SYMMETRIC BI- f-MULTIPLIERS OF INCLINE ALGEBRAS

Kyung Ho Kim* and Yong Hoon Lee**

Abstract

In this paper, we introduce the concept of a symmetric bi- f-multiplier in incline algebras and give some properties of incline algebras. Also, we characterize $\operatorname{Ker}(D)$ and $\operatorname{Fix}_{a}(D)$ by symmetric bi- f-multipliers in incline algebras.

1. Introduction

Z. Q. Cao, K. H. Kim and F. W. Roush [2] introduced the notion of incline algebras in their book. Some authors studied incline algebras and application. N. O. Alshehri [1] introduced the notion of derivation in incline algebras. In this paper, we introduce the concept of a symmetric bi- f-derivation in incline algebra and give some properties of incline algebras. Also, we characterize $\operatorname{Ker}_{D}(K)$ and $\operatorname{Fix}_{D}(K)$ by symmetric bi- f-derivations in incline algebras.

2. Incline algebras

An incline algebra is a set K with two binary operations denoted by $"+"$ and "*" satisfying the following axioms:
(K1) $x+y=y+x$,
(K2) $x+(y+z)=(x+y)+z$,
(K3) $x *(y * z)=(x * y) * z$,
(K4) $x *(y+z)=(x * y)+(x * z)$,
(K5) $(y+z) * x=(y * x)+(z * x)$,
(K6) $x+x=x$,

[^0](K7) $x+(x * y)=x$,
(K8) $y+(x * y)=y$
for all $x, y, z \in K$.
For convenience, we pronounce "+" (resp. "*") as addition (resp. multiplication). Every distributive lattice is an incline algebra. An incline algebra is a distributive lattice if and only if $x * x=x$ for all $x \in K$. Note that $x \leq y \Leftrightarrow x+y=y$ for all $x, y \in K$. It is easy to see that " \leq " is a partial order on K and that for any $x, y \in K$, the element $x+y$ is the least upper bound of $\{x, y\}$. We say that \leq is induced by operation + .

In an incline algebra K, the following properties hold.
(K9) $x * y \leq x$ and $y * x \leq x$ for all $x, y \in K$,
(K10) $y \leq z$ implies $x * y \leq x * z$ and $y * x \leq z * x$, for all $x, y, z \in K$,
(K11) If $x \leq y$ and $a \leq b$, then $x+a \leq y+b$, and $x * a \leq y * b$ for all $x, y, a, b \in K$.
Furthermore, an incline algebra K is said to be commutative if $x * y=$ $y * x$ for all $x, y \in K$. A map f is isotone if $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in K$.

A subincline of an incline algebra K is a non-empty subset M of K which is closed under the addition and multiplication. A subincline M is said to be an ideal if $x \in M$ and $y \leq x$ then $y \in M$. An element " 0 " in an incline algebra K is a zero element if $x+0=x=0+x$ and $x * 0=0=0 * x$ for any $x \in K$. An non-zero element " 1 " is called a multiplicative identity if $x * 1=1 * x=x$ for any $x \in K$. A non-zero element $a \in K$ is said to be a left (resp. right) zero divisor if there exists a non-zero $b \in K$ such hat $a * b=0$ (resp. $b * a=0$) A zero divisor is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra K with multiplicative identity 1 and zero element 0 is called an integral incline if it has no zero divisors. By a homomorphism of inclines, we mean a mapping f from an incline algebra K into an incline algebra L such that $f(x+y)=f(x)+f(y)$ and $f(x * y)=f(x) * f(y)$ for all $x, y \in K$. A map $f: K \rightarrow K$ is regular if $f(0)=0$. A subincline I of an incline algebra K is said to be k-ideal if $x+y \in I$ and $y \in I$, then $x \in I$. Let K be an incline algebra. An element $a \in K$ is called a additively cancellative if for all $a, b \in K$, $a+b=a+c \Rightarrow b=c$. If every element of K is additively cancellative, it is called additively cancellative.

Definition 2.1. Let K be an incline algebra. A mapping $D(.,$.$) :$ $K \times K \rightarrow K$ is called symmetric if $D(x, y)=D(y, x)$ holds for all $x, y \in K$.

