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RADIO LABELING AND RADIO NUMBER FOR

GENERALIZED CATERPILLAR GRAPHS†

SAIMA NAZEER, M. SAQIB KHAN, IMRANA KOUSAR, WAQAS NAZEER∗

Abstract. A Radio labeling of the graph G is a function g from the vertex
set V (G) of G to Z+ such that |g(u)−g(v)| ≥ diam(G)+1−dG(u, v), where
diam(G) and d(u, v) are diameter and distance between u and v in graph G

respectively. The radio number rn(G) of G is the smallest number k such
that G has radio labeling with max{g(v) : v ∈ V (G)} = k. We investigate
radio number for some families of generalized caterpillar graphs.
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1. Introduction

Radio labeling is an extension of distance two labeling, which is used to assign
channels to the transmitters of radio network such that the network satisfies all
the interference constraints. This assignment of channels to the transmitters is
popularly known as channel assignment problem which was introduced by Hale
[6] in 1980. For the solution of channel assignment problem, the interference
graph is developed and assignment of channels converted into graph labeling (a
graph labeling is an assignment of label to each vertex according to certain rule).
In interference graph, the vertices are used to represent transmitters, and there
is a major interference between two transmitters if the corresponding pair of
vertices are adjacent. While there is minor interference between transmitters if
corresponding vertices are at distance two, and there is no interference between
transmitters if they are at distance three or beyond it. In other words, very
close transmitters are represented by adjacent vertices, and close transmitters
are represented by the vertices which are at distance two apart.
In 1991, Roberts [21], suggested a solution for channel assignment problem and
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proposed that a pair of transmitters having minor interference must receive
different channels and a pair of transmitters having major interference must
receive channels that are at least two apart. Motivated through this Griggs and
Yeh [4] introduced distance two labeling, which is also known as L(2, 1)−labeling
and is defined as follows:

Definition 1.1. A distance two labeling (or L(2, 1)−labeling) of a graph G =
(V (G), E(G)) is a function g from vertex set V (G) to the set of nonnegative
integers such that the following conditions are satisfied:
(1) |g(u)− g(v)| ≥ 2 if d(u, v) = 1
(2) |g(u)− g(v)| ≥ 1 if d(u, v) = 2.

The difference between the largest and the smallest label assigned by g is
called the span of g and the minimum span over all L(2, 1)−labeling of G is called
the λ−number of G, denoted by λ(G). The L(2, 1)−labeling has explored in the
past two decades by many researchers like Yeh [30, 31], Georges and Mauro [3],
Sabaki [22], Chang and Kuo [2], Wang [28], Vaidya and Bantva [24], and Vaidya
et al. [25]. For more literture, we suggest the readers [9, 10, 11, 17, 7, 18, 19]
and the reference therein.
But as time passed, practically it has been observed that the interference among
transmitters might go beyond two levels. Radio labeling extends the number
of interference level considered in L(2, 1)−labeling from two to largest possible
interference among transmitter, i.e. the diameter ofG which is defined as follows:

Definition 1.2. The diameter of a graph is denoted by diam(G) and defined as
the maximum distance between any two vertices.
i.e diam(G) = max{d(u, v);u, v ∈ G}.

Where d(u, v) is distance between u and v which is defined as follows:

Definition 1.3. Let G be a connected graph, the distance d(u, v) between any
pair of vertices u, v is the length of the shortest path between them.

Definition 1.4. A radio labeling which is also known as multilevel distance
labeling of G is a function g : V (G) → Z+ such that the inequality |g(u)−g(v)| ≥
diam(G)+1−d(u, v) holds for any pair of distinct vertices u, v. The span of g is
the difference of the largest and the smallest channels used, maxu,v∈V (G){g(v)−
g(u)}. The radio number of G is denoted by rn(G) and is defined as the minimum
span of radio labeling of G.

Note that when diam(G) = 2 than radio labeling and distance two labeling
are identical. The radio labeling is studied in the past decade by many authors
like Liu [15], Liu and Xie [12, 13], Liu and Zhu [14] and Vaidya and Vihol
[27]. Moreover, the radio number for path and cycles was determined in [14],
for the square of paths was studied by Liu and Xie [13], for the square of a
cycle [12]. Radio Number for generalized prism graph was studied in [16] and a
generalized gear graph was discussed in [20], where lower bound of radio number
is determined. Radio labeling for some cycle related graphs are studied by S.K.
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Vadiya and P.L. Vihol [26]. Radio number for caterpillar graphs and caterpillar
related graphs has been determined in [23, 24, 25].

