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PLANE CURVES MEETING AT A POINT WITH HIGH
INTERSECTION MULTIPLICITY

Seon Jeong Kim a and Eunju Kang b, ∗

Abstract. As a generalization of an inflection point, we consider a point P on a
smooth plane curve C of degree m at which another curve C′ of degree n meets
C with high intersection multiplicity. Especially, we deal with the existence of two
curves of degree m and n meeting at the unique point.

1. Introduction and Preliminaries

Let Cm and Cn be smooth complex projective plane curve of degree m and n,
respectively, with m,n ∈ N. Let P be an intersection point of Cm and Cn. We
denote I(Cm ∩ Cn;P ) the intersection multiplicity at P of two curves Cm and Cn.

For a point P of C = Cd (d ≥ 3) and for a general line L passing through P ,
the intersection multiplicity I(C ∩ L; P ) is one. If L = TP (C) is the tangent line of
Cd at P then we have I(C ∩ TP (C);P ) ≥ 2 and equality holds for general point P .
If I(C ∩ TP (C);P ) = e > 2, we call P an inflection point of Cd with intersection
multiplicity e. In particular, if I(C ∩ TP (C);P ) = d, we call P a total inflection
point of Cd. In this case the tangent line and the curve meet at only one point P

by Bezout’s theorem.
Existence of an inflection point of high intersection multiplicity helps us to find

Weierstrass points on C([1]). The canonical series of a smooth curve Cd is cut out
by the system of degree d − 3 curves, hence e(d − 3)P is a special divisor. Thus,
if d ≥ 4 and e ≥ [d+1

2 ], then an inflection point with multiplicity e is a Weierstrass
point. More generally, if there exists a curve of Cd−3 with I(Cd∩Cd−3; P ) ≥ g where
g = (d−1)(d−2)

2 , then the point P is a Weierstrass point of the curve Cd.
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With this motivation we generalize the notion of an inflection point. We want
to find two curves Cm and Cn with an intersection point P with high intersection
multiplicity I(Cm ∩ Cn; P ).

To construct smooth plane curves satisfying our condition, we use the following
theorems frequently.

Theorem 1.1 ([5, Bertini’s Theorem]). The genereic element of a linear system is
smooth away from the base locus of the system.

Theorem 1.2 ([4, Namba’s Lemma]). Let C, C1 and C2 be plane curves. If P is a
nonsingular point of C, then we have

I(C1 ∩ C2; P ) ≥ min{I(C ∩ C1; P ), I(C ∩ C2;P )}.

Theorem 1.3 ([2, Bezout’s Theorem]). Let Cm and Cn be smooth plane curves of
degree m and n. Then we have

∑

P∈Cm∩Cn

I(Cm ∩ Cn; P ) = mn.

2. Plane Curves Meeting with Maximal Intersection
Multiplicity

At first we give easy examples of smooth plane curves Cm and Cn with Cm ¦Cn =
mnP . Throughout this paper, the point P is the origin (0, 0) in the affine plane,
i.e., the point (0, 0, 1) in homogeneous coordinate of the projective plane.

Example 2.1. (1) The case m = 1 :
Let C1 and Cn be the curves defined by non-homogeneous equations as follows;{

C1 : y = 0,

Cn : y − xn + ayn = 0.

Then for general a, the curve Cn is smooth by 1.1 and we have

I(C1 ∩ Cn;P ) = n.

(2) The case m = 2 :
Let C2 and Cn(n ≥ 2) be the curves defined by non-homogeneous equations as

follows; {
C2 : y − x2 = 0,

Cn : (y − x2)(1 + xn−2 + yn−2) + ayn = 0.
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Then for general a, the curve Cn is smooth by Bertini’s theorem and we have

I(C2 ∩ Cn; P ) = 2n.

(3) A generalization of (1) and (2) :
Let Cm and Cn with m ≤ n be the curves defined by non-homogeneous equations

as follows;{
Cm : y − xm + y · k(x, y) = 0, degk = m− 1
Cn : (y − xm + y · k(x, y))h(x, y) + yn = 0, degh = n−m.

Then for general k(x, y) and h(x, y), the curves Cm and Cn are smooth and we
have

I(Cm ∩ Cn;P ) = mn.

Remark 2.2. In (3) of above example, the point P is a total inflection point of Cm.

Now we are interested in the point P which is a total inflection point of neither
Cm nor Cn. To consider such a problem, we prove some theorems concerning to the
existence of such curves.

