be acted upon. Teachers’ and research-

ers’ models of these operations and structures can be used as a launching point for under-

standing students’ experiences of mathematics. Teaching experiments and clinical inter-

views provide a means for the teacher-researcher to infer students’ available operations 

and structures on the basis of their physical activity (including verbalizations) and to 

begin harmonizing with their mathematical experience. 
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WHAT IS MATHEMATICS 

 

Mathematics has been characterized as the science of number, patterns, and relation-

ships. It has also been characterized as a language. But certain aspects of mathematics 

distinguish it among all other sciences and all other languages. For example, no other sci-

ence approaches the stability of mathematics. Whereas the replacement of one theory for 

another is common in science, in mathematics theories are only expanded and generalized, 

                                                           
1
  A draft version of the article was presented at the 2015 KSME International Conference on 

Mathematics Education held at Seoul National University, Seoul 08826, Korea; November 6–8, 

2015 (cf. Norton, 2015).  
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or further specified and justified. For its apparent timelessness and certainty, mathematics 

is unique among all human activity. So, what endows mathematics with these qualities, 

and how can we characterize human experience in this domain? 

“I like the way mathematics builds on itself.” “In mathematics, there is always a right 

answer.” Some mathematics educators might cringe at such clichés from their students, 

but these notions have a basis in the history of mathematics and the nature of mathemati-

cal experience—not just some formalist perspective foisted upon students in our educa-

tional system. Consider, for example, the historical development of the cubic formula. 

In 16th century Italy, Western mathematics underwent a Renaissance of its own, but 

was not born out of nothing (Burton, 2007). Rather, mathematicians showed renewed in-

terest in the problems and methods presented by Diaphantus centuries earlier. Even by 

Diaphantus’ time, in 3rd century Greece, scholars knew how to solve quadratic equations, 

using geometric methods similar to completing the square. Aided by further development 

of algebraic notation, del Ferro
2
 and Tartaglia

3
 began making progress in developing 

formulas for finding solutions to generic cubic equations. By making the clever substitu-

tion, x=a–b, they leveraged the algebraic identity, (a–b)
3
+3ab(a–b)=a

3
–b

3
, to solve all 

cubic equations of the form x
3
–px=q (with p and q positive rational numbers) in terms of 

a and b. As such, they were taking full advantage of numerous mathematical develop-

ments up to that time, including algebraic methods developed over the centuries, from the 

ancient Greeks, to Diaphantus, to al-Khowârizmî, and Vièta. 

Cardan built upon this work further by showing that one more simple substitution 

could reduce all cubic equations (again, with positive rational coefficients) to the special 

form, thus providing a general cubic formula. A few years later, Ferrari built on that work 

still further, to develop a quartic formula. His method relied on completing the square to 

reduce quartic equations to cubic equations. And in the midst of this Italian mathematical 

flourish, Bombelli used these methods and solutions to build a foundation for imaginary 

numbers, by showing that imaginary numbers could sometimes generate real solutions. 

Imaginary numbers did not replace real numbers but, rather, extended them, just as 

Galois Theory extended the work of del Ferro, Tartaglia, Ferrari, and Cardan, in demon-

                                                           
2
  (Added by Editors) Scipione del Ferro (1465–1526) was an Italian mathematician who first dis-

covered a method to solve the depressed cubic equation). Extracted from: 

https://en.wikipedia.org/wiki/Scipione_del_Ferro  
3
  (Added by Editors) Niccolò Fontana Tartaglia (1499/1500–1557) was an Italian mathemati-

cian, an engineer, a surveyor and a bookkeeper from the then-Republic of Venice (now part 

of Italy). He published many books, including the first Italian translations of an Archime-

des and Euclid, and an acclaimed compilation of mathematics. Tartaglia was the first to apply 

mathematics to the investigation of the paths of cannonballs, known as ballistics, in his Nova 

Scientia, “A New Science;” his work was later partially validated and partially superseded 

by Galileo’s studies on falling bodies). Extracted from: 
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strating the futility of seeking a quintic formula. Although we rarely use the cubic and 

quartic formulas, these methods are just as valid today as they were five centuries ago—

generating perfectly accurate solutions (“right answers”) every time. Contrast this with 

Newton’s mechanics, which is still useful in limited circumstances, but which was invali-

dated by relativity and the Standard Model of physics. Relativity did not build on New-

ton’s mechanics like the quartic formula built on the quadratic formula. Here we have an 

illustration of what distinguishes mathematics from the sciences. 