Definition 1.5. The caterpillar graph CPn is a graph which is obtained from
the path Pn by attaching a new terminal vertex to each non terminal vertex.

In [5] Ruxandra Marinescu-Ghemeci find radio number of caterpillar graphs
CPn, i.e.

rn(CPn) =

{
4k2 − 6k + 4, if n = 2k;

4k2 − 2k + 4, if n = 2k + 1.

First we define Generalized Caterpillar graphs.

Definition 1.6. C(m,0)Pn is Generalized Caterpillar obtained from Pn by at-
taching m vertices of degree one to each vertex of degree two of Pn.
C(m,1)Pn is Generalized Caterpillar obtained from Pn by attaching m vertices
of degree two to each vertex of degree two of Pn

In this paper, we completely determine the radio number for some families of
Generalized Caterpillar graphs defined above.

2. Main Results

Let T be a rooted tree. For any u ∈ V (T ), the status of u in T is defined by

ST (u) =
∑

w∈V (T )

d(u,w).

The status of T is minimum status among all vertices of T :

S(T ) = min{ST (u)|u ∈ V (T )}.
Let w∗ ∈ V (T ). If ST (w∗) = S(T ) then w∗ is called a weight center of T .

Theorem 2.1 ([15]). Let T be a tree with n vertices and diameter d. Then

rn(T ) ≥ (n− 1)(d+ 1) + 2− 2S(T ).

Moreover, the equality holds if and only if for every weight center w∗ there exists
a radio labeling g with g(w1) = 1 < g(w2) < · · · < g(wn) for which all following
properties hold, for every j with 1 ≤ j ≤ n− 1:

(1) wj and wj+1 belong to different branches, unless one of them is w∗;
(2) {w1, wn} = {w∗, v}, where v ∈ V (T ) such that d(w∗, v) = 1;
(3) g(wj+1) = g(wj) + d+ 1− d(v∗, wj)− d(v∗, wj+1).

Now, we discussed the radio labeling of Generalized Caterpillar graphs C(m,0)Pn

which is obtained from Pn by attaching m vertices of degree one to each vertex
of degree two of Pn. We have M = |V (C(m,0)Pn)| = n+ (n− 2)m and diameter
d = n− 1.

Theorem 2.2. Let C(m,0)Pn be the graph for m > 2 and with n = 2k+1, k ≥ 2.

Then the radio number for C(m,0)Pn is 2k2m− 2km+ 2k2 +m+ 2.
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Proof. By using Theorem 1, we achieved the lower bound for the radio number
of generalized caterpillar C(m,0)Pn graphs, which is obtained by attaching the
terminal vertices vi,ρ for i ≤ ρ ≤ m to the vertex vi, for each 2 ≤ i ≤ 2k. For
the sake of convenience we consider vi,ρ for i ≤ ρ ≤ m in anticlockwise direction
(See Figure 1).
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Figure 1. C(m,0)P2k+1

We have V (C(m,0)Pn) = n+(n−2)m = (2k+1)+(2k−1)m = M and d = 2k.
Now, we compute the status function of C(m,0)Pn. It is clear that C(m,0)Pn has
weight center vk + 1 in the case n = 2k + 1. We have

S(C(m,0)Pn) = SC(m,0)Pn(vk+1)

=
∑

v∈V (C(m,0)Pn)

d(vk+1, v)

= m.1 +m.2 +m.3 + ...m.k + 2.1 + 2.2

+ ...2.k + 2.m+ 3.m+ 4.m+ ...k.m

= (m+ 1)(k2 + k)−m

It follows from Theorem 1. that

rn(C(m,0)Pn) ≥ (V (C(m,0)Pn)− 1)(d+ 1) + 2− 2S(C(m,0)Pn)

= [(2k + 1) + (2k − 1)m− 1](2k + 1) + 2− 2[(m+ 1)(k2 + k)−m]

= 2k2m− 2km+ 2k2 +m+ 2.

