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ON A HIGHER-ORDER RATIONAL DIFFERENCE EQUATION

FARIDA BELHANNACHE∗, NOURESSADAT TOUAFEK AND RAAFAT ABO-ZEID

Abstract. In this paper, we investigate the global behavior of the solu-
tions of the difference equation

xn+1 =
A+Bxn−2k−1

C +D
∏k

i=l x
mi
n−2i

, n = 0, 1, ...,

with non-negative initial conditions, the parameters A, B are non-negative
real numbers, C, D are positive real numbers, k, l are fixed non-negative

integers such that l ≤ k, and mi, i = l, k are positive integers.
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1. Introduction and Preliminaries

In [3] we investigated the global behavior of the rational third-order difference
equation

xn+1 =
A+Bxn−1

C +Dxp
nx

q
n−2

, n = 0, 1, ..., (1)

where the initial conditions x0, x−1, x−2 and the parameter B are non-negative
real numbers, the parameters A, C, D are positive real numbers and p, q are fixed
positive integers. Abo-Zeid [1] discussed the global behavior and boundedness
of the solutions of the difference equation

xn+1 =
A+Bxn−2k−1

C +D
∏k

i=l xn−2i

, n = 0, 1, ..., (2)

where A, B are non-negative real numbers, C, D > 0 and l, k are non-negative
integers such that l ≤ k. Inspired and motivated by these aforementioned works,
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our aim in this paper is to investigate the global asymptotic behavior of the
difference equation

xn+1 =
A+Bxn−2k−1

C +D
∏k

i=l x
mi
n−2i

, n = 0, 1, ..., (3)

with non-negative initial conditions, the parameters A, B are non-negative real
numbers, C, D are positive real numbers, k, l are fixed non-negative integers
such that l ≤ k, and mi, i = l, k are positive integers.

We note that if mi = 1, for all i = l, k Eq.(3) is reduced to Eq.(2). Clearly,
the results obtained in [1] will follow from the results we shall exhibit here.
In what follows, we present some definitions and results which will be useful in
our investigation, for more details we refer to [6], [11], [14] and [15].

Let I be some interval of real numbers and let

f : Ik+1 −→ I

be a continuously differentiable function. Then, for every set of initial conditions
{x0, x−1, ..., x−k} ⊂ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (4)

has a unique solution {xn}∞n=−k.

Definition 1.1. A point x ∈ I is called an equilibrium point of Eq.(4) if

x = f(x, x, ..., x).

Definition 1.2. Let x be an equilibrium point of Eq.(4).

(i) The equilibrium point x is called locally stable if for every ϵ > 0 there

exists δ > 0 such that for all x0, x−1, ..., x−k ∈ I with
∑0

i=−k |xi−x| < δ,
we have

|xn − x| < ε for all n ≥ −k.

Otherwise, the equilibrium x is called unstable.
(ii) The equilibrium point x is called locally asymptotically stable if it is

locally stable, and if there exists γ > 0 such that for all x0, x−1, ..., x−k ∈
I with

∑i=0
i=−k |xi − x| < δ, we have

lim
n→∞

xn = x.

(iii) The equilibrium point x is called globally asymptotically stable rel-
ative to Ik+1 if it is locally asymptotically stable, and if for every
x0, x−1, , x−k ∈ I, we have

lim
n→∞

xn = x.
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Let pi = ∂f
∂ui

(x, x, ..., x), for i = 0, k denote the partial derivatives of f(u0, u1, ..., uk)

with respect to ui evaluated at the equilibrium x of Eq.(4). Then, the equation

zn+1 = p0zn + p1zn−1 + · · ·+ pkzn−k, n = 0, 1, ...,

is called the linearized equation of Eq.(4) about the equilibrium point x, and the
equation

λk+1 − p0λ
k − · · · − pk−1λ− pk = 0, (5)

is called the characteristic equation of Eq.(4) about x.

Theorem 1.3. Let x be an equilibrium of Eq.(4). Then, the following statements
are true

(i) If all roots of Eq.(5) lie inside the open unit disk |λ| < 1, then x is locally
asymptotically stable.

(ii) If at least one root of Eq.(5) has absolute value greater than one, then x
is unstable.

Theorem 1.4 (Rouché’s Theorem). Let D be a bounded domain with piecewise
smooth boundary ∂D. Let f and g be two analytic functions on D ∪ ∂D. If
|g(z)| < |f(z)| for z ∈ ∂D, then f and f + g have the same number of zeros in
D, counting multiplicities.