We might say that the uniqueness and apparent certainty of mathematics owes to its 

non-empirical nature. As Bertrand Russell quipped, “mathematics may be defined as the 

subject in which we never know what we are talking about, nor whether what we are say-

ing is true.” This is because mathematics does not make ontological claims, its only crite-

rion being internal consistency. Although Gödel demonstrated that we could never prove 

the internal consistency of the system as a whole, we consistently find consistency in its 

development, and this consistency owes to the psychology of mathematics. 

Tall, Thomas, Davis, Gray & Simpson (1999) noted a common theme in many of the 

theories explaining how students construct mathematics. Whether in terms of Piaget’s 

reflective abstraction, Sfard’s (1991) theory of reification, or Dubinsky’s (1991) APOS, 

students’ progress from performing actions on objects, to treating those actions as objects 

upon which to act. As a simple example, consider the construction of the mathematical 

object, 5. 

Young children initially understand 5 as a member of a verbal counting sequence, 

not so different from the letter E in the alphabet. The number 5 starts to take on a car-

dinal meaning when the child begins to coordinate pointing acts with her verbal utter-

ances, in one-to-one correspondence. Still, the child has to reproduce each instantia-

tion of 5 through that coordinated activity (Steffe, 1992). For children at this stage, 

answering the question, “how many 1’s are there in 5,” is a genuine problem, which 

they would likely solve by counting out five fingers. Only after this activity is interi-

orized, does 5 become an object for them. At this point, questions that involve acting 

on 5 begin to make sense (e.g., how much is four 5’s?). 

The basic nature of this development is illustrated in Figure 1. The number 5, which 

had existed only through the students’ coordinated activity, becomes an object (top arrow) 

that, as an object, the student can now act upon it (bottom arrow). 

 
Figure 1. Mathematics as objectified action. 

 

In fact, we can use this simple illustration to trace a rough progression from elemen-

tary to advanced mathematics, as outlined in Table 1. 
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Table 1.  An action-object progression in algebra. 

Actions Objects Sources 

Coordinated counting Whole numbers Steffe, 1992 

Composing whole numbers (as in 

addition or multiplication) 

Composite numbers: additive 

and multiplicative structures 

Steffe & Olive, 2010; 

Ulrich, 2012 

Mapping additive to multiplicative 

structures 
Exponential relationships Confrey & Smith, 1995 

Performing additive, multiplicative, 

and exponential operations on un-

knowns 

Algebraic expressions and 

equations 
Hackenberg, 2005 

Mapping algebraic expressions to 

unknowns 
Algebraic functions 

Sfard & Linchevski, 

1994 

Composing and structuring (re-

versible) operations 

Abstract algebraic structures 

(e.g., groups, rings, and fields) 

Dubinsky, Dautermann, 

Leron, & Zazkis, 1994 

Mapping algebraic structures to 

algebraic structures 
Homomorphisms 

Leron, Hazzan, & 

Zazkis, 1995 

  

When high school algebra teachers ask their students to graph the function, y=2x
2
-7, 

they want the students to understand the graph and its equation as representing the same 

object—an invariant relationship between to varying quantities. However, for many of 

their students, even the expression 2x
2
-7, remains a command for action, and not a trans-

formation that might map x to a new variable, y. Thus, the task of graphing the function 

becomes an activity of point plotting, with no consideration of the invariant relationship 

the resulting graph might represent. 

If we cannot sympathize with the struggles such students experience, try considering 

homomorphisms as objects. We can remind ourselves of the definition of a homomor-

phism, just as we can define function for our students: A group homomorphism, say, is a 

mapping from one group to another that maps the product of two elements to product of 

their mappings. If this definition is not helpful, we could consider an example: f(x)=e
x
 is a 

homomorphism (and, furthermore, an isomorphism) from the group of integers under ad-

dition to the group of positive real numbers under multiplication because e(a+b)=e
a
e

b
. 

