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Abstract 
 

This paper presents an alternative frequency adaptive grid synchronization technique named HDN-FLL, which can accurately 
extract the fundamental positive- and negative-sequence components and interested harmonics in adverse three-phase grid voltage. 
The HDN-FLL is based on the harmonic decoupling network (HDN) consisting of multiple first order complex vector filters 
(FOCVF) with a frequency-locked loop (FLL), which makes the system frequency adaptive. The stability of the proposed FLL is 
strictly verified to be global asymptotically stable. In addition, the linearization and parameters tuning of the FLL is also discussed. 
The structure of the HDN has been widely used as a prefilter in grid synchronization techniques. However, the stability of the 
general HDN is seldom discussed. In this paper, the transfer function expression of the general HDN is deduced and its stability is 
verified by the root locus method. To show the advantages of the HDN-FLL, a simulation comparison with other gird 
synchronization methods is carried out. Experimental results verify the excellent performance of the proposed synchronization 
method. 
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I. INTRODUCTION 

Nowadays, more and more renewable energy-based 
distributed generation (DG) systems are being connected to 
utility grids through grid-interfaced converters [1]-[4], such as 
wind turbine generator systems (WTGS), solar energy 
generating systems (SEGS), etc. They are expected to be an 
effective solution to help ease the cost of energy, energy 
security and relevant environmental issues introduced by 
conventional large centralized power generators.  

On the other hand, the grid-interfaced converters used in DG 
systems should be carefully controlled to meet the strict grid 
codes [6], [7]. For instance, in many countries a WTGS needs 
to be on grid and to provide reactive power to support the grid 

voltage even under grid fault conditions. WTGSs are only 
allowed to be disconnected from the grid when the grid voltage 
drops below a lower limit protection value, which means that a 
WTGS must has the ability of fault ride-through. To that end, 
one of the most important aspects to be considered in the 
control of these power converters is fast and exact 
synchronization with grid voltages at the point of common 
coupling (PCC), even if the grid voltage is unbalanced and 
severely distorted. 

To synchronize with grid voltage, the magnitude, phase 
angle and frequency of the fundamental positive-sequence 
component (FPC) need to be known. A phase-locked loop 
(PLL) based on the synchronous reference frame (SRF-PLL) is 
the most widely used synchronization technique for 
three-phase power systems. The SRF-PLL shows fast and 
accurate performance under ideal grid conditions. However, its 
performance is significantly degraded if the grid voltage 
condition gets worse, since it is quite sensitive to voltage 
imbalance and harmonic distortion. 
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Different advanced synchronization methods have been 
proposed to improve the performance of the SRF-PLL under 
adverse gird conditions. Most of these methods employ 
prefilters or a decoupling network to extract the FPC from the 
grid voltage and to feed it to the SRF-PLL. The Decoupled 
Double SRF-PLL (DDSRF-PLL) presented in [9] uses a 
decoupling network to separate the FPC and the fundamental 
negative-sequence component (FNC). Another synchronization 
technique called 'Dual Second Order Generalized Integrator 
PLL' can detect the FPC of the utility voltage under unbalanced 
and distorted conditions [10]. However, these two methods are 
incapable of detecting harmonics, which can be useful for 
harmonic compensation in some cases [8]. In [11]-[15], PLL 
techniques based on the harmonic decoupling network (HDN) 
are proposed. Due to the characteristic of the HDN, all of the 
desired frequency components (even harmonics) are allowed to 
be extracted from non-ideal grid voltages. However, the 
stability of the HDN is seldom discussed. There are other 
PLL-based synchronization techniques suitable for operating 
under adverse grid conditions [16]-[20], such as the Cascaded 
DSC PLL (CDSC-PLL) [16], a PLL method using the fast 
Fourier transform (FFT) concept (FFT-PLL) [17], a PLL based 
on an adaptive low-pass notch filter (LPN-PLL) [18], etc, 
which have been shown to have excellent performance in some 
way.  

A type of grid synchronization technology using the concept 
of the frequency-locking loop (FLL) instead of the PLL has 
been studied as well. Compared with the PLL-type ones, 
synchronization technologies of the FLL-type are more suitable 
for grid conditions which experiences phase-angle jumps, 
because FLL estimation of the grid frequency does not 
experience such sudden changes [11]. Many literatures have 
presented methods based on the concept of the FLL [11], [13], 
[23]-[24]. For instance, [11] presents a technique called 
MSOGI-FLL, which uses a second-order generalized integrator 
based FLL to make the system frequency adaptive. Although 
these methods have been shown to have good performance 
under adverse grid conditions, their computation is a bit 
complicated. 