Definition 1.5. Let x be an equilibrium of Eq.(4) and assume that {xn}∞n=−k

is a solution of the same equation.

(i) A positive semicycle of {xn}∞n=−k is a ”string” of terms {xl, xl+1, ..., xm}
all greater than or equal to the equilibrium x, with l ≥ −k and m ≤ ∞
such that

either l = −k or l > −k and xl−1 < x,

and

either m = ∞ or m < ∞ and xm+1 < x.

(ii) A negative semicycle of {xn}∞n=−k is a ”string” of terms {xl, xl+1, ..., xm}
all less than x, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 ≥ x,

and

either m = ∞ or m < ∞ and xm+1 ≥ x.

Definition 1.6. A solution {xn}∞n=−k of Eq.(4) is called non-oscillatory about
x, or simply non-oscillatory, if there exists N ≥ −k such that either

xn ≥ x for all n ≥ N,

or

xn < x for all n ≥ N.

Otherwise, the solution {xn}∞n=−k is called oscillatory about x, or simply oscil-
latory.
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From now on, we let p =

k∑
i=l

mi.

Remark 1.7. The change of variables xn = (CD )
1
p yn reduces Eq.(3) to the

difference equation

yn+1 =
α+ βyn−2k−1

1 +
∏k

i=l y
mi
n−2i

, n = 0, 1, ..., (6)

where α = A
C (DC )

1
p and β = B

C . It suffices to study Eq.(6) instead of Eq.(3).

2. Main results

2.1. Case α > 0.

2.1.1. Local stability. Here, we determine the equilibrium points of Eq.(6)
and discuss their local stability.

Lemma 2.1. The following statements are true.

(1) Assume that β ≥ 1. Then Eq.(6) has a unique equilibrium point in

((β−1
p+1 )

1
p ,∞).

(2) Assume that β < 1. Then

(i) If α < p( 1−β
p−1 )

p+1
p , then Eq.(6) has a unique equilibrium point in

(0, ( 1−β
p−1 )

1
p ).

(ii) If α > p( 1−β
p−1 )

p+1
p , then Eq.(6) has a unique equilibrium point in

((1−β
p−1 )

1
p ,∞).

Proof. A point y is an equilibrium point of Eq.(6) if and only if y is a zero of
the function

f(x) = xp+1 + (1− β)x− α.

If we consider the above function, we get

f(0) = −α < 0 and f ′(x) = (p+ 1)xp + (1− β).

(1) If β ≥ 1, then f is increasing on ((β−1
p+1 )

1
p ,∞). But

f((
β − 1

p+ 1
)

1
p ) = −p(

β − 1

p+ 1
)

p+1
p − α < 0.

Then, f(x) has a unique zero in ((β−1
p+1 )

1
p ,∞).

(2) Assume that β < 1. Then f is increasing on (0,∞).

(i) If α < p( 1−β
p−1 )

p+1
p , then

f((
1− β

p− 1
)

1
p ) = p(

1− β

p− 1
)

p+1
p − α > 0.

Therefore, f(x) has a unique zero in (0, ( 1−β
p−1 )

1
p ).
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(ii) If α > p( 1−β
p−1 )

p+1
p , then

f((
1− β

p− 1
)

1
p ) < 0.

Therefore, f(x) has a unique zero in (( 1−β
p−1 )

1
p ,∞).

�

Theorem 2.2. Assume that y is the positive equilibrium point of Eq.(6). Then,
the following statements are true

(1) If β ≥ 1, then y is a saddle point.
(2) If β < 1, then

(i) y is locally asymptotically stable if α < p( 1−β
p−1 )

p+1
p .

(ii) y is saddle point if α > p( 1−β
p−1 )

p+1
p .

Proof. The linearized equation associated with Eq.(6) about y is

zn+1 = − yp

1 + yp

k∑
i=l

mizn−2i +
β

1 + yp
zn−2k−1, n = 0, 1, ...

The characteristic equation associated with this equation is

λ2k+2 +
yp

1 + yp

k∑
i=l

miλ
2k−2i+1 − β

1 + yp
= 0.

(1) Assume that β ≥ 1 and consider the function

g(λ) = λ2k+2 +
yp

1 + yp

k∑
i=l

miλ
2k−2i+1 − β

1 + yp
.