Moreover, in order to prove equality, it suffices to find a radio labeling g for
C(m, 0)Pn that fulfil the properties(1)-(3) in Theorem 1 for weight center with

span(g) = 2k2m− 2km+ 2k2 +m+ 2.
For that, we order the vertices of C(m,0)Pn as follows:

vk+1 → v1 → vk+1,1 → v2k,1 → vk,1 → v2k−1,1 → vk−1,1 → v2k−2,1 → vk−2,1

→ ... → vk+2,1 → v2,1 → vk+1,2 → v2k,2 → vk,2 → v2k−1,2 → vk−1,2 → v2k−2,2

→ vk−2,2 → ... → vk+2,2 → v2,2 → vk+1,3 → v2k,3 → vk,3 → v2k−1,3 → vk−1,3

→ v2k−2,3 → vk−2,3 → ... → vk+2,3 → v2,3 → vk+1,4 → ... → vk+1,m → v2k,m

→ vk,m → v2k−1,m → vk−1,m → ... → vk+2,m → v2,m → v2k+1 → vk → v2k

→ vk−1 → v2k−1 → ... → vk−(k−2) = v2 → v2k−(k−2) = vk+2.

We rename the vertices of C(m,0)Pn in the above ordering by u1, u2, u3, ....uM .
A labeling g for C(m,0)Pn by using the rules given in (2) and (3) from Theorem
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1, is defined as follows: g(u1) = 1, g(ui+1) = g(ui) + d + 1 − d(ui+1, ui) for
1 ≤ i ≤ M − 1. The order in which the vertices are labeled and their labels are
shown in Fig.2 for k = 3,m = 3. Since we have the following distances:
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Figure 2. C(3,0)P7

d(vk+1−j,ρ, v2k−j,ρ) = k + 1 for 0 ≤ j ≤ k − 1 and 1 ≤ ρ ≤ m;

d(vj , vk+j) = k for 2 ≤ j ≤ k + 1;

d(v1, vk+1) = k;

d(v1, vk+1,1) = k + 1;

d(v2,m, v2k+1) = k;

d(v2,m, v2k+1) = 2k.

We get:

sp(g) = g(uM ) = g(vk+2) = g(u1) + (M − 1)(d+ 1)−
M−1∑
i=1

d(ui+1, ui)

= 2k2m− 2km+ 2k2 +m+ 2.

The following relations also hold:

g(vj) = g(vj+1) + 2k + 1 for 1 ≤ j ≤ k − 2;

g(vj) = g(vj+1) + 2k + 1 for k + 1 ≤ j ≤ 2k − 2;

g(v1) = gvk+1
+ k + 1;

g(vk+1,1) = g(v1) + k.

Similarly,

g(vj,ρ) = g(vj+1,ρ) + 2k − 1 for 2 ≤ j ≤ k, and 1 ≤ ρ ≤ m;

g(vj,ρ) = g(vj+1,ρ) + 2k − 1 for k + 2 ≤ j ≤ 2k − 1, and 1 ≤ ρ ≤ m.

|g(vi) − g(vj)| ≥ 2k + 1, |g(vi,ρ)− g(vj,ρ)| ≥ 2k − 1 for 1 ≤ ρ ≤ m, if vi, vj and
vi.ρ, vj,ρ for 1 ≤ ρ ≤ m are not consecutive in the order previously established.
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Consecutive vertices in the ordering satisfy radio condition by construction. For
every pair of distinct vertices u and v (both vertices are from Pn, both are
terminal or they are of different type), it is easy to verify that radio condition
are satisfied. So, g is a radio labeling for C(m, 0)Pn. Moreover, g was defined in
such a way, that it satisfies the properties (1) to (3) in Theorem 1 for the weight
center vk+1. Since the vertices ui and ui+1 belongs to different branches for 2 ≤
i ≤ m−1, u1 = vk+1 and uM = vk+2, with Lvk+1

(vk+2) = d(vk+1, vk+2) = 1. �

Theorem 2.3. Let C(m,0)Pn be the graph for m ≥ 2 and with n = 2k, k ≥ 2.

Then the radio number for (C(m,0)Pn) is 2k2m− 4km+ 2k2 − 2k + 2m+ 2.