This paper proposes a FLL-type synchronization technology, 
i.e., the HDN-FLL, for the grid-interfaced converters in 
three-phase DG systems. The HDN-FLL is based on a 
harmonic decoupling network consisting of multiple first order 
complex vector filters (FOCVF) with a FLL, which makes the 
system frequency adaptive. Significantly, the stability of the 
proposed FLL and HDN structure are verified. 

This paper is organized as follows. Section II presents a 
stability analysis and parameters tuning for the proposed FLL. 
In Section III, the stability of the HDN is verified, and the 
HDN-FLL is presented. Section IV presents simulation results 
and performance comparisons between the HDN-FLL and 
other synchronization technologies. In Section V, the 
performance of the HDN-FLL is evaluated by experimental 

results. Section VI provides some conclusions. 
 

II. FLL 

A. First Order Generalized Integrator 

The generalized integrator (GI) originates from the 
principle that the time-domain convolution product of a 
sinusoidal function by itself gives rise to a sinusoidal term 
multiplied by a time variable. GIs have been widely used in 
applications associated with sinusoidal signals, like frequency 
detecting, harmonics notch filters, static error free tracking, 
etc. The second order generalized integrator (SOGI) for 
single phase sinusoidal signals has been discussed in many 
literatures [21]-[24].  

Considering the case of the GI for three-phase sinusoidal 
voltage signals, the GI is supposed to make the following 
equation true: 

( )GI t t  v v                (1) 

where the symbol represents the convolution operation, and 
v is a three-phase sinusoidal voltage signal, which can be 

described in term of a vector as: 

cos( ) sin( )v jv A t jA t          v     (2) 

By applying Laplace transforms to (1), the generalized 
integrator in the Laplace domain can be obtained as: 

2 2 2 2

[ ] 1
FOGI( )

[ ]

L t s
s j

L s js s


 


   

 
v

v
 (3) 

where the resonator 1 ( )s j  is the desired first-order 

generalized integrator (FOGI) for three-phase sinusoidal 
signals. Moreover, (3) indicates that the FOGI can be seen as 
the sum of two SOGIs at the real axis and the imaginary axis, 
respectively.  

B. FOCVF 

SOGI based filters have been used to filter gird voltages 
and to extract harmonics. However, they do not have the 
ability to make a distinction between positive- and 
negative-sequences at the same frequency. Thus, a 
positive-/negative-sequence calculation (PNSC) block is 
needed to do this job.  

To distinguish between the positive- and negative-sequence 
directly, a first order complex vector filter based on the FOGI 
has been developed, whose structure is shown in Fig. 1.  

According to Fig. 1(a), the transfer function of the 
FOCVF can be derived as: 

FOGI( )
( )

1 FOGI( )
c c

c c

s
CV s

s s j

 
  

 
  

       (4) 

where  is the center frequency of the FOCVF (it is also the 

resonance frequency of the FOGI); c is the cutoff 

frequency, and 0c  . It can be concluded that the 

bandwidth and steady-state gain of (4) depend only on the  
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Fig. 1. Structure of FOCVF ((a) in the vector form and (b) in the 
scalar form). 

 

 
Fig. 2. Bode diagram of FOCVF when 100   . 

 

cutoff frequency c  and not on the center frequency  , 
which is an outstanding advantage compared to filters based 
on the SOGI. 

To investigate the filtering characteristic of the FOCVF 

without loss of generality, assume that 1 100      
( 1 is the rated grid frequency in this paper). A bode diagram 

of this is plotted in Fig. 2.  
It can be observed from Fig. 2 that the FOCVF achieves a 

unity gain and a zero phase at the center frequency. Moreover, 
the FOCVF can distinguish between 50Hz and -50Hz. It can 

also be found that a smaller c  leads to a better harmonic 

attenuation. However, the dynamic response becomes very 
slow at the same time. A tradeoff between the dynamic 
response and the harmonic attenuation is usually made to 

determine c  under the premise of meeting the system 

performance requirements. Assume that the performance 

indexes for a FOCVF are that: 1) the transition time is less 

than pT ; 2) the harmonic attenuation ratio for the dominant 

harmonics is less than %r . 

