PLANE CURVES MEETING AT A POINT WITH HIGH INTERSECTION MULTIPLICITY

Seon Jeong Kim ${ }^{\text {a }}$ and Eunju Kang ${ }^{\text {b,* }}$

Abstract

As a generalization of an inflection point, we consider a point P on a smooth plane curve C of degree m at which another curve C^{\prime} of degree n meets C with high intersection multiplicity. Especially, we deal with the existence of two curves of degree m and n meeting at the unique point.

1. Introduction and Preliminaries

Let C_{m} and C_{n} be smooth complex projective plane curve of degree m and n, respectively, with $m, n \in \mathbb{N}$. Let P be an intersection point of C_{m} and C_{n}. We denote $I\left(C_{m} \cap C_{n} ; P\right)$ the intersection multiplicity at P of two curves C_{m} and C_{n}.

For a point P of $C=C_{d}(d \geq 3)$ and for a general line L passing through P, the intersection multiplicity $I(C \cap L ; P)$ is one. If $L=T_{P}(C)$ is the tangent line of C_{d} at P then we have $I\left(C \cap T_{P}(C) ; P\right) \geq 2$ and equality holds for general point P. If $I\left(C \cap T_{P}(C) ; P\right)=e>2$, we call P an inflection point of C_{d} with intersection multiplicity e. In particular, if $I\left(C \cap T_{P}(C) ; P\right)=d$, we call P a total inflection point of C_{d}. In this case the tangent line and the curve meet at only one point P by Bezout's theorem.

Existence of an inflection point of high intersection multiplicity helps us to find Weierstrass points on $C([1])$. The canonical series of a smooth curve C_{d} is cut out by the system of degree $d-3$ curves, hence $e(d-3) P$ is a special divisor. Thus, if $d \geq 4$ and $e \geq\left[\frac{d+1}{2}\right]$, then an inflection point with multiplicity e is a Weierstrass point. More generally, if there exists a curve of C_{d-3} with $I\left(C_{d} \cap C_{d-3} ; P\right) \geq g$ where $g=\frac{(d-1)(d-2)}{2}$, then the point P is a Weierstrass point of the curve C_{d}.

[^0]With this motivation we generalize the notion of an inflection point. We want to find two curves C_{m} and C_{n} with an intersection point P with high intersection multiplicity $I\left(C_{m} \cap C_{n} ; P\right)$.

To construct smooth plane curves satisfying our condition, we use the following theorems frequently.

Theorem 1.1 ([5, Bertini's Theorem]). The genereic element of a linear system is smooth away from the base locus of the system.

Theorem 1.2 ([4, Namba's Lemma]). Let C, C_{1} and C_{2} be plane curves. If P is a nonsingular point of C, then we have

$$
I\left(C_{1} \cap C_{2} ; P\right) \geq \min \left\{I\left(C \cap C_{1} ; P\right), I\left(C \cap C_{2} ; P\right)\right\} .
$$

Theorem 1.3 ([2, Bezout's Theorem]). Let C_{m} and C_{n} be smooth plane curves of degree m and n. Then we have

$$
\sum_{P \in C_{m} \cap C_{n}} I\left(C_{m} \cap C_{n} ; P\right)=m n .
$$

2. Plane Curves Meeting with Maximal Intersection Multiplicity

At first we give easy examples of smooth plane curves C_{m} and C_{n} with $C_{m} . C_{n}=$ $m n P$. Throughout this paper, the point P is the origin $(0,0)$ in the affine plane, i.e., the point $(0,0,1)$ in homogeneous coordinate of the projective plane.

Example 2.1. (1) The case $m=1$:
Let C_{1} and C_{n} be the curves defined by non-homogeneous equations as follows;

$$
\begin{cases}C_{1}: & y=0, \\ C_{n}: & y-x^{n}+a y^{n}=0\end{cases}
$$

Then for general a, the curve C_{n} is smooth by 1.1 and we have

$$
I\left(C_{1} \cap C_{n} ; P\right)=n .
$$

(2) The case $m=2$:

Let C_{2} and $C_{n}(n \geq 2)$ be the curves defined by non-homogeneous equations as follows;

$$
\left\{\begin{array}{l}
C_{2}: y-x^{2}=0 \\
C_{n}:\left(y-x^{2}\right)\left(1+x^{n-2}+y^{n-2}\right)+a y^{n}=0
\end{array}\right.
$$