Proof. In order to prove one inequality, we use Theorem 1 . The caterpillar
C(m,0)Pn is obtained by attaching the terminal vertices vi,ρ for i ≤ ρ ≤ m to the
vertex vi, for each 2 ≤ i ≤ 2k − 1. For the sake of convenience we consider vi,ρ
for i ≤ ρ ≤ m in anticlockwise direction (See Figure 3).
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We have V (C(m,0)Pn) = n+(n− 2)m = 2k+(2k− 2)m = M and d = 2k− 1.
Now, we compute the status function of C(m,0)Pn. It is clear that there are two
weight centers for C(m,0)Pn in the case n = 2k. We have

S(C(m,0)Pn) = SC(m,0)Pn(vk) =
∑

u∈V (C(m,0)Pn)

d(vk, u)

= m.1 +m.2 +m.3 + ...mk + 1.1 + 1.2 + ...1.k+

2.m+ 3.m+ 4.m+ ...+ (k − 1).m+ 1.1 + 1.2 + ...1.(k − 1)

= (m+ 1)k2 −m

It follows from Theorem 1. that

rn(C(m,0)Pn) ≥ (V (C(m,0)Pn)− 1)(d+ 1) + 2− 2S(C(m,0)Pn)

= [2k + (2k − 2)m− 1](2k) + 2− 2[(m+ 1)k2 −m]

= 2k2m− 4km+ 2k2 − 2k + 2m+ 2.

Moreover, in order to prove equality, it is sufficient to find a radio labeling g for
C(m, 0)Pn that fulfil the properties(1)-(3) in Theorem 1 for every weight center

with span(g) = 2k2m− 2km+2k2+m+2. Because C(m,0)Pn is symmetrical, it
is suffices to find a radio labelling C(m,0)Pn with these properties only for weight
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center vk.
For that, we order the vertices of C(m,0)Pn as follows:

vk → v2k−1,1 → v2,1 → vk+1,1 → v3,1 → vk+2,1 → ... → vk−1,1 → v2k−2,1

→ vk,1 → v2k−2,1 → vk,1 → v2k−1,2 → v2,2 → vk+1,2 → v3,2 → vk+2,2

→ ... → vk−1,2 → v2k−2,2 → vk,2 → v2k−1,3 → v2,3 → vk+1,3 → v3,3 → vk+2,3

→ ... → vk−1,3 → v2k−2,3 → ... → vk,m−1 → v2k−1,m → v2,m → vk+1,m → v3,m

→ vk+2,m → ... → vk−1,m → v2k−2,m → vk,m → v2,m → v2k+1 → vk → v2k

→ vk−1 → v2k → vk−1 → v2k−1 → vk−2 → vk−(k−1) = v1 → v2k−(k−1) = vk+1.

We rename the the vertices of C(m,0)Pn in the above ordering by u1, u2, u3, ....uM .
A labeling g for C(m,0)Pn by using the rules given in (2) and (3) from Theorem
1, is defined as follows: g(u1) = 1, g(ui+1) = g(ui) + d + 1 − d(ui+1, ui) for
1 ≤ i ≤ M − 1. The order in which the vertices are labeled and their labels are
shown in Fig.4 for k = 4,m = 3.
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Figure 4. C(3,0)P8

Since we have the following distances:

d(vj,ρ, vk+j−1,ρ) = k + 1; for 2 ≤ j ≤ k − 1 and 1 ≤ ρ ≤ m;

d(v2,ρ, v2k−1,ρ) = 2k − 1; for 1 ≤ ρ ≤ m;

d(vk,ρ, v2k−2,ρ) = k; for 1 ≤ ρ ≤ m;

d(vk−j−1, v2k−j) = k, for 1 ≤ j ≤ k − 1;

d(vk, v2k−1,1) = k;

d(v1, v2k) = 2k − 1;

d(v2,1, v2k−1,1) = 2k − 1;

d(vk−1, v2k) = k + 1;

d(vk,m, v2k) = k + 1;
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d(v1, vk+1) = k;

d(vk, v2k−1) = k.

We get:

sp(g) = g(um) = g(vk+1) = g(u1) + (M − 1)(d+ 1)−
M−1∑
i=1

d(ui+1, ui)

= 2k2m− 4km+ 2k2 − 2k + 2m+ 2.

The following relations also hold:

g(vj) = g(vj+1) + 2k − 1 for 1 ≤ j ≤ k − 2;

g(vj) = g(vj+1) + 2k − 1 for k + 1 ≤ j ≤ 2k − 2;

g(v2k) = g(vk,m) + k − 1;

g(v2k−1,1) = g(vk) + k.