Of course, making sense of the definition and example demands that we have already 

constructed groups as objects on which to act. But even if groups are objects for us, and 

even if f(x)=e
x
 is an object for us, as a function, are homomorphsisms objects for us? Can 

we yet consider groups and mappings of homomorophsisms? “For an experienced math-

ematician, it is possible to think of a homomorphism as a single unified concept, indeed, 

as a single object” (Leron, Hazzan, & Zazkis, 1995, p. 153). Even if I can objectify ho-

momorphisms, the progression continues, building further empathy for the experience of 

algebra students: For every professional algebraist in the world, a cohomology is also an 

object to act upon, but for me it is only a diagram of transformations to act within. 

The objectification of action is the unifying theme in mathematical experience that 
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makes the experience mathematical. If we want to understand the lived mathematical ex-

periences of students, we need to consider their mental actions, the objects they act upon, 

and the origins of those objects, as objectified actions. As researchers, we have no access 

to students’ mental actions, any more than we have access students’ mathematical experi-

ences themselves. However, through our interactions with students, we can infer those 

actions, build structured models of their organization, and then rely on these models to 

understand how students experience mathematics. 

 

 

BUILDING MODELS OF STUDENTS’ MATHEMATICS 

 

According to Piaget’s Structuralism (1970), actions form the basis for all logico-

mathematical knowledge. Beyond becoming internalized as mental actions (operations) 

that students can carry out in imagination, what renders an action mathematical is its or-

ganization within a structure of related operations. This is not to say that the student is 

aware of the structure, but rather that, from an observer’s perspective, the student com-

poses the operations with one another in a way that follows logical rules, similar to those 

of a mathematical group. In particular, mathematical operations are closed, in the sense 

that composing two operations within the same structure results in another operation 

within that same structure; and mathematical operations are reversible, in the sense that, 

for every operation, there is an inverse operation that undoes it. 

For example, consider the group of displacements, which children construct in their 

first year of life, along with their construction object permanence and space (Piaget, 

1967/1948). Children learn that any potential action involving the movement of an object 

from one location to another can be combined with other movements to produce new 

movements, including an inverse movement that returns the object to its original location. 

Children know nothing of mathematical groups, but from observations of their physical 

actions, we can infer such an underlying structure that explains and predicts how they 

might reason with space. 

Once constructed, students can use their operations in purposeful activity, in an at-

tempt to control the world they experience. In fact, as humans, we all do this every day, 

often outside of our own awareness. For example, when making spaghetti for my family, I 

estimate the amount of noodles to boil based on how much each person would get if it 

were split evenly. I do not make this estimate this by imagining the desired share for one 

person and then measuring out, or iterating, four of these shares. Instead, I operate in re-

verse, by continually partitioning the amount thrown in the pot until the four parts reach 

the desired amount, knowing that this will yield the same result. I know this action will 

yield the same result because partitioning and iterating are inverse operations for me—
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part of a group-like structure described in Wilkins & Norton (2011). What makes the ex-

perience mathematical for me, is not that I considered it mathematical at the time, but 

rather that I relied upon a structure for composing mental actions that I did not need to 

perform; and I was, thus, acting on my mental actions (see Figure 1) within that structure. 

By working intensively with individual or small groups (usually pairs) of students, 

teaching experiments and clinical interviews provide a means for researchers to infer 

when a student’s actions indicate a similar reliance on mathematical structures. Teaching 

experiments (Steffe & Thompson, 2000) in particular provide opportunities for longitudi-

nal interactions between the teacher-researcher and the students. The teacher-researcher’s 

goal during these interactions is to provoke student activity and to build second-order 

models of the students’ thinking that explain that activity. Over the course of a teaching 

experiment (usually several weeks), the researcher makes use of retrospective analysis 

(usually using video recordings) to modify and refine the explanatory models. The teach-

er-researcher also designs tasks for future sessions with which to test these models by 

predicting how the students will respond to the tasks. This iterative process of refining 

and testing the model continues until the researcher’s models reach stability, consistently 

explaining observations of the students’ actions and verbalizations across sessions. 