Theorem 2.3. Let m,n be positive integers. Suppose that there exist smooth curves
Cm and Cn such that I(Cm ∩ Cn;P ) = mn. If k is a positive integer such that
kn ≥ m, then there exists a smooth curve Ckn such that I(Cm ∩ Ckn; P ) = kmn.

Proof. Consider a linear system λCm(1 + xkn−m + ykn−m) + µCk
n. If Q(6= P ) is

contained in the base locus of the linear system < Cm(1 + xkn−m + ykn−m), Ck
n >

then Q lies on the curve 1 + xkn−m + ykn−m and does not lie on Cm, since Cm and
Cn meet only at P . Since Q is a smooth point of the curve 1 + xkn−m + ykn−m, it
is a smooth point of a general member in the system. On the other hand P is a
smooth point of Cm and not on the curve 1+xkn−m +ykn−m, P is a smooth point of
a general member of the system. Let Ckn be a general member in the linear system.
Then, by Bertini’s theorem, Ckn is a smooth curve. ¤

Remark 2.4. In fact, we may obtain Example 2.1 (3) from Example 2.1 (1) and
Theorem 2.3.

Corollary 2.5. Let m be any positive integer and n be a positive even integer with
n ≥ m. Then there exist smooth curves Cm and Cn such that I(Cm ∩Cn; P ) = mn.

Proof. If m = 1, then it follows from Example 2.1 (1). So we assume that m ≥ 2.
Let Cm and C2 be curves in (2) of Example 2 which satisfy I(Cm ∩ C2; P ) = 2m.
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Then for any even n ≥ m, there exists a smooth Cn such that I(Cm ∩Cn; P ) = mn,
by above theorem. ¤

Theorem 2.6. Let m > n ≥ k be natural integers. If Cm, Cn and Ck are smooth
curves such that I(Cm ∩Cn; P ) = mn and I(Cm ∩Ck; P ) = mk, then n = k and Cn

and Ck are the same curves.

Proof. By Namba’s lemma, I(Cn∩Ck;P ) ≥ mk which is bigger than nk, the product
of the degrees of Cn and Ck. By Bezout’s theorem, Ck and Cn has a common
component. However it is impossible since Ck and Cn are smooth and so irreducible
unless Cn = Ck. ¤

Corollary 2.7. Let Cm be a smooth curve. Then there exists at most one smooth
curve Ck with 1 ≤ k ≤ m− 1 such that I(Cm ∩ Ck;P ) = mk.

Proof. Obvious. ¤

Theorem 2.8. Let C3 and C ′
3 be distinct smooth cubics such that I(C3∩C ′

3; P ) = 9.
Then I(C3 ∩ C2; P ) ≤ 5 for any irreducible conic C2.

Proof. Suppose I(C3 ∩C2;P ) = 6 for some irreducible conic C2. Then, by Namba’s
theorem, the point P can not be an inflection point of C3, and hence C3 · TP C3 =
2P + Q with P 6= Q, where TP C3 is the tangent line to C3 at P . Then

9P = C3 ¦ C ′
3 ∼ C3 ¦ (C2 · TP C3) = 8P + Q.

Thus we have P ∼ Q, which is a contradiction, since the genus of C3 is one. ¤

Theorem 2.9. Let Cm(m ≥ 3) and C2 satisfies I(Cm ∩ C2; P ) = 2m. Then there
exists no smooth curve Cn of odd degree n such that I(Cm ∩ Cn;P ) = mn.

Proof. Note that TP Cm = TP C2 and I(C2 ∩ TP C2) = 2.
If n = 1 then for any C1, I(Cm∩C1; P ) ≤ I(Cm∩TP Cm; P ) = I(C2∩TP C2; P ) =

2, by Namba’s lemma.
Suppose that for n = 2k + 1(k ≤ 1) there exists a smooth curve C2k+1 such that

Cm ¦ C2k+1 = m(2k + 1)P.

On the other hand, since TP Cm = TP C2 and I(C2 ∩ TP C2; P ) = 2, we have

Cm ¦ (Ck
2 · TP Cm) = (2km + 2)P + D,

where degD = m − 2. Then this implies the existence of the linear series g1
m−2 on

Cm, which is a contradiction. ¤
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To state a generalization of the above theorem we need notations. Let is :=
is(Cm) = max{I(Cm ∩ F ;P ) | degF = s}, and let Is(Cm) be a curve of degree
s such that is(Cm) = I(Cm ∩ Is(Cm);P ). Note that I1(Cm) = TP Cm and i1 =
I(Cm ∩ TP Cm; P ).