Similarly,

g(vj+1,ρ) = g(vj,ρ) + 2k − 1 for 2 ≤ j ≤ k − 1, and 1 ≤ ρ ≤ m;

g(vj+1,ρ) = g(vj,ρ) + 2k − 1 for k + 1 ≤ j ≤ 2k − 3, and 1 ≤ ρ ≤ m;

g(v2,ρ) = g(2k, ρ)− 1 : for 1 ≤ ρ ≤ m.

|g(vi) − g(vj)| ≥ 2k − 1 and |g(vi,ρ) − g(vj,ρ)| ≥ 2k − 1 if vi, vj and vi,ρ, vj,ρ
are not consecutive in the order previously established. Consecutive vertices in
the ordering satisfy radio condition by construction. For every pair of distinct
vertices u and v (both vertices are from Pn, both are terminal or they are of
different type), it is easy to verify that radio condition are satisfied. So, g is
a radio labeling for C(m, 0)Pn. Moreover, g was defined in such a way, that it
satisfies the properties (1) to (3) in Theorem 1 for the weight center vk. Since
the vertices ui and ui+1 belongs to different branches for 2 ≤ i ≤ m−1, u1 = vk
and uM = vk+1, with Lvk(vk+1) = d(vk, vk+1) = 1. �

Now, we discussed the radio labeling of Generalized Caterpillar graphs C(m,1)Pn

which is obtained from Pn by attaching m vertices of degree two to each vertex
of degree two of Pn. We have M = |V (C(m,1)Pn)| = n+(n−2)2m and diameter
d = n+ 1.

Theorem 2.4. Let C(m,0)Pn be a graph for m ≥ 2 and with n = 2k + 1, k ≥ 2.

Then the radio number for C(m,0)Pn is 4k2m+ 2k2 + 4k + 2.

Proof. We achieved the lower bound for the radio number of generalized caterpil-
lar C(m,1)Pn graphs by using Theorem 1. The generalized caterpillar C(m,1)Pn is
obtained by attaching the vertices of degree two vi,ρ for i ≤ ρ ≤ m to the vertex

vi for each 2 ≤ i ≤ 2k and v
′

i,ρ for i ≤ ρ ≤ m are the terminal vertices. For
the sake of convenience we consider vi,ρ and vi,ρ for i ≤ ρ ≤ m in anticlockwise
direction (See Figure 5).
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Figure 5. C(m,1)P2k+1

We have V (C(m,1)Pn) = n + (n − 2)2m = (2k + 1) + (2k − 1)2m = M and
d = 2k + 2. Now, we compute the status function of C(m,1)Pn. It is clear that
C(m,1)Pn has weight center vk + 1 in the case n = 2k + 1. We have

S(C(m,1)Pn) = SC(m,1)Pn
(vk+1) =

∑
v∈V (C(m,1)Pn)

d(vk+1, v)

= m.1 +m.2 +m.3 + ...m.k +m.2 +m.3 + ...+m.k + 2.1 + 2.2

+ ...2.k +m.2 +m.3 +m.4 + ...m.k +m.3 +m.4 + ...+m.(k + 1)

= m(k2 + k) +m[k2 + 3k + 2] + (k2 + k)− 5m

= (2m+ 1)k2 + (4m+ 1)k − 3m.

It follows from Theorem 1, that

rn(C(m,1)Pn) ≥ (V (C(m,1)Pn)− 1)(d+ 1) + 2− 2S(C(m,1)Pn)

= [(2k + 1) + (2k − 1)2m− 1](2k + 3) + 2

− 2[(2m+ 1)k2 + (4m+ 1)k)− 3m]

= 4mk2 + 2k2 + 4k + 2.

Moreover, in order to prove equality, it suffices to find a radio labeling g for
C(m, 1)Pn that satisfies the properties(1)-(3) in Theorem 1 for weight center

with span(g) = 4mk2 + 2k2 + 4k + 2.
For that, we order the vertices of C(m,1)Pn as follows:

vk+1 → v
′
2k,1 → v

′
k,1 → v

′
2k−1,1 → v

′
k−1,1 → ... → v

′

2k−(k−2),1 = v
′
k+2,1 → v

′

k−(k−2),1

= v
′
2,1 → v

′
k+1,1 → v

′
2k,2 → v

′
k,2 → v

′
2k−1,2 → v

′
k−1,2 → ... → v

′
2k−(k−2),2 = v

′
k+2,2

→ v
′

k−(k−2),2 = v
′
2,2 → .... → v

′
k+1,m−1 → v

′
2k,m → v

′
k,m → v

′
2k−1,m → v

′
k−1,m → ...