Then

lim
λ→−∞

g(λ) = ∞ and g(−1) = 1− β + pyp

1 + yp
< 1− 1 + yp

1 + yp
= 0.

It follows that, the function g(λ) has a root λ1 in (−∞,−1) with |λ1| > 1.

We have also g(0) = − β
1+yp < 0 and g(1) = 1 + pyp−β

1+yp > 0, then the

function g(λ) has a root λ2 in (0, 1) which completes the proof of (1).
(2) Assume that β < 1, then

(i) If α < p( 1−β
p−1 )

p+1
p , then y < ( 1−β

p−1 )
1
p . If we consider the functions

h1(λ) = λ2k+2, h2(λ) = − yp

1 + yp

k∑
i=0

miλ
2k−2i+1 +

β

1 + yp
,

we get

|h2(λ)| ≤
β + pyp

1 + yp
< 1 = |h1(λ)|, ∀λ ∈ C : |λ| = 1.
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By Rouché’s Theorem all roots of

λ2k+2 +
yp

1 + yp

k∑
i=0

miλ
2k−2i+1 − β

1 + yp
= 0,

lie in the open unit disk |λ| < 1 and the result follows from Theorem
(1.3).

(ii) The proof is similar to that of 1. and will be omitted.

�

2.1.2. Oscillation and Boundedness of Solutions.

Theorem 2.3. Let y be the positive equilibrium of Eq.(6) and let {yn}∞n=−2k−1

be a solution of the same equation. Then

(1) If either
(a1) y−2k−1, y−2k+1, ..., y−1 < ȳ ≤ y−2k, y−2k+2, ..., y0
or
(a2) y−2k, y−2k+2, ..., y0 < ȳ ≤ y−2k−1, y−2k+1, ..., y−1

is satisfied, the solution {yn}∞n=−2k−1 oscillates about ȳ with semicycles
of length one.

(2) Every oscillatory solution of Eq.(6) has semicycles of length at most
2k + 1.

Proof. (1) Assume that the condition (a1) is satisfied. Then

y1 =
α+ βy−2k−1

1 +
∏k

i=l y
mi
−2i

<
α+ βy

1 + yp
= y,

and

y2 =
α+ βy−2k

1 +
∏k

i=l y
mi
1−2i

≥ α+ βy

1 + yp
= y.

By induction we obtain

y2n ≥ y and y2n+1 < y for all n ≥ 0.

For condition (a2), the proof is similar and will be omitted.
(2) Let {yn}∞n=−2k−1 be an oscillatory solution of Eq.(6). If a semicycle has

length greater than or equal 2k + 1, then there is an N ≥ 0 such that
either
yN−(2k+1) < ȳ ≤ yN−(2k), ..., yN−1, yN or yN−(2k+1) ≥ ȳ > yN−(2k), ..., yN−1, yN .
Consider the first case. Then we get

yN+1 =
α+ βyN−2k−1

1 +
∏k

i=l y
mi

N−2i

<
α+ βȳ

1 + ȳp
= ȳ.

The second case is similar and will be omitted.
�

Lemma 2.4. Let {yn}∞n=−2k−1 be a solution of Eq.(6). Then
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(1)

y2(k+1)n ≤
n−1∑
j=0

αβj + βny0 for all n ≥ 0.

(2)

y2(k+1)n+2i ≤
n∑

j=0

αβj + βn+1y−2k+2i−2 for all n ≥ 0 and 1 ≤ i ≤ k.

(3)

y2(k+1)n+2i+1 ≤
n∑

j=0

αβj + βn+1y−2k+2i−1 for all n ≥ 0 and 0 ≤ i ≤ k.

Proof. Let {yn}∞n=−2k−1 be a solution of Eq.(6). Then

yn+1 ≤ α+ βyn−2k−1 for all n ≥ 0. (7)

(1) For n = 0, we have y0 ≤
∑−1

j=0 αβ
j + β0y0. Now suppose that for a

certain n we have

y2(k+1)n ≤
n−1∑
j=0

αβj + βny0.

Then from (7), we get

y2(k+1)(n+1) ≤ α+ βy2(k+1)n ≤
n∑

j=0

αβj + βn+1y0.

(2) Let i = 1. Then from (7), we have

y2 ≤ α+ βy−2k and y2(k+1)(n+1)+2 ≤ α+ βy2(k+1)n+2.

