DOI QR코드

DOI QR Code

Facilitation of tolaasin-induced hemolysis by phospholipids composed of medium-chain fatty acids

중간크기 탄소사슬의 지방산으로 이루어진 인지질에 의한 tolaasin의 용혈활성 촉진

  • Yun, Yeong-Bae (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Kim, Min-Hee (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2016.05.17
  • Accepted : 2016.05.20
  • Published : 2016.09.30

Abstract

Tolaasin is a pore-forming peptide toxin produced by Pseudomonas tolaasii and causes a brown blotch disease by disrupting membrane structures of cultivated mushrooms. The mechanism and characteristics of tolaasin pore formation are not known in detail; however, tolaasin pores have been demonstrated in the artificial lipid bilayer. Since the tolaasin pore appeared less frequently and unstable in lipid bilayer, a mismatch between the length of tolaasin pore and the thickness of lipid membrane had been suggested. Therefore, tolaasin-induced hemolyses were measured by the additions of phospholipids composed of various fatty acids with different carbon numbers. When phosphatidylethanolamines made with two decanoic acids (C10:0, 1,2-didecanoyl-sn-glycero-3-phosphoethanolamine; DDPE), myristic acids (C14:0, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine), and stearic acids (C18:0, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine) were added to the buffer containing RBCs and tolaasin peptides, DDPE facilitated the tolaasin-induced hemolysis while the other two phospholipids showed no effects. At various concentrations of DDPE, the tolaasin-induced hemolysis was stimulated as a dose-dependent manner. The phospholipids composed of mediumchain fatty acids stabilize the tolaasin pore probably by binding between the pore structure and membrane phospholipids and making the membrane thickness thinner around the pore. These results showed that tolaasin molecules make more stable pores in the membrane made with phospholipids composed of medium length fatty acids, suggesting that the length of tolaasin pore is a little shorter than the thickness of RBC membrane.

Tolaasin은 Pseudomonas tolaasii에 의해 생성되어 pore를 형성하는 펩티드 독소이며, 인공재배 버섯의 막 구조를 파괴하여 갈반병을 일으킨다. Tolaasin이 막에서 pore를 형성하는 기작이나 특성은 자세히 알려지지 않았으나, 인공 지질이중막에서 tolaasin에 의한 pore 형성은 제시되었다. Tolaasin에 의한 지질막에서의 pore 형성은 드물게 나타났고, 형성된 pore는 불안정하기에 tolaasin pore의 길이와 지질막의 두께가 서로 일치하지 않을 수 있음이 제안되었다. 그러므로, 탄소수가 다른 지방산으로 이루어진 인지질들을 첨가하여 tolaasin에 의한 용혈활성 변화를 측정하였다. 두 개의 decanoic acids (C10:0, 1,2-didecanoyl-sn-glycero-3-phosphoethanolamine; DDPE)와 myristic acids (C14:0, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine), stearic acids(C18:0, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine)로 이루어진 phosphatidylethanolamine들을 적혈구와 tolaasin 펩티드가 포함된 반응용액에 가했을 때, DDPE만이 tolaasin에 의한 용혈활성을 촉진하였으며, 나머지 두 인지질은 효과를 보이지 않았다. DDPE를 다양한 농도로 처리하였을 때, tolaasin에 의한 용혈활성은 농도의존적으로 증가하였다. 중간길이의 지방산으로 구성된 인지질은 tolaasin pore 구조와 막지질 사이에 결합하여 pore 주변의 막을 얇게 함으로써 tolaasin pore를 안정화시킬 것으로 여겨진다. 본 연구의 결과는 중간 크기의 지방산으로 구성된 인지질이 tolaasin pore를 막 구조에서 안정화시킴으로써 활성을 증가시키며, 이것은 적혈구 막에서 tolaasin pore의 길이가 막의 두께보다 조금 짧을 것이라는 사실을 제안한다.