→ v
′

2k−(k−2),m = v
′
k+2,m → v

′

k−(k−2),m = v
′
2,m → v

′
k+1,m → v2k+1 → vk → v2k

→ vk−1 → v2k−1 → ... → v2k+1−(k−1) = vk+2 → vk−(k−1) = v1 → v2k,1 → vk,1

→ v2k−1,1 → vk−1,1 → ... → v2k−(k−2),1 = vk+2,1 → vk−(k−2),1 = v2,1 → vk+1,1

→ v2k,2 → vk,2 → v2k−1,2 → vk−1,2 → ... → v2k−(k−2),2 = vk+2,2 → vk−(k−2),2 =

v2,2 → ... → vk+1,m−1 → v2k,m → vk,m → v2k−1,m → vk−1,m → ... → v2k−(k−2),m =

v2,m → vk+1,m.

We rename the vertices of C(m,1)Pn in the above ordering by u1, u2, u3, ....uM .
A labeling g for C(m,1)Pn by using the rules given in (2) and (3) from Theorem
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1, is defined as follows: g(u1) = 1, g(ui+1) = g(ui) + d + 1 − d(ui+1, ui) for
1 ≤ i ≤ M − 1. The order in which the vertices are labeled and their labels are
shown in Fig.6 for k = 3,m = 3. Since we have the following distances:
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Figure 6. C(3,1)P7

d(v
′

k−j,ρ, v
′

2k−j,ρ) = k + 4 for0 ≤ j ≤ k − 2 and 1 ≤ ρ ≤ m;

d(vk−j,m, v2k−j,m) = k + 2 for 0 ≤ j ≤ k − 2;

d(vk−j , v2k+1−j) = k + 1 for 0 ≤ j ≤ k − 1;

d(vk+1, v
′

2k,1) = k + 1;

d(v
′

2,m, v
′

k+1,m) = k + 3;

d(v
′

k+1,m, v2k+1) = k + 2;

d(v1, v2k,1) = 2k;

d(v2,m, vk+1,m) = k + 1;

We get:

sp(g) = g(uM ) = g(vk+1,m) = g(u1) + (M − 1)(d+ 1)−
M−1∑
i=1

d(ui+1, ui)

= 4mk2 + 2k2 + 4k + 2.

The following relations also hold:

g(vj) = g(vj+1) + 2k + 5 for 1 ≤ j ≤ k − 1;

g(vj) = g(vj+1) + 2k + 5 for k + 2 ≤ j ≤ 2k − 1;

similarly,

g(vj,ρ) = g(vj+1,ρ) + 2k + 3 for 2 ≤ j ≤ k − 1, and 1 ≤ ρ ≤ m;

g(vj,ρ) = g(vj+1,ρ) + 2k + 3 for k + 1 ≤ j ≤ 2k − 1, and 1 ≤ ρ ≤ m.
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g(v
′

j,ρ) = g(v
′

j+1,ρ) + 2k − 1 for 2 ≤ j ≤ k − 1, and 1 ≤ ρ ≤ m;

g(v
′

j,ρ) = g(v
′

j+1,ρ) + 2k − 1 for k + 1 ≤ j ≤ 2k − 1, and 1 ≤ ρ ≤ m.

g(v
′

2k,1) = g(vk) + k + 2;

g(v2k+1) = g(v
′

k+1,m) + k + 1;

g(v2k,1) = g(v1) + 3;

|g(vi)−g(vj)| ≥ 2k+5, |g(vi,ρ)−g(vj,ρ)| ≥ 2k+3 and |g(v′

i,ρ)−g(v
′

j,ρ)| ≥ 2k−1

for 1 ≤ ρ ≤ m if vi, vj , vi.ρ, vj,ρ and v
′

i.ρ, v
′

j,ρ for 1 ≤ ρ ≤ m are not consecutive
in the order previously established. Consecutive vertices in the ordering satisfy
radio condition by construction. For every pair of distinct vertices u and v (both
vertices are from Pn, both are terminal and both vertices of degree two or they
are of different type), it is easy to verify that radio condition are satisfied. So,
g is a radio labeling for C(m, 1)Pn. Moreover, g was defined in such a way, that
it satisfies the properties (1) to (3) in Theorem 1 for the weight center vk+1.
Since the vertices ui and ui+1 belongs to different branches for 2 ≤ i ≤ m − 1,
u1 = vk+1 and uM = vk+1,m, with Lvk+1

(vk+1,m) = d(vk+1, vk+1,m) = 1. �
Theorem 2.5. Let C(m,1)Pn be a graph for m ≥ 2 and with n = 2k, k ≥ 2.

