DIFFERENTIAL EQUATIONS ASSOCIATED WITH TANGENT NUMBERS

C.S. RYOO

Abstract

In this paper, we study differential equations arising from the generating functions of tangent numbers. We give explicit identities for the tangent numbers.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. Key words and phrases : Tangent numbers and polynomials, higher-order tangent numbers, differential equations.

1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers, Euler numbers, Genocchi numbers, and tangent numbers (see [2, 3, 4, 6, $7,8]$). Tangent numbers T_{n} and polynomials, $T_{n}(x)(n \geq 0)$, were introduced by Ryoo (see [5]). The tangent numbers T_{n} are defined by the generating function:

$$
\begin{equation*}
F=F(t)=\frac{2}{e^{2 t}+1}=\sum_{n=0}^{\infty} T_{n} \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

We introduce the tangent polynomials $T_{n}(x)$ as follows:

$$
\begin{equation*}
\left(\frac{2}{e^{2 t}+1}\right) e^{x t}=\sum_{n=0}^{\infty} T_{n, q}(x) \frac{t^{n}}{n!} . \tag{1.2}
\end{equation*}
$$

In [6], Tangent numbers of higher order, $T_{n}^{(k)}$ are defined by means of the following generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} T_{n}^{(k)} \frac{t^{n}}{n!}=\left(\frac{2}{e^{2 t}+1}\right)^{k} \tag{1.3}
\end{equation*}
$$

Received May 27, 2016. Revised June 20, 2016. Accepted July 6, 2016.
(c) 2016 Korean SIGCAM and KSCAM.

The first few of them are

$$
\begin{aligned}
& T_{0}^{(k)}=1 \\
& T_{1}^{(k)}=-k \\
& T_{2}^{(k)}=-k+k^{2}, \\
& T_{3}^{(k)}=3 k^{2}-k^{3} \\
& T_{4}^{(k)}=2 k+3 k^{2}-6 k^{3}+k^{4}, \\
& T_{5}^{(k)}=-10 k^{2}-15 k^{3}+10 k^{4}-k^{5} \\
& T_{6}^{(k)}=-16 k-30 k^{2}+15 k^{3}+45 k^{4}-15 k^{5}+k^{6} \\
& T_{7}^{(k)}=112 k^{2}+210 k^{3}+35 k^{4}-105 k^{5}+21 k^{6}-k^{7} \\
& T_{8}^{(k)}=272 k+588 k^{2}-28 k^{3}-735 k^{4}-280 k^{5}+210 k^{6}-28 k^{7}+k^{8} \\
& T_{9}^{(k)}=-2448 k^{2}-5292 k^{3}-2436 k^{4}+1575 k^{5}+1008 k^{6}-378 k^{7}+36 k^{8}-k^{9} .
\end{aligned}
$$

Nonlinear differential equations arising from the generating functions of special polynomials are studied by T. Kim and D. Kim in order to give explicit identities for special polynomials(see [1, 4]). In this paper, we study differential equations arising from the generating functions of tangent numbers. We give explicit identities for the tangent numbers.

2. Differential equations associated with tangent numbers

In this section, we study linear differential equations arising from the generating functions of tangent numbers. Let

$$
\begin{equation*}
F=F(t)=\frac{2}{e^{2 t}+1} \tag{2.1}
\end{equation*}
$$

Then, by (2.1), we have

$$
\begin{align*}
F^{(1)} & =\frac{d}{d t} F(t)=\frac{d}{d t}\left(\frac{2}{e^{2 t}+1}\right)=-2\left(\frac{2}{e^{2 t}+1}\right)+\left(\frac{2}{e^{2 t}+1}\right)^{2} \\
& =-2 F+F^{2} \tag{2.2}\\
F^{(2)} & =\frac{d}{d t} F^{(1)}=-2 F^{(1)}+2 F F^{(1)} \\
& =(-1)^{2} 4 F+(-1) 6 F^{2}+2 F^{3},
\end{align*}
$$

and

$$
\begin{align*}
F^{(3)}=\frac{d}{d t} F^{(2)} & =(-1)^{2} 4 F^{(1)}+(-1) 12 F F^{(1)}+6 F^{2} F^{(1)} \tag{2.3}\\
& =(-1)^{3} 8 F+(-1)^{2} 28 F^{2}+(-1) 24 F^{3}+6 F^{4} .
\end{align*}
$$