The step response of the FOCVF can be derived from (4) 
as: 

( ) (1 (cos( ) sin( )))ctc

c

c t e t t
j


 

 
    


    (5) 

It can be seen from (5) that the transition time of ( )c t  is 

irrelevant to  . Specially, when 0  , ( ) 1 ctc t e   . 

According to the dynamic response requirement, this can be 
approximated by: 

1
3 p

c

T

                   (6) 

From (1) the harmonic attenuation ratio at the 

frequency  is given by 2 2( )c c     . Assume 

that h  is the dominant harmonic nearest  , according to 

the harmonic attenuation requirement, there should be: 

2 2( ) %c h c r     
          

(7) 

By solving (6)-(7), the range of c is obtained as: 

2

%
3

1 ( %)

h
p c

r
T

r

 



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              
(8) 

If there is no solution for (3), the HDN or a higher order 
filter is recommended to replace the FOCVF. 

C. FLL 

In order to make it accordant for the amplitude and phase 

of the input signal v and the output signal v , shown in 

Fig.1a, the center frequency  in the FOCVF should be 

adapted to the input frequency  of v . In this paper, a FLL 

is proposed to estimate the input frequency  . Then, the 

estimated frequency is feed back to the FOCVF as the center 
frequency. 

The combination of the FOCVF and the proposed FLL 
building blocks is shown in Fig. 3, As can be seen, the FLL 
has two input signals. One input is the error e of the filter, 

which is given by: 

e je    e v v              (9) 

The other input signal of the FLL, which is orthogonal to 
the input signal v , is given by: 

j v jv   v
                (10) 

The dot product of e  by jv  is defined as a frequency 

error variable f : 

( )f j e v e v        e v         (11) 

As a sequence, the FLL controller can be designed as: 
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Fig. 3. Structure of the proposed adaptive FOCVF with FLL. 

 

ˆ f norm                   (12) 

where ̂ is the estimated frequency by the FLL,  is the 

integral coefficient ( 0  ), and norm is the normal 

frequency of the input signal. 

D. Stability Analysis of the FLL 

To validate the correctness of the proposed FLL, a stability 
analysis is made for it as follows. 

According to (2), the following can be obtained:  

v v

v v

 

 





 
 




                 (13) 

According to Fig. 2 and (13), the dynamic equation for the 

filter error e


 can be derived as: 

ˆ

ˆ
c

c

e e e v

e e e v

   

   

  

  

   
    




         (14) 

where ˆ    . 

Actually, the input frequency  is considered as a 

constant. From (12), the following can be obtained: 

ˆ ( )v e v e                  (15) 

Thus, (14)-(15) describe the FLL system. 

Let 1 2 3( , , ) ( , , )x x x e e    x , obviously, 0x (the 

origin) is one equilibrium point. 
Define a Lyapunov function candidate as: 

2 2 2
1 2 3( ) 0.5( )V x x x x             (16) 

Let 3{ | }D x x R  , then ( )V x is a positive definite in 

D . The time derivative of V along the trajectories of the 

system is given by: 
2 2
1 2( ) ( ) 0cV x x x               (17) 

( )V x is negative semi-definite in D . Let ( ) 0V x  , so 

that 1 2, 0x x  . If 1 2, 0x x  , it can be derived from (12) 

that 3 0x  . Thus, the invariant set { 0}M  x . Using the  

 
Fig. 4. Linearized FLL system. 

 
LaSalle’s invariant principle, it can be concluded that 

0x is global asymptotically stable. 

E. FLL Tuning 

According to (9), (11)-(12), the dynamic equation for ̂  

can be written as: 

ˆ ( ) ( )j     v v v               (18) 

Considering the stable operating conditions, the following 
relationship between the input and output of the FOCVF is 
established. 

ˆ( )
c

cj


  

 
 

v v              (19) 

Substituting (19) into (18), yields: 

2
2 2

ˆ( )
ˆ

ˆ( )
c

c

A
  

 
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


 


           (20) 

Obviously, this FLL is a nonlinear system. Since the 

frequency deviation ˆ( )  is very small under stable 

operating conditions, 2ˆ( )  can be neglected compared 

with 2
c . Hence, (20) can be simplified into: 

2

ˆ ˆ( )
c

A  


                (21) 

To obtain the ideal linear FLL model shown in Fig. 4, 
 can be normalized by: 

2
c

A


                    (22) 

According to Fig. 4, the transfer function of the linearized 
FLL is given by: 

 
ˆ

s







 
              (23) 

It can be seen from (23) that the linearized FLL is a 
first-order inertia element. Thus, the design of the parameter 
 can be approximated by: 

3

st
                  (24) 

where st is the transition time for the step response of the 

linearized FLL.  
 