Then the radio number for C(m,1)Pn is 4k2m− 4km+ 2k2 + 2k.

Proof. In order to prove one inequality, we use Theorem 1 . The caterpillar
C(m,1)Pn is obtained by attaching the vertices of degree two vi,ρ for i ≤ ρ ≤ m

to the vertex vi for each 2 ≤ i ≤ 2k − 1 and v
′

i,ρ for i ≤ ρ ≤ m are the terminal
vertices. For the sake of convenience we consider vi,ρ and vi,ρ for i ≤ ρ ≤ m in
anticlockwise direction (See Figure 8).
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Figure 7. C(m,1)P2k

We have V (C(m,1)Pn) = n+(n−2)m = 2k+(2k−2)2m = M and d = 2k+1.
Now, we compute the status function of C(m,1)Pn. It is clear that there are two
weight centers for C(m,1)Pn in this case. We have

S(C(m,1)Pn) = SC(m,1)Pn(vk) =
∑

u∈V (C(m,1)Pn)

d(vk, u)

= m.1 +m.2 +m.3 + ...+m.k +m.2 +m.3 + ...+m.(k + 1)1.1

+ 1.2 + ...1.(k − 1) +m.2 +m.3 +m.4 + ...+m.(k − 1)

+m.3 +m.4 +m.5 + ...+m.k + 1.1 + 1.2 + ...1.k
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= m(2k2 + 2k − 4) + k2.

It follows from Theorem 1, that

rn(C(m,1)Pn) ≥ (V (C(m,1)Pn)− 1)(d+ 1) + 2− 2S(C(m,1)Pn)

= [2k + (2k − 2)2m− 1](2k + 2) + 2− 2[2mk2 + 2mk − 4m+ k2]

= 4k2m− 4km+ 2k2 + 2k.

Moreover, in order to prove equality, it is sufficient to find a radio labeling g for
C(m, 1)Pn that fulfil the properties(1)-(3) in Theorem 1 for every weight center

with span(g) = 4k2m − 4km + 2k2 + 2k. Because C(m,1)Pn is symmetrical, so
find a radio labelling C(m,1)Pn with these properties only for weight center vk.
For that, we order the vertices of C(m,1)Pn as follows:

vk → v
′
2k−1,1 → v

′
2,1 → v

′
k+1,1 → v

′
3,1 → v

′
k+2,1 → ... → v

′
k−1),1 → v

′
k+(k−2),1

= v
′
2k−2,1 → v

′
k,1 → v

′
2k−1,2 → v

′
2,2 → v

′
k+1,2 → v

′
3,2 → v

′
k+2,2 → ... → v

′
k−1,2

→ v
′
2k−2,2 → v

′
k,2 → v

′
2k−1,3 → v

′
2,3 → v

′
k+1,3 → v

′
3,3 → v

′
k+2,3 → ... → v

′
k−1,3

→ v
′
2k−2,3 → ... → v

′
k,m−1 → v

′
2k−1,m → v

′
2,m → v

′
k+1,m → v

′
3,m → v

′
k+2,m → ...

→ v
′
k−1,m → v

′
k+(k−2),m = v

′
2k−2,m → v

′
k,m → v2k−1,1 → v2,1 → vk+1,1 → v3,1

→ vk+2,1 → ... → v2+(k−3),1 = vk−1,1 → v(k+1)+(k−3),1 = v2k−2,1 → vk,1 →
v2k−1,2 → v2,2 → vk+1,2 → v3,2 → vk+2,2 → ... → v2+(k−3),2 = vk−1,2 →
v(k+1)+(k−3),2 = v2k−2,2 → vk,2 → ... → vk,m−1 → v2k−1,m → v2,m → vk+1,m

→ v3,m → v3,m → vk+2,m → ... → v2+(k−3),m = vk−1,m → v(k+1)+(k−3),m

= v2k−2,m → vk,m → v2k → vk−1 → v2k−1 → vk−2 → ... → v2k−(k−2) = vk+2 →
vk−(k−1) = v1 → v2k−(k−1) = vk+1.