Now suppose that for a certain i we have

y2(k+1)n+2i ≤
n∑

j=0

αβj + βn+1y−2k+2i−2 for all n ≥ 0

and prove that

y2(k+1)n+2(i+1) ≤
n∑

j=0

αβj + βn+1y−2k+2i for all n ≥ 0.

From (7), we have

y2i+2 ≤ α+ βy−2k+2i.

Suppose

y2(k+1)n+2(i+1) ≤
n∑

j=0

αβj + βn+1y−2k+2i,
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then from (7), we get

y2(k+1)(n+1)+2(i+1) ≤ α+ βy2(k+1)n+2i+2 ≤
n+1∑
j=0

αβj + βn+2y−2k+2i.

(3) The proof is similar to that of 2. and will be omitted.

�
Corollary 2.5. Assume that β < 1. Then, every solution of Eq.(6) is bounded
and persists.

Lemma 2.6. Suppose β < 1 and let {yn}∞n=−2k−1 be a solution of Eq.(6). If
Λ = lim sup yn

n→∞
and λ = lim inf yn

n→∞
, then Λ and λ satisfy the following inequalities

α+ βλ

1 + Λp
≤ λ ≤ Λ ≤ α+ βΛ

1 + λp
.

Proof. Let β < 1. From Corollary 2.5 the solution {yn}∞n=−2k−1 is bounded.
Then, for every ε ∈ (0, λ), there exists n0 ∈ N such that

λ− ε ≤ yn ≤ Λ + ε for every n ≥ n0,

so,
α+ β(λ− ε)

1 + (Λ + ε)p
≤ yn+1 ≤ α+ β(Λ + ε)

1 + (λ− ε)p
for every n ≥ n0 + 2.

Therefore,
α+ βλ

1 + Λp
≤ λ ≤ Λ ≤ α+ βΛ

1 + λp
.

�
Lemma 2.7. Suppose β > 2. Then, the following statements are true

(1) If x > p
√
β − 1 + α

p
√
β−1

, then p
√
β − 1 > α

xp−β+1 .

(2) If x > p
√
β − 1 and y > α

xp−β+1 , then y > α+βy
1+xp .

Proof. (1) Let x > p
√
β − 1 + α

p
√
β−1

, then

xp >

p∑
k=0

u(k, p),

where

u(k, p) := Ck
p

(
p
√
β − 1

)k
(

α
p
√
β − 1

)p−k

, Ck
p :=

p!

k!(p− k)!
.

Hence, we obtain

xp > u(p− 1, p) + u(p, p) = p (β − 1)
p−1
p

α
p
√
β − 1

+ β − 1,

then,
p
√
β − 1(xp − β + 1) > pα(β − 1)

p−1
p > α.
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(2) Suppose that x > p
√
β − 1 and y > α

xp−β+1 , then

(xp − β + 1)y > α,

hence,
(xp + 1)y > α+ βy.

�

Theorem 2.8. Assume that β > 2. Then, Eq.(6) has solutions which are neither
bounded nor persist.

Proof. Let {yn}∞n=−2k−1 be a solution of Eq.(6) with initial conditions

α

yp−2k−1 − β + 1
< y0 < y−2 < ... < y−2k < p

√
β − 1

and
y−1 > ... > y−2k+1 > y−2k−1 > p

√
β − 1 +

α
p
√
β − 1

.

Then,

y1 =
α+ βy−2k−1

1 +
∏k

i=l y
mi
−2i

>
α+ βy−2k−1

β
=

α

β
+ y−2k−1,

and

y2 =
α+ βy−2k

1 +
∏k

i=l y
mi
1−2i

<
α+ βy−2k

1 + yp−2k−1

.

By applying Lemma 2.7, we get y2 < y−2k.
Now consider the subsequences

{y2(k+1)n−2k+2j−1}∞n=0 and {y2(k+1)n−2k+2j}∞n=0,

where 0 ≤ j ≤ k. We will prove that

p
√
β − 1 +

α
p
√
β − 1

< y2(k+1)(n−1)−2k+2j−1 < y2(k+1)n−2k+2j−1

and
α

yp2(k+1)n−2k+2j+1 − β + 1
< y2(k+1)n−2k+2j < y2(k+1)(n−1)−2k+2j <

p
√
β − 1,

for all n ≥ 1. For n = 1, we have

y2j+1 =
α+ βy−2(k+1)+2j+1

1 +
∏k

i=l y
mi
2j−2i

>
α+ βy−2(k+1)+2j+1

β
=

α

β
+ y−2(k+1)+2j+1

and

y2j+2 =
α+ βy−2(k+1)+2j+2

1 +
∏k

i=l y
mi
2j−2i+1

<
α+ βy−2(k+1)+2j+2

1 + yp2j−2k+1

.

