DOI QR코드

DOI QR Code

수소-산소 동축 분사기에 대한 리세스 효과 수치해석

Numerical Analysis of Recess Effects on Gaseous Hydrogen/Liquid Oxygen Coaxial Injector

  • Lee, Kibum (School of Mechanical Engineering, Kyungpook National University) ;
  • Park, Tae Seon (School of Mechanical Engineering, Kyungpook National University)
  • 투고 : 2015.06.02
  • 심사 : 2016.04.13
  • 발행 : 2016.06.01

초록

본 연구에서 리세스가 있는 기체수소/액체산소 2차원 동축 전단 분사기에 대해 연소해석을 수행하였다. 이상기체와 실제기체 상태방정식을 이용한 정상상태 난류연소에 대해 표준 ${\kappa}-e$ 모델과 층류 화염편 모델이 선택되었다. 리세스 길이가 증가할수록 연소실 내 재순환의 크기가 커지고 와도가 강해졌다. 또한, 온도, 연소생성물, 압력의 변화가 리세스 길이에 큰 영향을 받았다. 해석된 결과들은 리세스가 있는 분사기에 의해서 효과적인 연소기를 얻을 수 있음을 보여주었다.

The reacting flows of gaseous hydrogen/liquid oxygen 2D coaxial shear injector with varying recess length are numerically analyzed. The standard ${\kappa}-e$ model and laminar flamelet model are adopted for the steady turbulent combustion with the ideal and real gas equations. As the recess length increases, the recirculating region in the combustion chamber expands and the vorticity is intensified. Also, the variations of temperature, products, and pressure are strongly related to the recess length. The results show that an efficient combustor can be obtained by the introduction of the recessed injector.

키워드

참고문헌

  1. Park, T.S., "LES and RANS simulations of cryogenic liquid nitrogen jets," The Journal of Supercritical Fluids, Vol. 72, pp. 232-247, 2012. https://doi.org/10.1016/j.supflu.2012.09.004
  2. Tsohas, J., Canino, J.V., Heister, S.D., "Computational Modeling of Rocket Injector Internal Flows", 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, O.H., U.S.A., AIAA 2007-5571, Jul. 2007.
  3. Giorgi, M.G., Tarantino, L., Ficarella, A., Laforgia, D., "Numerical Modelling of High-Pressure Cryogenic Sprays", 40th Fluid Dynamics Conference and Exhibit, I.L., U.S.A., AIAA 2010-5007, Jul. 2010.
  4. Fluent User Guide & Theory Guide.
  5. Kim, W.H., Park, T.S., "An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 3, pp. 21-29, 2013. https://doi.org/10.6108/KSPE.2013.17.3.021
  6. Park, T.S., "RANS-LES Simulations of Scalar Mixing on Recessed Coaxial Injectors," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 1, pp. 55-63, 2012. https://doi.org/10.6108/KSPE.2012.16.1.055
  7. Park, T.S., Chung, Y.M., "Turbulent Flow and Scalar Mixing of a Coaxial Injector Having Two Fluid Jets," Numerical Heat Transfer-Part A Vol. 60, pp. 197-211, 2011. https://doi.org/10.1080/10407782.2011.582410
  8. Park, T.S., Kim, S.K., "A Pressure -Based Algorithm for Gaseous Hydrogen/Liquid Oxygen Jet Flame at Supercritical pressure", Numerical Heat Transfer-Part A, Vol. 67, pp. 547-570, 2015. https://doi.org/10.1080/10407782.2014.937267
  9. Candel, S., Juniper, M., Singla, G., Scouflaire, P., Rolon, C., "Structure and Dynamics of Cryogenic Flames at supercritical pressure," Combust. Sci. and Tech., Vol. 178, pp. 161-192, 2006. https://doi.org/10.1080/00102200500292530