Definition 2.2. Let K be an incline algebra and $x \in K$. A mapping $d(x)=D(x, x)$ is called trace of $D(.,$.$) , where D(.,):. K \times K \rightarrow K$ is a symmetric mapping.

Definition 2.3. Let K be an incline algebra and let $D: K \times K \rightarrow K$ be a symmetric mapping. We call D a symmetric bi-derivation on K if it satisfies the following condition

$$
D(x * y, z)=(D(x, z) * y)+(x * D(y, z))
$$

for all $x, y, z \in K$.

3. *-Symmetric bi- f-multipliers of incline algebras

In what follows, let K denote an incline algebra with a zero-element unless otherwise specified.

Definition 3.1. Let K be an incline algebra and let $D: K \times K \rightarrow K$ be a symmetric mapping. We call D a $*$-symmetric bi- f-multiplier on K if there exists a function $f: K \rightarrow K$ such that

$$
D(x * y, z)=D(x, z) * f(y)
$$

for all $x, y, z \in K$.
Obviously, a *-symmetric bi- f-multiplier D on K satisfies the relation

$$
D(x, y * z)=D(x, y) * f(z)
$$

for all $x, y, z \in K$.
Example 3.2. Let K be a commutative incline algebra. Define a mapping on K by $D(x, y)=f(x) * f(y)$ where $f: K \rightarrow K$ satisfies $f(x * y)=f(x) * f(y)$ for all $x, y \in K$. Then we can see that D is a *-symmetric bi- f-multiplier on K.

Example 3.3. Let K be a commutative incline algebra and $a \in K$. Define a mapping on K by $D(x, y)=(f(x) * f(y)) * a$ where $f: K \rightarrow K$ satisfies $f(x * y)=f(x) * f(y)$ for all $x, y \in K$. Then we can see that D is a $*$-symmetric bi- f-multiplier on K.

Example 3.4. Let $K=\{0, a, b, 1\}$ be a set in which "+" and "*" is defined by

+	0	a	b	1
0	0	a	b	1
a	a	a	b	1
b	b	b	b	1
1	1	1	1	1

$*$	0	a	b	1
0	0	0	0	0
a	0	a	a	a
b	0	a	b	b
1	0	a	b	1

Then it is easy to check that $(K,+, *)$ is an incline algebra. Define a $\operatorname{map} D: K \times K \rightarrow K$ by

$$
D(x, y)= \begin{cases}b & \text { if }(x, y) \in\{(b, b),(b, 1),(1, b),(1,1)\} \\ 0 & \text { otherwise }\end{cases}
$$

and $f: K \rightarrow K$ by

$$
f(x)= \begin{cases}b & \text { if } x \in\{b, 1\} \\ 0 & \text { otherwise }\end{cases}
$$

Then it is easily checked that D is a $*$-symmetric bi- f-multiplier of an incline algebra K.

Proposition 3.5. Let K be an incline algebra and let D be a *symmetric bi-f-multiplier on K. Then the following identities hold.
(i) $D(x * y, z) \leq f(y)$, for all $x, y, z \in K$,
(ii) $D(x, y)=D(x, y) * f(1)$, for all $x, y \in K$,
(iii) $D(x * y, z) \leq D(x, z)+f(y)$, for all $x, y \in K$.

Proof. (i) Let $x, y, z \in K$. By using (K9), we have $D(x * y, z)=$ $D(x, z) * f(y) \leq f(y)$.
(ii) Let $x, y \in K$. Then we have $D(x, y)=D(x * 1, y)=D(x, y) * f(1)$.
(iii) Let $x, y, z \in K$. Then we have $D(x * y, z)=D(x, z) * f(y) \leq$ $D(x, z)$. Also, we get $D(x, z) * f(y) \leq f(y)$. Therefore, we have $D(x *$ $y, z) \leq D(x, z)+f(y)$.

Proposition 3.6. Every $*$-symmetric bi- f-multiplier on K with $f(0)=$ 0 is regular.