III. HDN-FLL 

The FOCVF has the ability to extract the FPC from the 
three-phase grid voltage. However, the performance of the 
FOCVF with the proposed FLL could be seriously decreased 
when the grid voltage becomes unbalanced and severely 
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distorted. On this occasion, it has to set a low cutoff 
frequency for the FOCVF at the cost of a much slower 
transient response to voltage variations. However, the 
accuracy of the FLL does not improve much. In order to 
overcome the above shortcomings, the HDN structure 
consisting of multiple adaptive FOCVFs with the FLL, i.e., 
the HDN-FLL, is presented in this section. 

A. HDN Structure 

In the   frame, the three-phase grid voltage in terms of 

the vector is introduced by: 
    

2 2
3 3

2
( )

3
j j

a b cu u e u e u ju 
 

    u
    (25) 

Consider the case where grid voltages are unbalanced and 
distorted by harmonics, u  can be expressed as the sum of 

each harmonic: 
m

i

m

 u u                    (26) 

where /m m  denotes the low/upper limit of the harmonic 

order, and iu  is given by: 

cos( ) sin( ))

i i i

i
i i i i

j

V t j t

 

   

 

   

u u u
    (27) 

where 1i i   ; and i can be a positive or negative 

integer, which represents iv  is in the positive- or 

negative-sequence. 
The HDN, also called a cross-feedback network, has been 

widely used as a prefilter for grid synchronization systems in 
adverse grid voltage conditions. It can accurately extract the 
fundamental component and interested harmonics from grid 
voltage. A general HDN structure composed of 

n ( 2 1n m  ) blocks, each containing a FOCVF, is shown 

in Fig. 5. As can be seen, each output signal, taking ˆ iu  for 

instance, is obtained by a FOCVF (tuned at i ) filtering the 

difference between the input u  and the cross-feedback 

signals ˆ ju ( j i ). If the structure of the general HDN is 

stable, ˆ iu will converge to the true value iu , while ˆ ju  

converges to ju . However, the stability of general HDN is 

seldom discussed when n  tends to infinite.  

B. Stability Analysis of the HDN 

 As observed from Fig. 5, the HDN can be seen as a set of 
filters (in dashed box) operating in parallel. Define the filter 
in dashed box by: 

ˆ
( ) ( )

i

iG s s
u

u
               (28) 

According to Fig. 5, the following equations can be 
established: 

 
Fig. 5. General HDN composed of n blocks 
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where: 

( ) c
i

i c

CV s
s j


 


                  (30) 

Equation (29) can be expressed in the form of a matrix as: 
( )

1

ˆ1

1 ˆ

1 ˆ

m

i

m
n




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  
  
   
  
  
     

 

 

u

u A u

u

             (31) 

where: 
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1
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1
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1
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1 1 1
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1 1 1
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Manipulating (31) yields:  

1

1ˆ

1ˆ

1ˆ
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m
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   
   
   
     





u u

Au u

u u

            (33) 



1944                     Journal of Power Electronics, Vol. 16, No. 5, September 2016 

Substituting (28) into (33), it can be observed that ( )iG s    

is the sum of the elements in the corresponding row of 1A . 

Thus, ( )iG s  can be calculated as: 

,

,

( ) (1 ( ))

( )
(1 ( )) ( ( ) (1 ( ))

m

i j
j m j i

i m mm

k k j
k mk m j m j k

CV s CV s

G s
CV s CV s CV s

 

  




  



 
(34) 

By substituting (30) into (34), the following can be 
obtained: 

,

,

( )

( )
( ) ( ( ))

m

c j
j m j i

i m mm

k c j
k mk m j m j k

s j

G s
s j s j

 

  

 

  




  



 
  (35) 

Equation (35) indicates that the HDN is in essence a n-th 
order complex vector filter. As can be seen in (35), the zero 

located at j  on the imaginary axis means the elimination 

of the jth-component; and the stability of the HDN depends 
on the locations of poles. If all of the n  poles of (35) can be 

proved to be located in the left half plane, the HDN is stable. 
To that end, it can be observed from the feature of the 

denominator that the eigenvalues of ( )iG s  is suitable to be 

analyzed by the root locus method. 