Then for general a, the curve C_{n} is smooth by Bertini's theorem and we have

$$
I\left(C_{2} \cap C_{n} ; P\right)=2 n .
$$

(3) A generalization of (1) and (2) :

Let C_{m} and C_{n} with $m \leq n$ be the curves defined by non-homogeneous equations as follows;

$$
\left\{\begin{array}{l}
C_{m}: y-x^{m}+y \cdot k(x, y)=0, \quad \operatorname{deg} k=m-1 \\
C_{n}:\left(y-x^{m}+y \cdot k(x, y)\right) h(x, y)+y^{n}=0, \quad \operatorname{deg} h=n-m .
\end{array}\right.
$$

Then for general $k(x, y)$ and $h(x, y)$, the curves C_{m} and C_{n} are smooth and we have

$$
I\left(C_{m} \cap C_{n} ; P\right)=m n .
$$

Remark 2.2. In (3) of above example, the point P is a total inflection point of C_{m}.
Now we are interested in the point P which is a total inflection point of neither C_{m} nor C_{n}. To consider such a problem, we prove some theorems concerning to the existence of such curves.

Theorem 2.3. Let m, n be positive integers. Suppose that there exist smooth curves C_{m} and C_{n} such that $I\left(C_{m} \cap C_{n} ; P\right)=m n$. If k is a positive integer such that $k n \geq m$, then there exists a smooth curve $C_{k n}$ such that $I\left(C_{m} \cap C_{k n} ; P\right)=k m n$.

Proof. Consider a linear system $\lambda C_{m}\left(1+x^{k n-m}+y^{k n-m}\right)+\mu C_{n}^{k}$. If $Q(\neq P)$ is contained in the base locus of the linear system $<C_{m}\left(1+x^{k n-m}+y^{k n-m}\right), C_{n}^{k}>$ then Q lies on the curve $1+x^{k n-m}+y^{k n-m}$ and does not lie on C_{m}, since C_{m} and C_{n} meet only at P. Since Q is a smooth point of the curve $1+x^{k n-m}+y^{k n-m}$, it is a smooth point of a general member in the system. On the other hand P is a smooth point of C_{m} and not on the curve $1+x^{k n-m}+y^{k n-m}, P$ is a smooth point of a general member of the system. Let $C_{k n}$ be a general member in the linear system. Then, by Bertini's theorem, $C_{k n}$ is a smooth curve.

Remark 2.4. In fact, we may obtain Example 2.1 (3) from Example 2.1 (1) and Theorem 2.3.

Corollary 2.5. Let m be any positive integer and n be a positive even integer with $n \geq m$. Then there exist smooth curves C_{m} and C_{n} such that $I\left(C_{m} \cap C_{n} ; P\right)=m n$.

Proof. If $m=1$, then it follows from Example 2.1 (1). So we assume that $m \geq 2$. Let C_{m} and C_{2} be curves in (2) of Example 2 which satisfy $I\left(C_{m} \cap C_{2} ; P\right)=2 m$.

Then for any even $n \geq m$, there exists a smooth C_{n} such that $I\left(C_{m} \cap C_{n} ; P\right)=m n$, by above theorem.

Theorem 2.6. Let $m>n \geq k$ be natural integers. If C_{m}, C_{n} and C_{k} are smooth curves such that $I\left(C_{m} \cap C_{n} ; P\right)=m n$ and $I\left(C_{m} \cap C_{k} ; P\right)=m k$, then $n=k$ and C_{n} and C_{k} are the same curves.

Proof. By Namba's lemma, $I\left(C_{n} \cap C_{k} ; P\right) \geq m k$ which is bigger than $n k$, the product of the degrees of C_{n} and C_{k}. By Bezout's theorem, C_{k} and C_{n} has a common component. However it is impossible since C_{k} and C_{n} are smooth and so irreducible unless $C_{n}=C_{k}$.

Corollary 2.7. Let C_{m} be a smooth curve. Then there exists at most one smooth curve C_{k} with $1 \leq k \leq m-1$ such that $I\left(C_{m} \cap C_{k} ; P\right)=m k$.

Proof. Obvious.
Theorem 2.8. Let C_{3} and C_{3}^{\prime} be distinct smooth cubics such that $I\left(C_{3} \cap C_{3}^{\prime} ; P\right)=9$. Then $I\left(C_{3} \cap C_{2} ; P\right) \leq 5$ for any irreducible conic C_{2}.