The models mathematics education researchers construct often rely upon a second 

kind of Piagetian structure—operational schemes—in which mathematical operations 

form the key elements (Steffe & Olive, 2010). Operational schemes describe students’ 

ways of operating, including a description of the situations that students assimilate into 

that way of operating, the combination of operations activated in those situations, and the 

expected result of operating. Whereas group-like structures can be used to describe how 

operations can be organized and composed with each other (and, thus, acted upon), 

schemes describe how those operations can be used to resolve problematic situations. 

Because the models developed from teaching experiments explain and predict obser-

vations, they qualify as scientific models. Because we cannot access to students’ mathe-

matical experiences directly, we can do no better. On the other hand, we might rely on 

these scientific models to interpret aspects of students’ lived mathematical experiences, 

beyond descriptions of structures that explain and predict their mathematical activity. 

 

 

LIVED MATHEMATICAL EXPERIENCE 

 

The first section of this paper characterized mathematics as the objectification of ac-

tion: Mathematical actions are actions that can be interiorized as objects to act upon. The 

second section shared Piaget’s structuralism as a theoretical framework for building mod-

els of students’ mathematics. Thus, we have identified a means for determining whether 
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an experience is mathematical and for explaining how students might operate within 

those experiences. In this section, we consider approaches to understanding the mathe-

matical experiences in which students operate. 

The difficulty in understanding the mathematical experience of another person stems 

from the fact that this experience precedes any form of language by which it might be 

communicated. Even when we attempt to understand our own mathematical experience, 

through introspection, we have to dig beneath our explanation of it. As Norretranders 

(1998) described in “The User Illusion,” lived experience precedes the narratives that de-

fine our conscious lives, and we often lie to ourselves in constructing those narratives. 

Attempting to access and share raw experience is the domain of art and poetry. However, 

the models we construct of students’ mathematics can provide starting points for empathy. 

In building models of students’ mathematics, we validate and stipulate their ways of 

operating. As such, we put ourselves in a position to participate in their mathematical ac-

tivity. On the other hand, our affective responses to this activity and the particular image-

ry it invokes—aspects of experience inextricably tied to cognition—will likely differ con-

siderably from those of the students. Understanding how students experience mathemat-

ics requires that we attempt to not only participate in, but to co-participate with the stu-

dents’ mathematical activity. Hackenberg (2010) has described such attempts in terms of 

mathematical caring relations: “a quality of interaction between a student and a teacher 

that conjoins affective and cognitive realms in the process of aiming for mathematical 

learning” (p. 237). Mathematical caring relations rely on models of students’ mathematics 

to inform the teacher-researcher’s balance between challenging students’ ways of operat-

ing and harmonizing with those ways of operating. 

We should also recognize that students are building models of us, as teacher-

researchers, even as we build models of them. In fact, communication in general can be 

understood as a process of reciprocal model building (von Glasersfeld, 1995), where each 

participant in a conversation chooses her words and gestures to evoke mental actions, im-

ages, and affective responses from the other participants, in an attempt to convey a 

thought or feeling—attempts to be understood. Furthermore, these participants make use 

of queues read through eye contact and body language, for example, in order to test and 

refine third-order models of the other participants’ models of the speaker herself. In the 

context of a teaching experiment, we can foster mathematical communication and harmo-

ny by describing our models of students’ mathematics to the students themselves, so they 

can react to them, thus supporting refinements to the students’ third-order models of our 

second-order models of them, as well as our third-order models of the students’ second-

order models of us. 

Students want to be understood as much as they want to understand. Building second-

order models of students’ mathematics provides a starting point for understanding their 
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mathematical experience. These second-order models prescribe mathematical activity that 

we can participate in, and they help us identify that activity as mathematical. Although 

raw experience may remain elusive, even to ourselves, we can begin to understand how 

students experience mathematical activity if we co-participate in that activity. And we can 

further harmonize with the experience of that activity by communicating our second-

order models to the students themselves. 
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