The characteristic equation of ( )iG s is given by: 

,

( ) ( ( )) 0
m mm

k c j
k mk m j m j k

s j s j  
  

        (36) 

Let 0c  . Then, (36) can be manipulated into: 

1

( ) ( ) 0
m n

k i
k m i

s j s p
 

               (37) 

where i kp j  is the starting point of a root locus branch.  

Then, let c   , and (36) can be manipulated into: 

1

, 1

( ( )) ( ) 0
m nm

j i
k m j m j k i

s j s z


   

           (38) 

where iz  is the ending point of a root locus branch. 

Obviously, for any [ , ]i m m  , is j  is not a root of 

(38). Dividing the first term of (38) by ( )
m

i
i m

s j


  

yields: 

1
0

m

i m is j


                (39) 

It can be simply verified that is j  is a root of (39), 

while i  meets the following constraint condition: 

1i i i                     (40) 

Thus, it is possible to make i iz j . 

The only asymptote equation is given by: 
1

1 1

n n

i i
i i

j p z


 

                   (41) 

According to the principle of the phase-angle condition, 

the starting angle at ip , denoted by pi , and the ending 

angle at iz , denoted by zi , can be calculated as: 

1

1 1,

(2 1)
j i j i

n n

pi z p p p
j j j i

k    


  

         (42) 

and: 
1

1, 1

(2 1)
j i j i

n n

zi z z p z
j j i j

k    


  

          (43) 

respectively, where ab or ab  denotes the angle from 

point a  to b  (  , ,i ia b z p  ). 

After that, the root locus of ( )iG s  is plotted in Fig. 6. It 

can be observed that the n  branches of the root locus are all 

located in the left half plane as long as 0c  . Hence, the 

stability of the general HDN is verified. In addition, to ensure 

a better dynamic performance, c cannot be set too small or 

too large, both of which lead the roots close to the imaginary 

axis. To determine the range of c  for a practical 

application, to achieve the best dynamic response, some 
mathematical software tools like "Matlab" can be used, and 
the specific steps are given as follows. 

A custom HDN consisting of a limited number of blocks, 
(34) could be rewritten as: 

1 1
( ) 0k

k G c

s 






                (44) 

where G is the set of selected harmonics to be exacted by 

HDN, such as {1, 1, 5,7}G    .  

It is convenient to solve (44) with the Matlab program, 

with c  in increments of a fixed-step (such as10 ) from 0 

to a proper upper limit. Assuming that is  is the dominant 

pole for (44), the best c would be found when 

( )ireal s reaches the minimum value. For example, in the 

case of {1, 1, 5,7}G     or {1, 1, 5,7, 11,13}G     , 

the range of the optimal c  can be determined to be 

[80 ,90 ]   by following the above steps. 

C. HDN-FLL  

Applying the adaptive FOCVF with the proposed FLL to the 
HDN, the HDN-FLL structure for gird synchronization is  
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Fig. 6. Root locus of Gi(s)  
 

 
Fig. 7. Block diagram of HDN-FLL synchronization method ((a) 
grid frequency estimation and harmonic detection and (b) grid 
phase estimation). 
 
achieved, which is graphically represented in Fig. 7. As can 
be seen, the grid frequency is estimated by the FLL, then 
multiplied by the harmonic order to be feedback to each of 
the FOCVFs to make them frequency adaptive. Thus, each 
frequency component can be accurately exacted even in the 
case of grid frequency fluctuations.  

It is also important to extract the gird phase information for 

grid synchronization. Let   be the grid phase, and 

1 1t    . ̂  is the estimation of   , and 1 1
ˆ ˆ ˆt    . 

Due to the action of the FLL, it is reasonable to assume that 

1 1̂  , hence: 

1 1
ˆ ˆ                       (45) 

When  is small, sin   . Therefore, the 

estimator of the grid phase can be designed as: 

1 1 1
ˆ ˆ ˆ( ) ( sin )i ik dt k dt                (46) 

Due to the presence of the HDN, it can be considered 

that 1 1
1ˆ (cos sin )V j   u u . Therefore, sin   can 

be calculated by: 
1 1

1
ˆ ˆˆ ˆsin ( cos sin )u u V              (47) 

where 1 2 1 2
1 ˆ ˆ( ) ( )V u u   . 