Continuing this process, we can guess that

$$
\begin{align*}
F^{(N)} & =\left(\frac{d}{d t}\right)^{N} F(t) \\
& =(-1)^{N} \sum_{i=1}^{N+1} a_{i}(N) F^{i}, \quad(N=0,1,2, \ldots) \tag{2.4}
\end{align*}
$$

Taking the derivative with respect to t in (2.4), we have

$$
\begin{align*}
F^{(N+1)} & =\frac{d F^{(N)}}{d t} \\
& =(-1)^{N} \sum_{i=1}^{N+1} i a_{i}(N) F^{i-1} F^{(1)} \\
& =(-1)^{N} \sum_{i=1}^{N+1} i a_{i}(N) F^{i-1}\left(-2 F+F^{2}\right) \tag{2.5}\\
& =(-1)^{N} \sum_{i=1}^{N+1}(-2) i a_{i}(N) F^{i}+(-1)^{N} \sum_{i=1}^{N+1} i a_{i}(N) F^{i+1} \\
& =(-1)^{N+1}\left(\sum_{i=1}^{N+1} 2 i a_{i}(N) F^{i}-\sum_{i=2}^{N+2}(i-1) a_{i-1}(N) F^{i}\right) .
\end{align*}
$$

On the other hand, by replacing N by $N+1$ in (2.4), we get

$$
\begin{equation*}
F^{(N+1)}=(-1)^{N+1} \sum_{i=1}^{N+2} a_{i}(N+1) F^{i} \tag{2.6}
\end{equation*}
$$

By (2.5) and (2.6), we have

$$
\begin{equation*}
\sum_{i=1}^{N+1} 2 i a_{i}(N) F^{i}-\sum_{i=2}^{N+2}(i-1) a_{i-1}(N) F^{i}=\sum_{i=1}^{N+2} a_{i}(N+1) F^{i} \tag{2.7}
\end{equation*}
$$

Comparing the coefficients on both sides of (2.7), we obtain

$$
\begin{equation*}
2 a_{1}(N)=a_{1}(N+1), \quad a_{N+2}(N+1)=-(N+1) a_{N+1}(N), \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i}(N+1)=2 i a_{i}(N)-(i-1) a_{i-1}(N),(2 \leq i \leq N+1) . \tag{2.9}
\end{equation*}
$$

In addition, by (2.4), we get

$$
\begin{equation*}
F=F^{(0)}=a_{1}(0) F . \tag{2.10}
\end{equation*}
$$

Thus, by (2.10), we obtain

$$
\begin{equation*}
a_{1}(0)=1 . \tag{2.11}
\end{equation*}
$$

It is not difficult to show that

$$
\begin{align*}
-2 F+F^{2} & =F^{(1)} \\
& =(-1)\left(\sum_{i=1}^{2} a_{i}(1) F^{i}\right) \tag{2.12}\\
& =-a_{1}(1) F-a_{2}(1) F^{2}
\end{align*}
$$

Thus, by (2.12), we also get

$$
\begin{equation*}
a_{1}(1)=2, \quad a_{2}(1)=-1 . \tag{2.13}
\end{equation*}
$$

From (2.8), we note that

$$
\begin{align*}
a_{1}(N+1) & =2 a_{1}(N) \\
& =2^{2} a_{1}(N-1) \\
& =\cdots \tag{2.14}\\
& =2^{N} a_{1}(1) \\
& =2^{N+1},
\end{align*}
$$

and

$$
\begin{aligned}
a_{N+2}(N+1) & =-(N+1) a_{N+1}(N) \\
& =(-1)^{2}(N+1) N a_{N}(N-1) \\
& =\cdots \\
& =(-1)^{N+1}(N+1) N(N-1) \cdots 3 \cdot 2
\end{aligned}
$$