Theorem 2.10. Let m ≥ 3 and let Cm be smooth. Suppose that there exists a smooth
curve Cr(r ≥ 2) such that I(Cm∩Cr; P ) = mr. If P is not a total inflection point of
Cm, then, for k ≥ 1, there is no smooth curve Ckr±1 such that I(Cm ∩ Ckr±1;P ) =
m(kr ± 1).

Proof. Suppose that there exists a smooth curve Ckr+1[resp. Ckr−1]. Then

Cm ¦ Ckr+1 = m(kr + 1)P.

[resp. Cm ¦ (Ckr−1 · TP Cm) = (m(kr − 1) + i1)P + D.]

On the other hand,

Cm ¦ (Ck
r · TP Cm) = (m(kr) + i1)P + D,

[resp. Cm ¦ Ck
r = m(kr)P, ]

where D is the divisor such that Cm ¦ TP Cm = i1P + D, hence its degree is m− i1

which satisfies 1 ≤ m− i1 ≤ m− 2. Comparing two divisors, we conclude that there
exists a linear series g1

m−i1
on Cm, which is impossible on a smooth plane curve of

degree m. ¤

Theorem 2.11. Let m ≥ 7 and let Cm be smooth. Suppose that there exists a
smooth curve Cr with 2 < r < m

2 such that I(Cm ∩ Cr;P ) = mr. Then, for k ≥ 1,
there is no smooth curve Ckr±2 such that I(Cm ∩ Ckr±2; P ) = m(kr ± 2).

Proof. Suppose that there exists such a curve Ckr+2[resp. Ckr−2]. Then

Cm ¦ Ckr+2 = m(kr + 2)P.

[resp. Cm ¦ (Ckr−2 · I2(Cm)) = (m(kr − 2) + i2)P + D.]

On the other hand,

Cm ¦ (Ck
r · I2(Cm)) = (m(kr) + i2)P + D,

[resp. Cm ¦ Ck
r = m(kr)P, ]

where D is the divisor such that Cm ¦ I2(Cm) = i2P +D, hence its degree is 2m− i2.
Comparing two divisors, we conclude that there exists a linear series g1

2m−i2
. By

Namba’s lemma and since the dimension of conics is 5, we have 5 ≤ i2 ≤ 2r ≤ m.
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By Coppens’ results([3]), we can not have such a linear series on a smooth plane
curve of degree m. ¤

Theorem 2.12. Let m ≥ s2 + 2 and let Cm be smooth. Suppose that there exists a
smooth curve Cr with s < r < m

s such that I(Cm∩Cr;P ) = mr and is(Cm) ≥ s2+1.
Then, for k ≥ 1, there is no smooth curve Ckr±s such that I(Cm ∩ Ckr±s; P ) =
m(kr ± s).

Proof. Suppose that there exists such a curve Ckr+s[resp. Ckr−s]. Then

Cm ¦ Ckr+s = m(kr + s)P.

[resp. Cm ¦ (Ckr−s · Is(Cm)) = (m(kr − s) + is)P + D.]

On the other hand,

Cm ¦ (Ck
r · Is(Cm)) = (m(kr) + is)P + D,

[resp. Cm ¦ Ck
r = m(kr)P, ]

where D is the divisor such that Cm ¦ Is(Cm) = isP +D, hence its degree is sm− is.
Comparing two divisors, we conclude that there exists a linear series g1

sm−is
. By

Namba’s lemma and our assumption, we have s2 + 1 ≤ is ≤ sr < m. By Coppens’
results([3]), we can not have such a linear series on a smooth plane curve of degree
m. ¤

3. Some Examples

Now we give examples of Cm and Cn meeting at the unique point P which is not
an inflection point of any curve and I(Cm ∩ Cn; P ) = mn.

If a smooth curve C passing through the origin P (0, 0) is given by the equation

C : y − x2 + y · k(x, y) + h(x) = 0, deg(k) ≥ 1, deg(h) ≥ 3

then TP (C) is given by the equation y = 0 and I(C ∩ TP (C);P ) = 2 so P is not an
inflection point of C.

We found examples using the mathematics package, Maple.