Finally, a block diagram of the gird phase estimation is 
depicted in Fig. 7(b). 

 

IV. SIMULATION RESULTS 

In order to evaluate the performance of the HDN-FLL 
shown in Fig. 7, a series of simulations are carried out under 
several adverse grid conditions. Simultaneously, to highlight 
the advantages of the proposed FLL, the HDN-FLL is 
compared with the Multiple-Complex Coefficient Filter 
(MCCF) method in [12], which is a PLL-type 
synchronization technique based on the structure of the HDN 
and has the same functions as the former. In this section, the 
HDN is made up of 4 blocks corresponding to 1th, -1th, -5th, 7th 
harmonic extraction, respectively. The control parameters for 

the HDN-FLL are set as: the cutoff frequency 80c  , and 

the FLL controller gain 0.3  . To get those for the MCCF 

refer to [12]. 
Fig. 8 shows the input three-phase voltage signal of the 

simulation tests. The amplitude and frequency of the pre-fault 
voltage are set to 311V and 50 Hz, respectively. A voltage 
fault occurs at 0.2s and continues until the end of the 
simulation time, which causes the grid voltage to become 
unbalanced and distorted. In addition, the parameters of the 
fault voltage refer to Table I. At 0.4s, the grid frequency is 
suddenly varied from 50 Hz to 45 Hz and continues that for 
the rest of the simulation time. At 0.6s, the grid phase-angle is 
jumped by 38 degree. 

Fig. 9 and Fig. 10 show the responses of the HDN-FLL and 
the MCCF to the input voltage signal, respectively. As can be 
seen, both the HDN-FLL and the MCCF have zero error 
estimations of the grid frequency, phase and magnitudes of 
the harmonics in the steady state, which verifies the excellent 
steady-state performance of both methods. In attrition, their 
performance differences mainly lie in the transient responses. 
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Fig. 8. Input three-phase grid voltage signal. 
 

TABLE I  
PARAMETERS OF FAULT INPUT VOLTAGE 

Harmonic order Value [ V ] 

+1 220 0   

-1 80 0   

-5 70 0   

+7 60 0   

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 9. Simulation results of the response for HDN-FLL ((a) 
estimated grid frequency, (b) error between the actual and 
estimated grid phase, and (c) detected magnitudes of harmonics). 

 
(a) 

 
(b) 

(c) 
Fig. 10. Simulation results of the response for MCCF ((a) 
estimated grid frequency, (b) error between the actual and 
estimated grid phase, and (c) detected magnitudes of harmonics). 

 
For the grid frequency estimation, in the transient 

processes after times 0.2 s, 0.4 s, and 0.6 s, it can be seen that 
the HDN-FLL has shorter transient times and smaller 
overshoot when compared with the MCCF, which is 
particularly evident when the phase-angle jump occurs. In 
this case, the HDN-FLL has a transient time of 40 ms and an 
overshoot of 5.5%, while those for the MCCF are 70ms and 
20.1%, respectively. 

For the grid phase estimation, the HDN-FLL has a smaller 
overshoot than the MCCF in the case of a frequency  
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(a)                                   (b)                                  (c) 

Fig. 11. Experimental results of test case 1 ((a) input grid voltages, estimated phase-angel and frequency, (b) detected fundamental 
positive- and negative- sequence, and (c) detected 5th and 7th harmonics). 
 

   
(a)                                 (b)                                  (c) 

Fig. 12. Experimental results of test case 2 ((a) input grid voltages, estimated grid phase and frequency, (b) detected fundamental 
positive- and negative- sequence, and (c) detected 5th and 7th harmonics). 
 

   
(a)                                  (b)                                  (c) 

Fig. 13. Experimental results of test case 3 ((a) input grid voltages, estimated grid phase and frequency, (b) detected fundamental 
positive- and negative- sequence, and (c) detected 5th and 7th harmonic). 
 

fluctuation or phase-angle jump. 
For harmonic detection, due to having a faster frequency 

estimation with a smaller fluctuation, the HDN-FLL is 
expected to have better dynamic performance than the MCCF 
in this respect, and this is confirmed by the contrast 
simulation results as well. Most significantly of all, it can be 
seen that the HDN-FLL has a much shorter and smoother 
transient than the MCCF in the case of a phase-angle jump. 