For $i=2,3,4$ in (2.9), we have

$$
\begin{aligned}
& a_{2}(N+1)=(-1) \sum_{k=0}^{N}(2-1)(2 \cdot 2)^{k} a_{1}(N-k), \\
& a_{3}(N+1)=(-1) \sum_{k=0}^{N-1}(3-1)(2 \cdot 3)^{k} a_{2}(N-k),
\end{aligned}
$$

and

$$
a_{4}(N+1)=(-1) \sum_{k=0}^{N-2}(4-1)(2 \cdot 4)^{k} a_{3}(N-k)
$$

Continuing this process, we can deduce that, for $2 \leq i \leq N+1$,

$$
\begin{equation*}
a_{i}(N+1)=(-1) \sum_{k=0}^{N-i+2}(i-1)(2 \cdot i)^{k} a_{i-1}(N-k) \tag{2.15}
\end{equation*}
$$

Here, we note that the matrix $a_{i}(j)_{1 \leq i \leq N+2,0 \leq j \leq N+1}$ is given by

$$
\left(\begin{array}{cccccc}
1 & 2 & 2^{2} & 2^{3} & \cdots & 2^{N+1} \\
0 & (-1) 1! & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & (-1)^{2} 2! & \cdot & \cdots & \cdot \\
0 & 0 & 0 & (-1)^{3} 3! & \cdots & \cdot \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & (-1)^{N+1}(N+1)!
\end{array}\right)
$$

Now, we give explicit expressions for $a_{i}(N+1)$. By (2.14) and (2.15), we get

$$
\begin{gathered}
a_{2}(N+1)=(-1) \sum_{k_{1}=0}^{N}(2-1)(2 \cdot 2)^{k} a_{1}\left(N-k_{1}\right) \\
=(-1) \sum_{k_{1}=0}^{N}(2-1)(2 \cdot 2)^{k_{1}} 2^{N-k_{1}}, \\
a_{3}(N+1)=(-1) \sum_{k_{2}=0}^{N-1}(3-1)(2 \cdot 3)^{k_{2}} a_{2}\left(N-k_{2}\right) \\
=(-1)^{2} \sum_{k_{2}=0}^{N-1} \sum_{k_{1}=0}^{N-k_{2}-1}(2-1)(3-1)(2 \cdot 2)^{k_{1}}(2 \cdot 3)^{k_{2}} 2^{N-k_{2}-k_{1}-1},
\end{gathered}
$$

and

$$
\begin{aligned}
& a_{4}(N+1) \\
& =(-1) \sum_{k_{3}=0}^{N-2}(4-1)(2 \cdot 4)^{k_{3}} a_{3}\left(N-k_{3}\right) \\
& =(-1)^{3} \sum_{k_{3}=0}^{N-2} \sum_{k_{2}=0}^{N-k_{3}-2} \sum_{k_{1}=0}^{N-k_{3}-k_{2}-2} 1 \cdot 2 \cdot 3(2 \cdot 4)^{k_{3}}(2 \cdot 3)^{k_{2}}(2 \cdot 2)^{k_{1}} 2^{N-k_{3}-k_{2}-k_{1}-2} .
\end{aligned}
$$

Continuing this process, we have

$$
\begin{align*}
a_{i}(N+1)=(-1)^{i-1} & \sum_{k_{i-1}=0}^{N-i+2} \tag{2.16}
\end{align*} \sum_{k_{i-2}=0}^{N-i+2-k_{i-1}} \cdots \sum_{k_{1}=0}^{N-i+2-k_{i-1}-\cdots-k_{2}}(i-1)!.
$$

Therefore, by (2.16), we obtain the following theorem.
Theorem 2.1. For $N=0,1,2, \ldots$, the functional equations

$$
F^{(N)}=(-1)^{N}\left(\sum_{i=1}^{N+1} a_{i}(N) F^{i}\right)
$$

have a solution

$$
F=F(t)=\frac{2}{e^{2 t}+1}
$$

where

$$
\begin{aligned}
& a_{1}(N)=2^{N}, \\
& a_{N+1}(N)=(-1)^{N} N(N-1) \cdots 3 \cdot 2, \\
& a_{i}(N)=(-1)^{i-1} \sum_{k_{i-1}=0}^{N-i+1} \sum_{k_{i-2}=0}^{N-i+1-k_{i-1}} \cdots \sum_{k_{1}=0}^{N-i+1-k_{i-1}-\cdots-k_{2}}(i-1)! \\
& \quad \times\left(\prod_{l=2}^{i}(2 \cdot l)^{k_{l-1}}\right) 2^{N-i+1-k_{i-1}-k_{i-2}-\cdots-k_{2}-k_{1}}
\end{aligned}
$$