We rename the the vertices of C(m,1)Pn in the above ordering by u1, u2, u3, ....uM .
A labeling g for C(m,1)Pn by using the rules given in (2) and (3) from Theorem
1, is defined as follows: g(u1) = 1, g(ui+1) = g(ui) + d + 1 − d(ui+1, ui) for
1 ≤ i ≤ M − 1. The order in which the vertices are labeled and their labels are
shown in Fig.7 for k = 4,m = 3.

Since we have the following distances:

d(v
′

j,ρ, v
′

k+j−1,ρ) = k + 3 for 2 ≤ j ≤ k − 1 and 1 ≤ ρ ≤ m;

d(vj,ρ, vk+j−1,ρ) = k + 1 for 2 ≤ j ≤ k − 1;

d(vk−j−1, v2k−j) = k + 1 for 0 ≤ j ≤ k − 2;

d(v
′

k,ρ, v
′

2k−2,ρ) = k + 2 for 1 ≤ ρ ≤ m;

d(v
′

2,ρ, v
′

2k−1,ρ) = 2k + 1 for 1 ≤ ρ ≤ m;

d(vk,m, v2k) = k + 1;

d(v1, vk+1) = k;

d(vk, v
′

2k−1,1) = k + 1;
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Figure 8. C(3,1)P8

d(v
′

2,1, v
′

2k−1,1) = 2k + 1;

d(v
′

k,m, v2k−1,1) = k + 2;

d(v2k−1,1, v2,1) = 2k − 1;

We get:

sp(g) = g(um) = g(vk+1) = g(u1) + (M − 1)(d+ 1)−
M−1∑
i=1

d(ui+1, ui)

= 4k2m− 4km+ 2k2 + 2k.

The following relations also hold:

g(v
′

j+1,ρ) = g(v
′

j,ρ) + 2k − 1 for 2 ≤ j ≤ k − 1, and 1 ≤ ρ ≤ m;

g(v
′

j+1,ρ) = g(v
′

j,ρ) + 2k − 1 for k + 1 ≤ j ≤ 2k − 3, and 1 ≤ ρ ≤ m;

g(vj+1,ρ) = g(vj,ρ) + 2k + 3 for 1 ≤ j ≤ k − 1, and 1 ≤ ρ ≤ m;

g(vj+1,ρ) = g(vj,ρ) + 2k + 3 for k + 1 ≤ j ≤ 2k − 3, and 1 ≤ ρ ≤ m;

g(vj) = g(vj+1) + 2k + 3 for 1 ≤ j ≤ k − 2;

g(vj) = g(vj+1) + 2k + 3 for k + 1 ≤ j ≤ 2k − 1;

g(v2k−1,ρ) = g(v
′

2,ρ)− 1 for 1 ≤ ρ ≤ m;

g(v2,ρ) = g(v2k−1,ρ) + 3 for 1 ≤ ρ ≤ m;

g(v
′

2k−1,1) = g(v1) + k + 1;

g(v2k−1,1) = g(v
′

k,m) + k;

g(v2k) = g(vk,m) + k + 1.

Similarly, |g(vi) − g(vj)| ≥ 2k + 3 and |g(vi,ρ) − g(vj,ρ)| ≥ 2k + 3, |g(v′

i,ρ) −
g(v

′

j,ρ)| ≥ 2k + 3 for 1 ≤ ρ ≤ m,if vi, vj and vi,ρ, vj,ρ, v
′

i,ρ, v
′

j,ρ for 1 ≤ ρ ≤ m
are not consecutive in the order previously established. Consecutive vertices in
the ordering satisfy radio condition by construction. For every pair of distinct
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vertices u and v (both vertices are from Pn, both are terminal or they are of
degree two or they are of different type), it is easy to verify that radio condition
are satisfied. So, g is a radio labeling for C(m, 1)Pn. Moreover, g was defined
in such a way, that it satisfies the properties (1) to (3) in Theorem 1 for the
weight center vk. Since the vertices ui and ui+1 belongs to different branches for
2 ≤ i ≤ m− 1, u1 = vk and uM = vk+1, with Lvk(vk+1) = d(vk, vk+1) = 1. �
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