Proof. Suppose $I\left(C_{3} \cap C_{2} ; P\right)=6$ for some irreducible conic C_{2}. Then, by Namba's theorem, the point P can not be an inflection point of C_{3}, and hence $C_{3} \cdot T_{P} C_{3}=$ $2 P+Q$ with $P \neq Q$, where $T_{P} C_{3}$ is the tangent line to C_{3} at P. Then

$$
9 P=C_{3} \cdot C_{3}^{\prime} \sim C_{3} \cdot\left(C_{2} \cdot T_{P} C_{3}\right)=8 P+Q
$$

Thus we have $P \sim Q$, which is a contradiction, since the genus of C_{3} is one.
Theorem 2.9. Let $C_{m}(m \geq 3)$ and C_{2} satisfies $I\left(C_{m} \cap C_{2} ; P\right)=2 m$. Then there exists no smooth curve C_{n} of odd degree n such that $I\left(C_{m} \cap C_{n} ; P\right)=m n$.

Proof. Note that $T_{P} C_{m}=T_{P} C_{2}$ and $I\left(C_{2} \cap T_{P} C_{2}\right)=2$.
If $n=1$ then for any $C_{1}, I\left(C_{m} \cap C_{1} ; P\right) \leq I\left(C_{m} \cap T_{P} C_{m} ; P\right)=I\left(C_{2} \cap T_{P} C_{2} ; P\right)=$ 2 , by Namba's lemma.

Suppose that for $n=2 k+1(k \leq 1)$ there exists a smooth curve $C_{2 k+1}$ such that

$$
C_{m} \cdot C_{2 k+1}=m(2 k+1) P
$$

On the other hand, since $T_{P} C_{m}=T_{P} C_{2}$ and $I\left(C_{2} \cap T_{P} C_{2} ; P\right)=2$, we have

$$
C_{m} \cdot\left(C_{2}^{k} \cdot T_{P} C_{m}\right)=(2 k m+2) P+D
$$

where $\operatorname{deg} \mathrm{D}=\mathrm{m}-2$. Then this implies the existence of the linear series g_{m-2}^{1} on C_{m}, which is a contradiction.

To state a generalization of the above theorem we need notations. Let $i_{s}:=$ $i_{s}\left(C_{m}\right)=\max \left\{I\left(C_{m} \cap F ; P\right) \mid \operatorname{degF}=\mathrm{s}\right\}$, and let $I_{s}\left(C_{m}\right)$ be a curve of degree s such that $i_{s}\left(C_{m}\right)=I\left(C_{m} \cap I_{s}\left(C_{m}\right) ; P\right)$. Note that $I_{1}\left(C_{m}\right)=T_{P} C_{m}$ and $i_{1}=$ $I\left(C_{m} \cap T_{P} C_{m} ; P\right)$.

Theorem 2.10. Let $m \geq 3$ and let C_{m} be smooth. Suppose that there exists a smooth curve $C_{r}(r \geq 2)$ such that $I\left(C_{m} \cap C_{r} ; P\right)=m r$. If P is not a total inflection point of C_{m}, then, for $k \geq 1$, there is no smooth curve $C_{k r \pm 1}$ such that $I\left(C_{m} \cap C_{k r \pm 1} ; P\right)=$ $m(k r \pm 1)$.

Proof. Suppose that there exists a smooth curve $C_{k r+1}\left[\right.$ resp. $\left.C_{k r-1}\right]$. Then

$$
\begin{aligned}
C_{m} \cdot C_{k r+1} & =m(k r+1) P . \\
{\left[\text { resp. } C_{m} \cdot\left(C_{k r-1} \cdot T_{P} C_{m}\right)\right.} & \left.=\left(m(k r-1)+i_{1}\right) P+D .\right]
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
C_{m} \cdot\left(C_{r}^{k} \cdot T_{P} C_{m}\right) & =\left(m(k r)+i_{1}\right) P+D, \\
\quad\left[\text { resp. } C_{m} \cdot C_{r}^{k}\right. & =m(k r) P,]
\end{aligned}
$$

where D is the divisor such that $C_{m} \cdot T_{P} C_{m}=i_{1} P+D$, hence its degree is $m-i_{1}$ which satisfies $1 \leq m-i_{1} \leq m-2$. Comparing two divisors, we conclude that there exists a linear series $g_{m-i_{1}}^{1}$ on C_{m}, which is impossible on a smooth plane curve of degree m.