Here is a plot of the surface for this solution. In Figure 1, we plot of the shape

Figure 1. The shape for the solution $F(t)$
for this solution.
From (1.1), we note that

$$
\begin{equation*}
F^{(N)}=\left(\frac{d}{d t}\right)^{N} F(t)=\sum_{k=0}^{\infty} T_{k+N} \frac{t^{k}}{k!} \tag{2.17}
\end{equation*}
$$

From Theorem 1, (1.3), and (2.17), we can derive the following equation:

$$
\begin{align*}
\sum_{k=0}^{\infty} T_{k+N} \frac{t^{k}}{k!} & =F^{(N)} \\
& =(-1)^{N} \sum_{i=1}^{N+1} a_{i}(N)\left(\frac{2}{e^{2 t}+1}\right)^{i} \tag{2.18}\\
& =(-1)^{N} \sum_{i=1}^{N+1} a_{i}(N)\left(\sum_{k=0}^{\infty} T_{k}^{(i)} \frac{t^{k}}{k!}\right) \\
& =\sum_{k=0}^{\infty}\left((-1)^{N} \sum_{i=1}^{N+1} a_{i}(N) T_{k}^{(i)}\right) \frac{t^{k}}{k!}
\end{align*}
$$

By comparing the coefficients on both sides of (2.18), we obtain the following theorem.

Theorem 2.2. For $k, N=0,1,2, \ldots$, we have

$$
\begin{align*}
& T_{k+N}=(-1)^{N} \sum_{i=1}^{N+1} a_{i}(N) T_{k}^{(i)}, \tag{1.19}\\
& a_{1}(N)=2^{N}, \\
& a_{N+1}(N)=(-1)^{N} N(N-1) \cdots 3 \cdot 2, \\
& a_{i}(N)=(-1)^{i-1} \sum_{k_{i-1}=0}^{N-i+1} \sum_{k_{i-2}=0}^{N-i+1-k_{i-1}} \cdots \sum_{k_{1}=0}^{N-i+1-k_{i-1}-\cdots-k_{2}}(i-1)! \\
& \times\left(\prod_{l=2}^{i}(2 \cdot l)^{k_{l-1}}\right) 2^{N-i+1-k_{i-1}-k_{i-2}-\cdots-k_{2}-k_{1}} .
\end{align*}
$$

Let us take $k=0$ in (2.19). Then, we have the following corollary.
Corollary 2.3. For $N=0,1,2, \ldots$, we have

$$
T_{N}=(-1)^{N} \sum_{i=1}^{N+1} a_{i}(N)
$$

References

1. A. Bayad, T. Kim, Higher recurrences for Apostal-Bernoulli-Euler numbers, Russ. J. Math. Phys. 19 (2012), 1-10.
2. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol 3. New York: Krieger, 1981.
3. D.S. Kim, T. Kim, Some identities of Bell polynomials, Sci. China Math. 58 (2015), 20952104.
4. T. Kim, D.S. Kim, Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations, J. Nonlinear Sci. Appl. 9 (2016), 2086-2098.
5. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7 (2013), 447 - 454.
6. C.S. Ryoo, Multiple tangent zeta function and tangent polynomials of higher order, Adv. Studies Theor. Phys. 8 (2014), 457-462.
7. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App. Math. \& Informatics 32(2014), 315-322.
8. S. Roman, The umbral calculus, Pure and Applied Mathematics, 111, Academic Press, Inc. [Harcourt Brace Jovanovich Publishes]. New York, 1984.
C.S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea
e-mail: ryoocs@hnu.kr
