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STUDY ON THE ARITHMETIC OF MODULAR FORMS

SoYoung Choi*

Abstract. By constructing a canonical basis for the space M ]
k(Γ0(N))

explicitly, we find a basis of the space of cusp forms for Γ0(N) con-
sisting of Poincaré series.

1. Introduction and statement of results

We assume that k is an even integer and N > 1 is a positive integer
not a prime for which the genus of a Hecke group Γ0(N) is zero, that is,

N ∈ {4, 6, 8, 9, 10, 12, 16, 18, 25}.
Let Mk(Γ0(N)) (resp. Sk(Γ0(N)) be the vector space of holomorphic
modular forms (resp. cusp forms) for Γ0(N) and M ]

k(Γ0(N)) be the
space of weakly holomorphic modular forms of weight k for Γ0(N) that
are holomorphic away from the cusp at infinity.

The classical Poincaré series at ∞, P (m, k,N ; z) are defined by

P (m, k, N ; z) :=
∑

γ∈Γ∞\Γ0(N)

e2πimγz

(cz + d)k
,

for m ∈ N, k ∈ Z with k > 2. Here Γ∞ = {± ( 1 n
0 1 ) | n ∈ Z}. For

m ≥ 1, we know that P (m, k,N ; z) ∈ Sk(Γ0(N)) (see [4]). Moreover it
is well known in [4] that the set {P (m, k, N ; z) | m ≥ 1} spans the space
Sk(Γ0(N)). Beyond this, little is known about such Poincaré series. For
example, Iwaniec in [4] gave two open problems about Poincaré series
such as: Since the space Sk(Γ0(N)) is finite dimensional, there are many
relations among the Poincaré series. Find all the linear relations among
Poincaré series and find a basis of Sk(Γ0(N)) consisting of the Poincaré
series. Recently Rhoades [6] gave a partial answer to the first question.
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In this paper we give an answer to the second question as follows. Let
the dimension of Sk(Γ0(N)) be t.

Theorem 1.1. Let k be an even integer with k > 2. We have that
{P (m, k, N ; z) | 1 ≤ m ≤ t} is a basis for the space Sk(Γ0(N)).

Remark 1.2. For a prime N for which the genus of Γ0(N) is zero,
Ahn and Choi in [1] showed that for k ∈ Z with k > 2, {P (m, k, N ; z) | 1 ≤
m ≤ t} is a basis for the space Sk(Γ0(N)). Moreover, It is well known
that {P (m, k, 1; z) | 1 ≤ m ≤ t} is a basis for the space Sk(Γ0(1)).

2. A basis for the space M ]
k(Γ0(N))

Let ∆N,k(z) be the unique normalized modular form of weight k on
Γ0(N) with zero of maximum order at ∞. We denote the order of the
zero of ∆N,k(z) at ∞ by ξN,k. Since the genus of Γ0(N) is zero, we have
that dimMk(Γ0(N)) = ξN,k + 1 if k ≥ 2.

In particular, we need only the following ∆N,k(z) (see[3]):

∆4,2(z) =
η8(4z)
η4(2z)

= q + O(q2),

∆6,2(z) =
η12(6z)η2(z)
η4(2z)η6(3z)

= q2 + O(q3),

∆8,2(z) =
η8(8z)
η4(4z)

= q2 + O(q3),

∆9,2(z) =
η6(9z)
η2(3z)

= q2 + O(q3),

∆12,2(z) =
η12(12z)η2(2z)
η6(6z)η4(4z)

= q4 + O(q5),

∆16,2(z) =
η8(16z)
η4(8z)

= q4 + O(q5),

∆18,2(z) =
η12(18z)η2(3z)
η6(9z)η4(6z)

= q6 + O(q7),

∆10,4(z) =
η2(z)η20(10z)
η4(2z)η10(5z)

= q6 + O(q7),

∆25,4(z) =
η10(25z)
η2(5z)

= q10 + O(q11).
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Here η(z) = q
1
24

∏∞
n=1(1− qn). The above modular forms ∆N,k(z) have

no zeros on H and at all cusps except for ∞. Indeed by easy calculation
we obtain

k[Γ0(1) : Γ0(N)]
12

= ξN,k

and hence from the valence formula we have that ∆N,k(z) has no zero
on H and at all cusps away form the cusp at infinity.

We now find an upper bound of ord∞f for nonzero f ∈ M ]
k(Γ0(N)).

Case I. N = 4, 6, 8, 12, 16 and 18. In this case we let k = 2lk.
Then we have an isomorphism from M ]

k(Γ0(N)) onto M ]
0(Γ0(N)) by

f 7→ f/∆lk
N,2. This implies that for any nonzero f ∈ M ]

k(Γ0(N)) we
have ord∞f ≤ ξN,2lk. We denote ξN,2lk by mN,k.

Case II. N = 10 and 25. In this case we let k = 4lk + rk with rk ∈
{0, 2}. Then we have an isomorphism from M ]

k(Γ0(N)) onto M ]
rk(Γ0(N))

by f 7→ f/∆lk
N,4. This implies that for any nonzero f ∈ M ]

k(Γ0(N)) we
obtain ord∞f ≤ ξN,4lk + ξN,rk

. We denote ξN,4lk + ξN,rk
by mN,k.