Based on the above comparative analysis, it can be 

concluded that the HDN-FLL does a better job than the 
MCCF in the transient response to phase-angle jumps or 
frequency shift under unbalanced and distorted grid 
conditions. 

 

V. EXPERIMENTAL RESULTS 

The algorithm of the HDN-FLL is implemented in the 
control board based on a TMS320F28335 which is a 
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floating-point 32-bit 150-MHz DSP. The input three-phase 
grid voltage used in the experiments is simulated by a 
waveform generator program based on a DSP. Moreover, the 
sampling rate is 20 kHz. A 12-bit 4-channel digital-to-analog 
converter (DAC) is used to display the signals in a digital 
oscilloscope. 

Three test cases are designed to experimentally validate the 
HDN-FLL under adverse grid conditions, which are 
consistent with the simulation study. 
1) Test case 1: An ideal three-phase grid voltage (amplitude 
of 311 V) becomes unbalanced and distorted when a voltage 
fault occurs, with a constant frequency of 50 Hz. The 
parameters of the fault voltage are the same as those listed in 
Table I. 
2) Test case 2: The frequency of the fault voltage varies from 
50 Hz to 45 Hz. 
3) Test case 3: The phase-angle of the fault voltage (45 Hz) 
jumps by 38 degrees. 
The experimental results of test cases 1-3 are depicted in 

Figs. 11-13, respectively. The input gird voltages u and u , 

the estimated gird frequency f , and the phase–angle  are 

shown together. For the sake of clarity, only the components  
on the  -axle of the detected 1th, -1th, -5th and 7th harmonics 

are shown, which are denoted by 1u
 , 1u

 , 5u
 and 7u

 , 

respectively. Since the harmonics have very short periods, 

( 1u
 , 1u

 ) and ( 5u
 , 7u

 ) are presented in different time 

scales, respectively.  
As seen in Fig. 11 (Test case 1), the HDN-FLL can operate 

satisfactorily under both norm and fault grid voltages. The 
grid frequency and phase angle can be estimated precisely. 
The 1th, -1th, -5th and 7th harmonics can also be accurately 
exacted, with the amplitudes of the waveforms equal to the 
preset values in Table I. Moreover, the HDN-FLL system 
undergoes a transient of about 15 ms after the voltage fault 
occurs. During this period of time, the estimated frequency 

f  fluctuates slightly with a ripple less than 2 Hz.  

In Fig. 12 (Test case 2), the HDN-FLL system undergoes a 
longer transient of about 40 ms after the 5 Hz frequency shift 
occurs. After that, the HDN-FLL gives a precise estimate of 
the grid frequency, phase-angle and harmonics at the new 
frequency. 

In Fig. 13 (Test case 3), the system undergoes a transient of 
30 ms after the phase jump occurs. The estimated frequency 

f  fluctuates with a ripple of no more than 3 Hz. In addition, 

all of the estimated variables achieve the desired values.  
From the above experimental results, it can be concluded 

that the HDN-FLL can operate well and has excellent grid 
synchronization and harmonics detection functions under 
unbalanced and distorted grid voltage conditions, even when 
a frequency shift and a phase jump are present 
simultaneously. 

 

VI. CONCLUSIONS 

In this paper, a grid synchronization technique called 
HDN-FLL has been proposed, and its stability has been 
verified. Simulations are conducted to compare the proposed 
method with the MCCF. Experimental results verify the 
effectiveness of the HDN-FLL. The following conclusions 
are recognized. 1) the HDN-FLL can achieve fast and exact 
estimation of the gird frequency and phase-angle under 
unbalanced and distorted grid voltage conditions; 2) the 
HDN-FLL can extract the FPC, the FNC and other interested 
harmonics from the grid voltage with no interference to or 
from the others; 3) compared with the MCCF, the HDN-FLL 
has better dynamic performance in the case of phase-angle 
jumps, which chiefly shows a shorter transient time and a 
smaller ripple in frequency estimation. These features make 
the HDN-FLL attractive for the grid-interfaced converters in 
distributed generation systems under adverse gird conditions, 
since they enable the grid-interfaced converters to be 
multifunctional, such as selective harmonic compensation, 
power quality monitoring, islanding detection, and so on. 
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