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SYMMETRIC BI-f-MULTIPLIERS OF INCLINE
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Abstract. In this paper, we introduce the concept of a symmetric
bi-f -multiplier in incline algebras and give some properties of incline
algebras. Also, we characterize Ker(D) and Fixa(D) by symmetric
bi-f -multipliers in incline algebras.

1. Introduction

Z. Q. Cao, K. H. Kim and F. W. Roush [2] introduced the notion of
incline algebras in their book. Some authors studied incline algebras and
application. N. O. Alshehri [1] introduced the notion of derivation in
incline algebras. In this paper, we introduce the concept of a symmetric
bi-f -derivation in incline algebra and give some properties of incline
algebras. Also, we characterize KerD(K) and FixD(K) by symmetric
bi-f -derivations in incline algebras.

2. Incline algebras

An incline algebra is a set K with two binary operations denoted by
“ + ” and “ ∗ ” satisfying the following axioms:
(K1) x + y = y + x,
(K2) x + (y + z) = (x + y) + z,
(K3) x ∗ (y ∗ z) = (x ∗ y) ∗ z,
(K4) x ∗ (y + z) = (x ∗ y) + (x ∗ z),
(K5) (y + z) ∗ x = (y ∗ x) + (z ∗ x),
(K6) x + x = x,
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(K7) x + (x ∗ y) = x,
(K8) y + (x ∗ y) = y

for all x, y, z ∈ K.
For convenience, we pronounce “ + ” (resp. “ ∗ ”) as addition (resp.

multiplication). Every distributive lattice is an incline algebra. An
incline algebra is a distributive lattice if and only if x ∗ x = x for all
x ∈ K. Note that x ≤ y ⇔ x + y = y for all x, y ∈ K. It is easy to see
that “ ≤ ” is a partial order on K and that for any x, y ∈ K, the element
x + y is the least upper bound of {x, y}. We say that ≤ is induced by
operation +.

In an incline algebra K, the following properties hold.
(K9) x ∗ y ≤ x and y ∗ x ≤ x for all x, y ∈ K,

(K10) y ≤ z implies x ∗ y ≤ x ∗ z and y ∗ x ≤ z ∗ x, for all x, y, z ∈ K,
(K11) If x ≤ y and a ≤ b, then x + a ≤ y + b, and x ∗ a ≤ y ∗ b for all

x, y, a, b ∈ K.

Furthermore, an incline algebra K is said to be commutative if x ∗ y =
y ∗ x for all x, y ∈ K. A map f is isotone if x ≤ y implies f(x) ≤ f(y)
for all x, y ∈ K.

A subincline of an incline algebra K is a non-empty subset M of
K which is closed under the addition and multiplication. A subincline
M is said to be an ideal if x ∈ M and y ≤ x then y ∈ M. An element
“0” in an incline algebra K is a zero element if x + 0 = x = 0 + x and
x ∗ 0 = 0 = 0 ∗ x for any x ∈ K. An non-zero element “1” is called a
multiplicative identity if x ∗ 1 = 1 ∗ x = x for any x ∈ K. A non-zero
element a ∈ K is said to be a left (resp. right) zero divisor if there
exists a non-zero b ∈ K such hat a ∗ b = 0 (resp. b ∗ a = 0) A zero
divisor is an element of K which is both a left zero divisor and a right
zero divisor. An incline algebra K with multiplicative identity 1 and
zero element 0 is called an integral incline if it has no zero divisors.
By a homomorphism of inclines, we mean a mapping f from an incline
algebra K into an incline algebra L such that f(x + y) = f(x) + f(y)
and f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ K. A map f : K → K is
regular if f(0) = 0. A subincline I of an incline algebra K is said to be
k-ideal if x + y ∈ I and y ∈ I, then x ∈ I. Let K be an incline algebra.
An element a ∈ K is called a additively cancellative if for all a, b ∈ K,
a + b = a + c ⇒ b = c. If every element of K is additively cancellative,
it is called additively cancellative.
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Definition 2.1. Let K be an incline algebra. A mapping D(., .) :
K × K → K is called symmetric if D(x, y) = D(y, x) holds for all
x, y ∈ K.