By applying Lemma 2.7, we obtain y2j+2 < y−2(k+1)+2j+2. We also have

y2(k+1)(n+1)−2k+2j−1 =
α+ βy2(k+1)n−2k+2j−1

1 +
∏k

i=l y
mi

2(k+1)n+2j−2i

>
α

β
+ y2(k+1)n−2k+2j−1, (8)
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and

y2(k+1)(n+1)−2k+2j =
α+ βy2(k+1)n−2k+2j

1 +
∏k

i=l y
mi

2(k+1)n+2j−2i+1

<
α+ βy2(k+1)n−2k+2j

1 + yp2(k+1)n+2j−2k+1

.

By applying Lemma 2.7, we get y2(k+1)(n+1)−2k+2j < y2(k+1)n−2k+2j . Now from
inequality (8), we have

y2(k+1)n−2k+2j−1 >
α

β
+ y2(k+1)(n−1)−2k+2j−1 > ... > n

α

β
+ y−2k+2j−1.

This implies that

lim
n→∞

y2(k+1)n−2k+2j−1 = ∞ , 0 ≤ j ≤ k

and

lim
n→∞

y2(k+1)n−2k+2j = 0, 0 ≤ j ≤ k.

This completes the proof. �

2.1.3. Global stability.

Theorem 2.9. Assume that β < 1. If α < p( 1−β
p−1 )

p+1
p , then, the positive equi-

librium point y ∈ (0, ( 1−β
p−1 )

1
p ) is globally asymptotically stable.

Proof. Let {yn}∞n=−2k−1 be a solution of Eq.(6). As β < 1, the solution {yn}∞n=−2k−1

is bounded. Let Λ = lim sup yn
n→∞

and λ = lim inf yn
n→∞

. Using Lemma 2.6, we have

α+ βλ

1 + Λp
≤ λ ≤ Λ ≤ α+ βΛ

1 + λp
.

This implies that

(1− β)λp − αλp−1 ≥ (1− β)Λp − αΛp−1. (9)

Now consider the function

h(x) = (1− β)xp − αxp−1.

Hence,

h′(x) = xp−2(p(1− β)x− (p− 1)α),

and the function h(x) is increasing on (α(p−1)
p(1−β) ,∞). As α < p( 1−β

p−1 )
p+1
p , we get

α(p−1)
p(1−β) < y < ( 1−β

p−1 )
1
p . In view of inequality (9), we have a contradiction.

Therefore, λ = Λ = y and so y is a global attractor.
The global asymptotically stability of y is obtained by combining the global

attractivity and the local asymptotic stability of y when α < p( 1−β
p−1 )

p+1
p .

�

In order to confirm our theoretical results, we consider the following numerical
example.
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Example 2.10. Consider the difference equation Eq.(6) with l = 2, k = 4,
m2 = 2, m3 = 3, m4 = 4, α = 0.25 and β = 0.5, that is:

yn+1 =
0.25 + 0.5yn−9

1 + y2n−4y
3
n−6y

4
n−8

, n = 0, 1, · · · . (10)

We have:

p = 9, α = 0.25 < p

(
1− β

p− 1

) p+1
p

≃ 0.41336282

Clearly y ≃ 0.49811911 is the unique equilibrium point of the equation Eq.(10)

in (0,
(

1−β
p−1

) 1
p

) = (0, (0.06875)
1
9 ).

If we take y0 = 5.85, y−1 = 0.89, y−2 = 0.35, y−3 = 4.55, y−4 = 0.65, y−5 = 3.15,
y−6 = 0.75, y−7 = 2.35, y−8 = 1.25, y−9 = 0.25, then, we get the solution as
in figure 1. However, if we take y0 = 0.35, y−1 = 0.19, y−2 = 0.67, y−3 = 2.55,
y−4 = 0.5, y−5 = 1.15, y−6 = 0.15, y−7 = 1.35, y−8 = 0.33, y−9 = 0.45, then,
the solution will be as in figure 2.
As we can see from figure 1 and figure 2, for two different choices of the initial
values we have lim

n→∞
yn = y ≃ 0.49811911.