Example 3.1. The case m = 3 and n = 3, 4 or 6.
(1) m = n = 3 : Let C3 and C ′

3 be given by the equations{
C3 : A(x, y) = y − x2 + xy2 = 0
C ′

3 : B(x, y) = y − x2 + xy − x3 + xy2 + y3 = 0.
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Then the equation for C3 and C ′
3 satisfies

B(x, y) =y − x2 + xy − x3 + xy2 + y3

=(y − x2 + xy2) + x(y − x2 + xy2) + y2(y − x2 + xy2)− xy4

=(y − x2 + xy2)(1 + x + y2)− xy4

=A(x, y)(1 + x + y2)− xy4

so

I(C3 ∩ C ′
3; P ) = I(C3 ∩ xy4;P ) = I(C3 ∩ x; P ) + 4I(C3 ∩ y; P ) = 9.

Also we can represent C3 and C ′
3 using a parameter t as follows

C3 : (t, t2 − t5 + 2t8 − 5t11 + 14t14 − 42t17 + . . . )
C ′

3 : (t, t2 − t5 + 2t8 + t9 − t10 − 4t11 − 7t12 + . . . )
and we get I(C3 ∩ C ′

3; P ) = 9 again.
In fact the resultant of C3 and C ′

3 is x9 so I(C3 ∩ C ′
3; P ) = 9.

(2) m = 3 and n = 4 : Let C3 and C4 be given by the equations{
C3 : A(x, y) = y − x2 + y3 = 0
C4 : B(x, y) = (y − x2 + y3) + (y − x2)2 = 0.

Then

B(x, y) = (y − x2 + y3) + (y − x2)2

= (y − x2 + y3) + (y − x2 + y3)(y − x2)− (y − x2 + y3)y3 + y6

= A(x, y)(1 + y − x2 − y3) + y6

so

I(C3 ∩ C4; P ) = I(C3 ∩ y6; P ) = 6I(C3 ∩ y;P ) = 12.

We can represent C3 and C4 with a parameter t as follows
C3 : (t, t2 − t6 + 3t10 − 12t14 + 55t18 + . . . )
C4 : (t, t2 − t6 + 3t10 − t12 − 12t14 + 9t16 + 53t18 + . . . )
so I(C3 ∩ C4;P ) = 12 again.
In fact the resultant of C3 and C4 is x12 so I(C3 ∩ C4; P ) = 12.

(3) m = 3 and n = 6 : Using C3 and C ′
3 in (1), we construct curves for m = 3 and

n = 6.{
C3 : y − x2 + xy2 = 0
C6 : (y − x2 + xy2)(1 + x3 + y3) + (y − x2 + xy − x3 + xy2 + y3)2 = 0

With the similar method as above we have
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I(C3 ∩ C6;P ) = I(C3 ∩ C ′
3
2; P ) = 2I(C3 ∩ C ′

3; P ) = 18.

Also the resultant of C3 and C6 is x18.

Example 3.2. The case m = 3 and n = 5.
Let C3 and C5 be given by the equations{

C3 : y − x2 + xy2 = 0
C5 : y − x2 − 2y3 + x4 + 4x2y2 + xy3 − 2y4 + x5 − 3x4y − 4x3y2 − y5 = 0.

We can see that C3 and C5 are smooth plane curves and the resultant of C3 and C5

is x15 by Maple so I(C3 ∩ C5; P ) = 15.

Example 3.3. The case m = 3 and n = 7.
Let C3 and C7 be given by the equations





C3 : y − x2 + (−2 + 2
√

5)y2 + 2x3 = 0
C7 : 80

√
5xy2 + 2320

√
5x5y2 − 3240

√
5xy4

√
5 + 2760

√
5x3y3 − 6944

√
5x2y4

−1088
√

5xy5 + 384
√

5xy6 − 223
√

5x2y2 − 40
√

5x2y − 512
√

5x2y5

−612
√

5x2y3 + 1472
√

5y6 − 14y − 384xy6 + 512y7 − 28x3 − 2624y6 + 14x2

+14944x2y4 − 10256
√

5y5 + 23152y5 + 88x2y − 5880x3y3 + 495x2y2− 6
√

5x2

+1332x2y3 + 6
√

5x7 − 176xy2 − 15
√

5y3 + 6
√

5y + 12
√

5x3 + 2176xy5

+142
√

5x4y − 14x7 + 37y3 + 7016xy4 + 640x2y5 − 308x4y − 5360x5y2 = 0.

We can see that C3 and C7 are smooth and that the resultant of C3 and C7 is
33554432x21 using Maple. So we get C3 and C7 with I(C3∩C7; P ) = 21 which is the
maximal possible intersection multiplicity that two smooth plane curves of degree 3
and 7 can have.
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