Definition 2.2. Let K be an incline algebra and x ∈ K. A mapping
d(x) = D(x, x) is called trace of D(., .), where D(., .) : K ×K → K is a
symmetric mapping.

Definition 2.3. Let K be an incline algebra and let D : K×K → K
be a symmetric mapping. We call D a symmetric bi-derivation on K if
it satisfies the following condition

D(x ∗ y, z) = (D(x, z) ∗ y) + (x ∗D(y, z))

for all x, y, z ∈ K.

3. ∗-Symmetric bi-f-multipliers of incline algebras

In what follows, let K denote an incline algebra with a zero-element
unless otherwise specified.

Definition 3.1. Let K be an incline algebra and let D : K×K → K
be a symmetric mapping. We call D a ∗-symmetric bi-f -multiplier on
K if there exists a function f : K → K such that

D(x ∗ y, z) = D(x, z) ∗ f(y)

for all x, y, z ∈ K.

Obviously, a ∗-symmetric bi-f -multiplier D on K satisfies the relation

D(x, y ∗ z) = D(x, y) ∗ f(z)

for all x, y, z ∈ K.

Example 3.2. Let K be a commutative incline algebra. Define a
mapping on K by D(x, y) = f(x) ∗ f(y) where f : K → K satisfies
f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ K. Then we can see that D is a
∗-symmetric bi-f -multiplier on K.

Example 3.3. Let K be a commutative incline algebra and a ∈ K.
Define a mapping on K by D(x, y) = (f(x) ∗ f(y)) ∗ a where f : K → K
satisfies f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ K. Then we can see that D
is a ∗-symmetric bi-f -multiplier on K.

Example 3.4. Let K = {0, a, b, 1} be a set in which “+” and “ ∗ ” is
defined by
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+ 0 a b 1
0 0 a b 1
a a a b 1
b b b b 1
1 1 1 1 1

∗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

Then it is easy to check that (K, +, ∗) is an incline algebra. Define a
map D : K ×K → K by

D(x, y) =

{
b if (x, y) ∈ {(b, b), (b, 1), (1, b), (1, 1)}
0 otherwise

and f : K → K by

f(x) =

{
b if x ∈ {b, 1}
0 otherwise

Then it is easily checked that D is a ∗-symmetric bi-f -multiplier of
an incline algebra K.

Proposition 3.5. Let K be an incline algebra and let D be a ∗-
symmetric bi-f -multiplier on K. Then the following identities hold.

(i) D(x ∗ y, z) ≤ f(y), for all x, y, z ∈ K,
(ii) D(x, y) = D(x, y) ∗ f(1), for all x, y ∈ K,
(iii) D(x ∗ y, z) ≤ D(x, z) + f(y), for all x, y ∈ K.

Proof. (i) Let x, y, z ∈ K. By using (K9), we have D(x ∗ y, z) =
D(x, z) ∗ f(y) ≤ f(y).

(ii) Let x, y ∈ K. Then we have D(x, y) = D(x∗1, y) = D(x, y)∗f(1).
(iii) Let x, y, z ∈ K. Then we have D(x ∗ y, z) = D(x, z) ∗ f(y) ≤

D(x, z). Also, we get D(x, z) ∗ f(y) ≤ f(y). Therefore, we have D(x ∗
y, z) ≤ D(x, z) + f(y).

Proposition 3.6. Every ∗-symmetric bi-f -multiplier on K with f(0) =
0 is regular.

Proof. Let D be a ∗-symmetric bi-f -multiplier on K with a zero ele-
ment. Then we have

D(0, 0) = D(x ∗ 0, 0) = D(x, 0) ∗ f(0)

= D(x, 0) ∗ 0 = 0

for all x ∈ K.

Proposition 3.7. Let D be a ∗-symmetric bi-f -multiplier on K. If
K is a distributive lattice, we have D(x, y) ≤ f(x) and D(x, y) ≤ f(y)
for all x, y ∈ K.
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Proof. Let D be a ∗-symmetric bi-f -multiplier on K and let K be a
distributive lattice. Then D(x, y) = D(x ∗ x, y) = D(x, y) ∗ f(x), and
so by using (K9), we get D(x, y) ≤ f(x). Similarly, we have D(x, y) ≤
f(y).