Under these notations we have the following theorem.

Theorem 2.1. For each integer m such that −m ≤ mN,k, there exists

a unique weakly holomorphic modular form fk,m ∈ M ]
k(Γ0(N)) with a

q-expansion of the form

fk,m = q−m + O(qmN,k+1).

Explicitly,

fk,m = (∆N )lk∆N,rk
Fk,m+mN,k

(jN ),

where Fk,D(x) is a monic polynomial in x of degree D and jN (z) is the
Hauptmodul for Γ0(N). Here in the case N = 4, 6, 8, 12, 16 and 18, we
define ∆N,rk

= 1.

Proof. For convenience let

∆N :=
{

∆N,2, if N = 4, 6, 8, 9, 12, 16, 18
∆N,4 if N = 10, 25.

We observe that

(∆N )lk∆N,rk
(jN )m+mN,k = q−m + · · ·

(∆N )lk∆N,rk
(jN )m+mN,k−1 = q−m+1 + · · ·

...

(∆N )lk∆N,rk
= qmN,k + · · · .
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Now fk,m is constructed by taking a suitable linear combination of the
above forms. Moreover, since ord∞fk,m ≤ mN,k, a weakly holomorphic
modular form fk,m is unique.

Remark 2.2. Since the Hauptmoduln jN has a integral Fourier co-
efficients at ∞ (see [3]) and we have

∆10,2(z) =
1
24

((5E2(10z)− E2(2z))− 4(2E2(10z)− E2(5z))),

∆25,2(z) =
1
50

(5E2(5z)− E2(z))(
1
2

+
3
10

η2(z)
η2(25z)

+
1
5

η2(z)
η2(25z)

+
1
25

η3(z)
η3(25z)

)

− 1
50

(25E2(25z)− E2(z))(
1
3

+
1
4

η(z)
η(25z)

+
1
15

η2(z)
η2(25z)

+
1

150
η3(z)

η3(25z)
),

we come up with that fk,m have integral Fourier coefficients at∞ except
for the case N = 25. On the other hand, fk,m have a rational Fourier
coefficients at ∞ in the case N = 25. Here E2(z) = 1− 24

∑∞
n=1 σ(n)qn

and σ(n) =
∑

0<d|n d.

3. Proof of Theorem 1.1

Proof of Theorem 1.1 We now show that the set {P (m, k,N ; z) | 1 ≤
m ≤ t} is a basis for the space Sk(Γ0(N)). To do it we need the following
property.

Proposition 3.1. Let k ∈ Z with k ≥ 2 and I be a finite set of
positive integers. Then

∑

m∈I

αmP (m, k, N ; z) ≡ 0

if and only if there exists a weakly holomorphic modular form f ∈
M ]

2−k(Γ0(N)) with principal part at ∞ equal to
∑

m∈I

αm

mk−1
q−m.

Proof. See [6, Theroem 1.1.]

Let v∞(N) be the number of Γ0(N)-inequivalent cusp. Then we have
(see [5, Theorem 4.2.7 and Theorem 2.5.2 ])

(3.1) v∞(N) =
∑

0<d|N
φ((d, N/d))

and
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(3.2) dimMk(Γ0(N)) = dimSk(Γ0(N)) + v∞(N) if k > 2.

Here φ is the Euler function.

Lemma 3.2. mN,2−k = −t− 1.

Proof. Case I. N = 4, 6, 8, 9, 12, 16 and 18. From (3.1) we see that
v∞(N)− 2 = ξN,2. We note that

dimMk(Γ0(N)) = 1 +
k

2
(v∞(N)− 2).

This and (3.2) mean that t := dimSk(Γ0(N)) = (1−lk)(2−v∞(N))−1 =
−ξN,2(1−lk)−1. On the other hand, we see that 2−k = 2−2lk = 2(1−lk)
which means that l2−k = 1−lk and hence mN,2−k = ξN,2(1−lk) = −t−1.

Case II. N = 10 and 25. We note that

dimMk(Γ0(N)) = −(k − 1) +
k

2
v∞(N) + 2[

k

4
].

This and (3.2) mean that

t := dimSk(Γ0(N)) =
{

6lk + rk − 3, N = 10
10lk + 2rk − 5, N = 25.

Because

v∞(N) =
{

4, N = 10
6, N = 25

On the other hand, we see that 2− k = −4lk + 2− rk which means that
l2−k = −lk and r2−k = 2− rk. Hence we obtain that

mN,2−k = ξN,4(−lk) + ξN,2−rk
=





−6lk + 2, N = 10, rk = 0
−6lk, N = 10, rk = 2
−10lk + 4, N = 25, rk = 0
−10lk, N = 25, rk = 2,

which implies that mN,2−k = −t− 1.

We are ready to prove Theorem 1.1. We assume α1P (1, k, N ; z) +
α2P (2, k,N ; z) + · · · + αtP (t, k, N ; z) ≡ 0. Then by Proposition 3.1
there exists a weakly holomorphic modular form f ∈ M ]

k(Γ0(N)) with
principal part at ∞ equal to

∑

1≤m≤t

αm

mk−1
q−m.

This is a contradiction to the fact that ord∞f ≤ mN,2−k if f is not zero.
Thus α1 = α2 = · · · = αt = 0 which implies Theorem 1.1.
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