Theorem 2.11. Let $m \geq 7$ and let C_{m} be smooth. Suppose that there exists a smooth curve C_{r} with $2<r<\frac{m}{2}$ such that $I\left(C_{m} \cap C_{r} ; P\right)=m r$. Then, for $k \geq 1$, there is no smooth curve $C_{k r \pm 2}$ such that $I\left(C_{m} \cap C_{k r \pm 2} ; P\right)=m(k r \pm 2)$.

Proof. Suppose that there exists such a curve $C_{k r+2}\left[\right.$ resp. $C_{k r-2}$]. Then

$$
\begin{aligned}
C_{m} \cdot C_{k r+2} & =m(k r+2) P . \\
{\left[\text { resp. } C_{m} \cdot\left(C_{k r-2} \cdot I_{2}\left(C_{m}\right)\right)\right.} & \left.=\left(m(k r-2)+i_{2}\right) P+D .\right]
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
C_{m} \cdot\left(C_{r}^{k} \cdot I_{2}\left(C_{m}\right)\right) & =\left(m(k r)+i_{2}\right) P+D, \\
{\left[\text { resp. } C_{m} \cdot C_{r}^{k}\right.} & =m(k r) P,]
\end{aligned}
$$

where D is the divisor such that $C_{m} \cdot I_{2}\left(C_{m}\right)=i_{2} P+D$, hence its degree is $2 m-i_{2}$. Comparing two divisors, we conclude that there exists a linear series $g_{2 m-i_{2}}^{1}$. By Namba's lemma and since the dimension of conics is 5 , we have $5 \leq i_{2} \leq 2 r \leq m$.

By Coppens' results([3]), we can not have such a linear series on a smooth plane curve of degree m.

Theorem 2.12. Let $m \geq s^{2}+2$ and let C_{m} be smooth. Suppose that there exists a smooth curve C_{r} with $s<r<\frac{m}{s}$ such that $I\left(C_{m} \cap C_{r} ; P\right)=m r$ and $i_{s}\left(C_{m}\right) \geq s^{2}+1$. Then, for $k \geq 1$, there is no smooth curve $C_{k r \pm s}$ such that $I\left(C_{m} \cap C_{k r \pm s} ; P\right)=$ $m(k r \pm s)$.

Proof. Suppose that there exists such a curve $C_{k r+s}\left[\right.$ resp. $\left.C_{k r-s}\right]$. Then

$$
\begin{aligned}
C_{m} \cdot C_{k r+s} & =m(k r+s) P . \\
{\left[\text { resp. } C_{m} \cdot\left(C_{k r-s} \cdot I_{s}\left(C_{m}\right)\right)\right.} & \left.=\left(m(k r-s)+i_{s}\right) P+D .\right]
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
C_{m} \cdot\left(C_{r}^{k} \cdot I_{s}\left(C_{m}\right)\right) & =\left(m(k r)+i_{s}\right) P+D, \\
{\left[\text { resp. } C_{m} \cdot C_{r}^{k}\right.} & =m(k r) P,]
\end{aligned}
$$

where D is the divisor such that $C_{m} \cdot I_{s}\left(C_{m}\right)=i_{s} P+D$, hence its degree is $s m-i_{s}$. Comparing two divisors, we conclude that there exists a linear series $g_{s m-i_{s}}^{1}$. By Namba's lemma and our assumption, we have $s^{2}+1 \leq i_{s} \leq s r<m$. By Coppens' results([3]), we can not have such a linear series on a smooth plane curve of degree m.

3. Some Examples

Now we give examples of C_{m} and C_{n} meeting at the unique point P which is not an inflection point of any curve and $I\left(C_{m} \cap C_{n} ; P\right)=m n$.

If a smooth curve C passing through the origin $P(0,0)$ is given by the equation

$$
C: y-x^{2}+y \cdot k(x, y)+h(x)=0, \operatorname{deg}(k) \geq 1, \operatorname{deg}(h) \geq 3
$$

then $T_{P}(C)$ is given by the equation $y=0$ and $I\left(C \cap T_{P}(C) ; P\right)=2$ so P is not an inflection point of C.