Proof. Let D be a $*$-symmetric bi- f-multiplier on K with a zero element. Then we have

$$
\begin{aligned}
D(0,0) & =D(x * 0,0)=D(x, 0) * f(0) \\
& =D(x, 0) * 0=0
\end{aligned}
$$

for all $x \in K$.
Proposition 3.7. Let D be a *-symmetric bi-f-multiplier on K. If K is a distributive lattice, we have $D(x, y) \leq f(x)$ and $D(x, y) \leq f(y)$ for all $x, y \in K$.

Proof. Let D be a $*$-symmetric bi- f-multiplier on K and let K be a distributive lattice. Then $D(x, y)=D(x * x, y)=D(x, y) * f(x)$, and so by using (K9), we get $D(x, y) \leq f(x)$. Similarly, we have $D(x, y) \leq$ $f(y)$.

Proposition 3.8. Let D be a $*$-symmetric bi- f-multiplier on K and let K be a distributive lattice. Then we have $d(x) \leq f(x)$ for all $x \in K$.

Proof. Let D be a $*$-symmetric bi- f-multiplier on K and let K be a distributive lattice. Then we have

$$
\begin{aligned}
d(x) & =D(x, x)=D(x * x, x)=D(x, x) * f(x) \\
& =D(x, x) * f(x) \leq f(x)
\end{aligned}
$$

for all $x \in K$.
Theorem 3.9. Let K be an integral incline with a multiplicative identity and let D be a $*$-symmetric bi- f-multiplier on K where f is a function satisfying $f(1)=1$ and $a \in K$. Then for all $x, y \in K$, we have $D(x, y) * a=0$ implies $a=0$ or $D=0$.

Proof. Let $D(x, y) * a=0$ for all $x, y \in K$. Since K is an integral incline, that is, it has no zero-divisors, we have $a=0$ or $D(x, y)=0$ for all $x, y \in K$. Hence we get $a=0$ or $D=0$.

Definition 3.10. Let K be an incline algebra. If $D: K \times K \rightarrow K$ be a symmetric mapping. We call D a additive mapping if it satisfies

$$
D(x+y, z)=D(x, z)+D(y, z)
$$

for all $x, y, z \in K$.
Proposition 3.11. Let d be a trace of additive $*$-symmetric bi- f multiplier D on K. Then the following identities hold for all $x, y \in K$,
(i) $d(x+y)=d(x)+d(y)+D(x, y)$ and $d(x)+d(y) \leq d(x+y)$,
(ii) $D(x * y, x) \leq d(x)$.

Proof. (i) Let $x, y \in K$. Then we have

$$
\begin{aligned}
d(x+y) & =D(x+y, x+y)=D(x, x+y)+D(y, x+y) \\
& =D(x, x)+D(x, y)+D(y, x)+D(y, y) \\
& =D(x, x)+D(y, y)+D(x, y)
\end{aligned}
$$

Hence we get $d(x+y)=d(x)+d(y)+D(x, y)$ and $d(x)+d(y) \leq d(x+y)$.
(ii) Let $x, y \in K$. It follows from (K7) that $d(x)=D(x, x)=D(x+$ $(x * y), x)=D(x, x)+D(x * y, x)$, which implies $D(x * y, x) \leq d(x)$.

Proposition 3.12. Let D be a trace of $*$-symmetric bi- f-multiplier on K. Then $D(x * y, y) \leq D(x, y)$ for all $x, y \in K$.

Proof. Let $x, y \in K$. Then we have

$$
D(x, y)=D(x+x * y, y)=D(x, y)+D(x * y, y),
$$

which implies $D(x * y, y) \leq D(x, y)$.
Definition 3.13. Let D be a $*$-symmetric bi- f-multiplier on K. If $x \leq w$ implies $D(x, y) \leq D(w, y), D$ is called an isotone $*$-symmetric bi-f-multiplier for all $x, y, w \in K$.

Theorem 3.14. Let D be a additive $*$-symmetric bi-f-multiplier on K. Then D is an isotone $*$-symmetric bi-f-multiplier on K.

Proof. Let x and w be such that $x \leq w$. Then $x+w=w$, and so

$$
D(w, y)=D(w+x, y)=D(w, y)+D(x, y)
$$

for all $x, y, w \in K$. This implies that $D(x, y) \leq D(w, y)$. This completes the proof.