That is the equilibrium point y ≃ 0.49811911 is globally asymptotically stable
(as expected).

0 20 40 60 80 100 120 140

0.0

0.5

1.0

1.5

2.0

2.5

Figure 1. Plot of the
solution of Eq.(10) with
the initial conditions:
y0 = 5.85, y−1 = 0.89,
y−2 = 0.35, y−3 = 4.55,
y−4 = 0.65, y−5 = 3.15,
y−6 = 0.75, y−7 = 2.35,
y−8 = 1.25, y−9 = 0.25.

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 2. Plot of the
solution of Eq.(10) with
the initial conditions:
y0 = 0.35, y−1 = 0.19,
y−2 = 0.67, y−3 = 2.55,
y−4 = 0.5, y−5 = 1.15,
y−6 = 0.15, y−7 = 1.35,
y−8 = 0.33, y−9 = 0.45.

2.2. Case α = 0. When α = 0, Eq.(6) becomes

yn+1 =
βyn−2k−1

1 +
∏k

i=l y
mi
n−2i

, n = 0, 1, .... (11)
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Clearly y = 0 is always an equilibrium point of Eq.(11). When β > 1, Eq.(11)
also possesses the positive equilibrium point y = p

√
β − 1.

Some very close equations and systems of difference equations to Eq.(11) have
been studied, for example, [2], [4], [5], [10] and [17].

Following the above mentioned papers, we summarize the main results for
this particular equation.

Lemma 2.11. Assume that β < 1. Then, every solution of Eq.(11) is bounded.

Proof. Let {yn}∞n=−2k−1 be a solution of Eq.(11). Then

(1)
y2(k+1)n ≤ βny0 for all n ≥ 0.

(2)

y2(k+1)n+2i ≤ βn+1y−2k+2i−2 for all n ≥ 0 and 1 ≤ i ≤ k.

(3)

y2(k+1)n+2i+1 ≤ βn+1y−2k+2i−1 for all n ≥ 0 and 0 ≤ i ≤ k.

The proof follows from the above inequalities. �
Theorem 2.12. Assume that β > 1. Let {yn}∞n=−2k−1 be a solution of the

Eq.(11) and y = p
√
(β − 1). Then if either

(b1) y−2k−1, y−2k+1, ..., y−1 < ȳ ≤ y−2k, y−2k+2, ..., y0
or
(b2) y−2k, y−2k+2, ..., y0 < ȳ ≤ y−2k−1, y−2k+1, ..., y−1

is satisfied, the solution {yn}∞n=−2k−1 oscillates about ȳ with semicycles of length
one.

Proof. The proof is similar to that of Theorem 2.3 and will be omitted. �
Theorem 2.13. The following statements are true

(1) The zero equilibrium point of Eq.(11) is locally asymptotically stable if
β < 1 and it is unstable if β > 1.

(2) In addition, when β < 1 then, the zero equilibrium point of Eq.(11) is
globally asymptotically stable.

(3) If β > 1, then the equilibrium point y = p
√
β − 1 of Eq.(11) is a saddle

point.

Proof. (1) The linearized equation associated with Eq.(11) about the equi-
librium point y = 0 is

zn+1 = βzn−2k−1, n = 0, 1, ...

Its characteristic equation is

λ2k+2 − β = 0.

Hence, |λ| < 1 for all roots if β < 1 and |λ| > 1 for all roots if β > 1.
Therefore, the point y = 0 is locally asymptotically stable if β < 1 and
it is unstable if β > 1.
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(2) The proof is a direct consequence of Lemma 2.11.
(3) The linearized equation associated with Eq.(11) about the equilibrium

point y = p
√
β − 1 is

zn+1 =
1− β

β

k∑
i=l

mizn−2i + zn−2k−1 n = 0, 1, ...

Its characteristic equation is

λ2k+2 +
β − 1

β

k∑
i=l

miλ
2k−2i+1 − 1 = 0.

Consider the function

g(λ) = λ2k+2 +
β − 1

β

k∑
i=l

miλ
2k−2i+1 − 1,

we can see that g(λ) has a real root in (−∞,−1) and a root with modulus
less than one. Therefore, the point y = p

√
β − 1 is a saddle point.

�
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