We found examples using the mathematics package, Maple.
Example 3.1. The case $m=3$ and $n=3,4$ or 6 .
(1) $m=n=3$: Let C_{3} and C_{3}^{\prime} be given by the equations

$$
\begin{cases}C_{3}: & A(x, y)=y-x^{2}+x y^{2}=0 \\ C_{3}^{\prime}: & B(x, y)=y-x^{2}+x y-x^{3}+x y^{2}+y^{3}=0\end{cases}
$$

Then the equation for C_{3} and C_{3}^{\prime} satisfies

$$
\begin{aligned}
B(x, y) & =y-x^{2}+x y-x^{3}+x y^{2}+y^{3} \\
& =\left(y-x^{2}+x y^{2}\right)+x\left(y-x^{2}+x y^{2}\right)+y^{2}\left(y-x^{2}+x y^{2}\right)-x y^{4} \\
& =\left(y-x^{2}+x y^{2}\right)\left(1+x+y^{2}\right)-x y^{4} \\
& =A(x, y)\left(1+x+y^{2}\right)-x y^{4}
\end{aligned}
$$

so

$$
I\left(C_{3} \cap C_{3}^{\prime} ; P\right)=I\left(C_{3} \cap x y^{4} ; P\right)=I\left(C_{3} \cap x ; P\right)+4 I\left(C_{3} \cap y ; P\right)=9 .
$$

Also we can represent C_{3} and C_{3}^{\prime} using a parameter t as follows
$C_{3}: \quad\left(t, t^{2}-t^{5}+2 t^{8}-5 t^{11}+14 t^{14}-42 t^{17}+\ldots\right)$
$C_{3}^{\prime}: \quad\left(t, t^{2}-t^{5}+2 t^{8}+t^{9}-t^{10}-4 t^{11}-7 t^{12}+\ldots\right)$
and we get $I\left(C_{3} \cap C_{3}^{\prime} ; P\right)=9$ again.
In fact the resultant of C_{3} and C_{3}^{\prime} is x^{9} so $I\left(C_{3} \cap C_{3}^{\prime} ; P\right)=9$.
(2) $m=3$ and $n=4:$ Let C_{3} and C_{4} be given by the equations

$$
\begin{cases}C_{3}: & A(x, y)=y-x^{2}+y^{3}=0 \\ C_{4}: & B(x, y)=\left(y-x^{2}+y^{3}\right)+\left(y-x^{2}\right)^{2}=0\end{cases}
$$

Then

$$
\begin{aligned}
B(x, y) & =\left(y-x^{2}+y^{3}\right)+\left(y-x^{2}\right)^{2} \\
& =\left(y-x^{2}+y^{3}\right)+\left(y-x^{2}+y^{3}\right)\left(y-x^{2}\right)-\left(y-x^{2}+y^{3}\right) y^{3}+y^{6} \\
& =A(x, y)\left(1+y-x^{2}-y^{3}\right)+y^{6}
\end{aligned}
$$

so

$$
I\left(C_{3} \cap C_{4} ; P\right)=I\left(C_{3} \cap y^{6} ; P\right)=6 I\left(C_{3} \cap y ; P\right)=12 .
$$

We can represent C_{3} and C_{4} with a parameter t as follows
$C_{3}: \quad\left(t, t^{2}-t^{6}+3 t^{10}-12 t^{14}+55 t^{18}+\ldots\right)$
$C_{4}: \quad\left(t, t^{2}-t^{6}+3 t^{10}-t^{12}-12 t^{14}+9 t^{16}+53 t^{18}+\ldots\right)$
so $I\left(C_{3} \cap C_{4} ; P\right)=12$ again.
In fact the resultant of C_{3} and C_{4} is x^{12} so $I\left(C_{3} \cap C_{4} ; P\right)=12$.
(3) $m=3$ and $n=6$: Using C_{3} and C_{3}^{\prime} in (1), we construct curves for $m=3$ and $n=6$.

$$
\begin{cases}C_{3}: & y-x^{2}+x y^{2}=0 \\ C_{6}: & \left(y-x^{2}+x y^{2}\right)\left(1+x^{3}+y^{3}\right)+\left(y-x^{2}+x y-x^{3}+x y^{2}+y^{3}\right)^{2}=0\end{cases}
$$