Let D be a $*$-symmetric bi- f-multiplier on K and a be fixed element in K. Define a set $\operatorname{Fix}_{a}(D)=\{x \in K \mid D(a, x)=f(x)\}$ for all $x \in K$.

Proposition 3.15. Let D be a additive $*$-symmetric bi- f-multiplier and let f be an endomorphism on K. Then Fix $_{a}(D)$ is a subincline of K.

Proof. Let $x, y \in \operatorname{Fix}_{a}(D)$. Then we have $D(x, a)=f(x)$ and $D(y, a)=$ $f(y)$, and so

$$
\begin{aligned}
D(x * y, a) & =D(x, a) * f(y) \\
& =f(x) * f(y)=f(x * y) .
\end{aligned}
$$

Hence we get $x * y \in \operatorname{Fix}_{a}(D)(K)$. Also, we get $D(x+y, a)=D(x, a)+$ $D(y, a)=f(x)+f(y)=f(x+y)$, and so $x+y \in F_{i x}(D)$. This completes the proof.

Proposition 3.16. Let D be a $*$-symmetric bi- f-multiplier on K with $f(x * y)=f(x) * f(y)$ for all $x, y \in K$. If $x \in \operatorname{Fix}_{a}(D)$ and let f be an endomorphism on K, then $x * y \in$ Fix $_{a}(D)$.

Proposition 3.17. Let K be additively cancellative and let D be a additive $*$-symmetric bi- f-multiplier on K and let f be an endomorphism on K. Then Fix $x_{a}(D)$ is a k-ideal of K.

Proof. Let $x+y \in \operatorname{Fix}_{a}(D)$ and $y \in \operatorname{Fix}_{D}(K)$. Then we have $f(x)+$ $f(y)=f(x+y)=D(x+y, a)=D(x, a)+D(y, a)=D(x, a)+f(y)$. Since K is additively cancellative, we have $f(x)=D(x, a)$, which implies $x \in F i x_{a}(D)$. This completes the proof.

Definition 3.18. Let K be an incline algebra and let $D: K \times K \rightarrow K$ be a symmetric mapping. Define a set $\operatorname{Ker}(D)$ by

$$
\operatorname{Ker}(D)=\{x \in K \mid D(0, x)=0\}
$$

Proposition 3.19. Let D be a additive $*$-symmetric bi- f-multiplier on K. If $x \leq y$ and $y \in \operatorname{Ker}(D)$, then we have $x \in \operatorname{Ker}(D)$.

Proof. Let $x \leq y$ and $y \in \operatorname{Ker}(D)$. Then we get $x+y=y$ and $D(0, y)=0$. Hence we get

$$
\begin{aligned}
0 & =D(0, y)=D(0, x+y) \\
& =D(0, x)+D(0, y) \\
& =D(0, x)+0=D(0, x)
\end{aligned}
$$

which implies $x \in \operatorname{Ker}(D)$. This completes the proof.
Proposition 3.20. Let D be a additive $*$-symmetric bi-f-multiplier on K. Then $\operatorname{Ker}(D)$ is a subincline of K.

Proof. Let $x, y \in \operatorname{Ker}(D)$. Then $D(x, 0)=0$, and so

$$
\begin{aligned}
D(0, x * y) & =D(x * y, 0)=D(x, 0) * f(y) \\
& =0 * f(y)=0
\end{aligned}
$$

which implies $x * y \in \operatorname{Ker}(D)$. Now $D(x+y, 0)=D(x, 0)+D(y, 0)=$ $0+0=0$. Hence $x+y \in \operatorname{Ker}(D)$. This completes the proof.

Theorem 3.21. Let D be a additive $*$-symmetric bi- f-multiplier on K. Then $\operatorname{Ker}(D)$ is an ideal of K.

Proof. By Proposition 3.10 and 11, It is obvious that $\operatorname{Ker}(D)$ is an ideal of K.