Keywords

References

  1. Bassarello C, Lazzaroni S, Bifulco G, Lo Cantore P, Iacobellis NS, Riccio R, Gomez-Paloma L, Evidente A (2004) Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod 67: 811-816 https://doi.org/10.1021/np0303557
  2. Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochem Biophys Acta 1758: 1529-1539 https://doi.org/10.1016/j.bbamem.2006.07.001
  3. Bilgehan DP (2002) Fatty acid composition of red blood cell membrane phosphatidylethanolamine and phosphatidylcholine in rat, rabbit, human, and dog. J Fac Pharm Ankara 31: 169-182
  4. Chernitsky EA, Senkovich OA (1997) Erythrocyte hemolysis by detergents. Membr Cell Biol 11: 475-485
  5. Cho KH, Kim YK (2003) Two types of ion channel formation of tolaasin, a Pseudomonas peptide toxin. FEMS Microbiol Lett 221: 221-226 https://doi.org/10.1016/S0378-1097(03)00182-4
  6. Cho KH, Park KS, Kim YK (2000) Hemolytic properties of tolaasin causing the brown blotch disease on oyster mushroom. J Kor Soc Agric Chem Biotechnol 43: 190-195
  7. Hiep HM, Endo T, Saito M, Chikae M, Kim DK, Yamamura S, Takamura Y, Yamiya E (2008) Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasma resonance. Anal Chem 80: 1859-1864 https://doi.org/10.1021/ac800087u
  8. Jourdan F, Lazzaroni S, Mendez BL, Cantore PL, Julio M, Amodeo P, Iacobellis NS, Evidente A, Motta A (2003) A left-handed ${\alpha}$-helix containing both L- and D-amino acids: The solution structure of the antimicrobial lipodepsipeptide tolaasin. Proteins: Struct Funct Genet 52: 534-543 https://doi.org/10.1002/prot.10418
  9. Nutkins JC, Mortichire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J AM Chem Soc 113: 2621-2627 https://doi.org/10.1021/ja00007a040
  10. Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Bio 88: 91-142 https://doi.org/10.1016/j.pbiomolbio.2004.01.009
  11. Peng JT (1986) Resistance to disease in Agaricus bisporus (Lange) Imbach. Dissertation, University of Leeds
  12. Rainey PB, Brodey CL, Johnstone K (1991) Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol Mol Plant Pathol 39: 57-70 https://doi.org/10.1016/0885-5765(91)90031-C
  13. Shai Y (1999) Mechanism of the binding, insertion, and destabilization of phospholipid bilayer membrane by ${\alpha}$-helix antimicrobial and cell nonselective membrane-lytic peptides. Biochem Biophys Acta 1462: 55-70 https://doi.org/10.1016/S0005-2736(99)00200-X
  14. Shirata A, Sugaya K, Takasugi M, Monde K (1995) Isolation and biological activity of toxins produced by a Japanese strain of Pseudomonas tolaasii, the pathogen of bacterial rot of cultivated oyster mushroom. Ann Phytopathol Soc Jpn 61: 493-502 https://doi.org/10.3186/jjphytopath.61.493
  15. Solar-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers HJ (1999) Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol Rev 23: 591-614 https://doi.org/10.1111/j.1574-6976.1999.tb00415.x
  16. Tolaas AG (1915) A bacterial disease of cultivated mushrooms. Phytopathol 5: 51-54
  17. Weber ME, Schlesinger PH, Gokel GW (2005) Dynamic assessment of bilayer thickness by varying phospholipid and hydraphile synthetic channel chain lengths. J Am Chem Soc 127: 636-642 https://doi.org/10.1021/ja044936+
  18. Weschayanwiwat P, Scamehorn JF, Reilly PJ (2005) Surfactant properties of low molecular weight phospholipids. J Surf Deterg 8: 65-72 https://doi.org/10.1007/s11743-005-0332-8