With the similar method as above we have

$$
I\left(C_{3} \cap C_{6} ; P\right)=I\left(C_{3} \cap C_{3}^{\prime 2} ; P\right)=2 I\left(C_{3} \cap C_{3}^{\prime} ; P\right)=18
$$

Also the resultant of C_{3} and C_{6} is x^{18}.
Example 3.2. The case $m=3$ and $n=5$.
Let C_{3} and C_{5} be given by the equations

$$
\begin{cases}C_{3}: & y-x^{2}+x y^{2}=0 \\ C_{5}: & y-x^{2}-2 y^{3}+x^{4}+4 x^{2} y^{2}+x y^{3}-2 y^{4}+x^{5}-3 x^{4} y-4 x^{3} y^{2}-y^{5}=0\end{cases}
$$

We can see that C_{3} and C_{5} are smooth plane curves and the resultant of C_{3} and C_{5} is x^{15} by Maple so $I\left(C_{3} \cap C_{5} ; P\right)=15$.

Example 3.3. The case $m=3$ and $n=7$.
Let C_{3} and C_{7} be given by the equations

$$
\left\{\begin{aligned}
C_{3}: & y-x^{2}+(-2+2 \sqrt{5}) y^{2}+2 x^{3}=0 \\
C_{7}: & 80 \sqrt{5} x y^{2}+2320 \sqrt{5} x^{5} y^{2}-3240 \sqrt{5} x y^{4} \sqrt{5}+2760 \sqrt{5} x^{3} y^{3}-6944 \sqrt{5} x^{2} y^{4} \\
& -1088 \sqrt{5} x y^{5}+384 \sqrt{5} x y^{6}-223 \sqrt{5} x^{2} y^{2}-40 \sqrt{5} x^{2} y-512 \sqrt{5} x^{2} y^{5} \\
& -612 \sqrt{5} x^{2} y^{3}+1472 \sqrt{5} y^{6}-14 y-384 x y^{6}+512 y^{7}-28 x^{3}-2624 y^{6}+14 x^{2} \\
& +14944 x^{2} y^{4}-10256 \sqrt{5} y^{5}+23152 y^{5}+88 x^{2} y-5880 x^{3} y^{3}+495 x^{2} y^{2}-6 \sqrt{5} x^{2} \\
& +1332 x^{2} y^{3}+6 \sqrt{5} x^{7}-176 x y^{2}-15 \sqrt{5} y^{3}+6 \sqrt{5} y+12 \sqrt{5} x^{3}+2176 x y^{5} \\
& +142 \sqrt{5} x^{4} y-14 x^{7}+37 y^{3}+7016 x y^{4}+640 x^{2} y^{5}-308 x^{4} y-5360 x^{5} y^{2}=0 .
\end{aligned}\right.
$$

We can see that C_{3} and C_{7} are smooth and that the resultant of C_{3} and C_{7} is $33554432 x^{21}$ using Maple. So we get C_{3} and C_{7} with $I\left(C_{3} \cap C_{7} ; P\right)=21$ which is the maximal possible intersection multiplicity that two smooth plane curves of degree 3 and 7 can have.

References

1. E. Arbarello, M. Cornalba, P.A. Griffiths \& J. Harris: Geometry of Algebraic Curves, I. Springer-Verlag, Berlin/New York, 1985.
2. B. Brieskorn \& H. Knörrer: Plane Algebraic Curves. Modern Birkhäuser Classics, Springer Basel, 2012.
3. M. Coppens: The existence of base point free linear systems on smooth plane curves. Journal of Algebraic Geometry 4 (1995), 1-15.
4. M. Namba: Families of meromorphic functions on compact Riemann surfaces. Lecture Notes in Math. 767, Springer-Verlag, Berlin, 1979.
5. J.G. Semple \& L. Roth: Introduction to Algebraic Geometry. Oxford University Press, 1985.
${ }^{a}$ Department of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
Email address: skim@nongae.gsnu.ac.kr
${ }^{\mathrm{b}}$ Department of Information and Communication Engineering, Honam University, Gwanguu 62399, Republic of Korea
Email address: ejkang@honam.ac.kr

[^0]: Received by the editors August 01, 2016. Accepted August 07, 2016.
 2010 Mathematics Subject Classification. 14H55.
 Key words and phrases. intersection multiplicy, intersection number, plane curve.