4. +-Symmetric bi- f-multipliers of incline algebras

Definition 4.1. Let K be an incline algebra and let $D: K \times K \rightarrow K$ be a symmetric mapping. We call D a + -symmetric bi-f-multiplier on K if there exists a function $f: K \rightarrow K$ such that

$$
D(x, y+z)=D(x, y)+f(z)
$$

for all $x, y, z \in K$.

Example 4.2. Let K be an incline algebra. Define a mapping on K by $D(x, y)=x+f(y)$ where $f: K \rightarrow K$ satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in K$. Then we can see that D is a + -symmetric bi- f-multiplier on K.

Proposition 4.3. Let D be a + -symmetric bi- f-multiplier on K. Then the following identities hold.
(i) $f(y) \leq D(x, y)$, for all $x, y, z \in K$,
(ii) $D(x, y)+f(y) \leq D(x, y)$, for all $x, y \in K$.

Proof. (i) Let D be a + -symmetric bi- f-multiplier on K. Then we have

$$
D(x, y)=D(x, y+y)=D(x, 0)+f(y)
$$

which implies $f(y) \leq D(x, y)$.
(ii) Let D be a + -symmetric bi- f-multiplier on K. Then we have

$$
D(x, y)=D(x, 0+y)=D(x, 0)+f(y)
$$

which implies $D(x, 0)+f(y) \leq D(x, y)$.
Proposition 4.4. Let D be a +-symmetric bi- f-multiplier on K with $f(x+y)=f(x)+f(y)$ for all $x, y \in K$. If $x \in \operatorname{Fix}_{a}(D)$, then $x+y \in \operatorname{Fix}_{a}(D)$ for all $y \in K$.

Proof. Let D be a +-symmetric bi- f-multiplier on K and $x \in F i x_{a}(D)$. Then we have $D(a, x)=f(x)$. Hence

$$
\begin{aligned}
D(a, x+y) & =D(a, x)+f(y)=f(x)+f(y) \\
& =f(x+y)
\end{aligned}
$$

which implies $x+y \in \operatorname{Fix}_{D}(K)$.
Proposition 4.5. Let D be a + -symmetric bi- f-multiplier on an incline algebra K that is additively cancellative. If $f(x+y)=f(x)+f(y)$ for all $x, y \in K$ and $x+y \in F i x_{a}(D)$ and $y \in \operatorname{Fix}_{a}(D)$, then $x \in$ Fix $_{a}(D)$.

Proof. Let D be a + -symmetric bi- f-multiplier and $x+y \in F i x_{a}(D)$. Then

$$
\begin{aligned}
f(x)+f(y) & =f(x+y)=D(a, x+y) \\
& =D(a, x)+f(y)
\end{aligned}
$$

Therefore we get $D(a, x)+f(y)=f(x)+f(y)$. Since K is additively cancellative, we have $D(a, x)=f(x)$, which implies $x \in F i x_{a}(D)$.

References

[1] N. O. Alshehri. On derivations of incline algebras, Scientiae Mathematicae Japonicae online e-2010 (2010), 199-205.
[2] Z. Q. Cao, K. H. Kim, and F. W. Roush, Incline algebra and applications, John Wiley and Sons, New York, 1984.
[3] K. H. Kim, On right derivations of incline algebras, Journal of The Chung Cheong Mathematical Society 26 (2013), no. 4, 683-690.
[4] S. A. Ozbal and A. Firat, On f-derivations of incline algebras, LJPAM 3 (2011), no. 1, 83-90.
[5] W. Yao and S. Han, On ideals, filters, and congruences in inclines, Bull. Korean Math. 46 (2009), no. 3, 591-598.
*
Department of Mathematics
Korea National University of transportation
Chungju 380-702, Republic of Korea
E-mail: ghkim@ut.ac.kr
**
Department of Mathematics
Dankook University
Cheonan 330-714, Republic of Korea
E-mail: yonghoon@dankook.ac.kr

[^0]: Received March 24, 2016; Accepted July 15, 2016.
 2010 Mathematics Subject Classification: Primary 06F35, 03G25.
 Key words and phrases: Incline algebra, derivation, symmetric bi- f-derivation, isotone, $\operatorname{Ker}(D)$.

 Correspondence should be addressed to Kyung Ho Kim, ghkim@ut.ac.kr.