Proposition 3.8. Let D be a ∗-symmetric bi-f -multiplier on K and
let K be a distributive lattice. Then we have d(x) ≤ f(x) for all x ∈ K.

Proof. Let D be a ∗-symmetric bi-f -multiplier on K and let K be a
distributive lattice. Then we have

d(x) = D(x, x) = D(x ∗ x, x) = D(x, x) ∗ f(x)

= D(x, x) ∗ f(x) ≤ f(x)

for all x ∈ K.

Theorem 3.9. Let K be an integral incline with a multiplicative
identity and let D be a ∗-symmetric bi-f -multiplier on K where f is a
function satisfying f(1) = 1 and a ∈ K. Then for all x, y ∈ K, we have
D(x, y) ∗ a = 0 implies a = 0 or D = 0.

Proof. Let D(x, y) ∗ a = 0 for all x, y ∈ K. Since K is an integral
incline, that is, it has no zero-divisors, we have a = 0 or D(x, y) = 0 for
all x, y ∈ K. Hence we get a = 0 or D = 0.

Definition 3.10. Let K be an incline algebra. If D : K ×K → K
be a symmetric mapping. We call D a additive mapping if it satisfies

D(x + y, z) = D(x, z) + D(y, z)

for all x, y, z ∈ K.

Proposition 3.11. Let d be a trace of additive ∗-symmetric bi-f-
multiplier D on K. Then the following identities hold for all x, y ∈ K,

(i) d(x + y) = d(x) + d(y) + D(x, y) and d(x) + d(y) ≤ d(x + y),
(ii) D(x ∗ y, x) ≤ d(x).

Proof. (i) Let x, y ∈ K. Then we have

d(x + y) = D(x + y, x + y) = D(x, x + y) + D(y, x + y)

= D(x, x) + D(x, y) + D(y, x) + D(y, y)

= D(x, x) + D(y, y) + D(x, y).

Hence we get d(x+y) = d(x)+d(y)+D(x, y) and d(x)+d(y) ≤ d(x+y).
(ii) Let x, y ∈ K. It follows from (K7) that d(x) = D(x, x) = D(x +

(x ∗ y), x) = D(x, x) + D(x ∗ y, x), which implies D(x ∗ y, x) ≤ d(x).



448 Kyung Ho Kim and Yong Hoon Lee

Proposition 3.12. Let D be a trace of ∗-symmetric bi-f -multiplier
on K. Then D(x ∗ y, y) ≤ D(x, y) for all x, y ∈ K.

Proof. Let x, y ∈ K. Then we have

D(x, y) = D(x + x ∗ y, y) = D(x, y) + D(x ∗ y, y),

which implies D(x ∗ y, y) ≤ D(x, y).

Definition 3.13. Let D be a ∗-symmetric bi-f -multiplier on K. If
x ≤ w implies D(x, y) ≤ D(w, y), D is called an isotone ∗-symmetric
bi-f-multiplier for all x, y, w ∈ K.

Theorem 3.14. Let D be a additive ∗-symmetric bi-f -multiplier on
K. Then D is an isotone ∗-symmetric bi-f -multiplier on K.

Proof. Let x and w be such that x ≤ w. Then x + w = w, and so

D(w, y) = D(w + x, y) = D(w, y) + D(x, y)

for all x, y, w ∈ K. This implies that D(x, y) ≤ D(w, y). This completes
the proof.

Let D be a ∗-symmetric bi-f -multiplier on K and a be fixed element
in K. Define a set Fixa(D) = {x ∈ K|D(a, x) = f(x)} for all x ∈ K.

Proposition 3.15. Let D be a additive ∗-symmetric bi-f -multiplier
and let f be an endomorphism on K. Then Fixa(D) is a subincline of
K.

Proof. Let x, y ∈ Fixa(D). Then we have D(x, a) = f(x) and D(y, a) =
f(y), and so

D(x ∗ y, a) = D(x, a) ∗ f(y)

= f(x) ∗ f(y) = f(x ∗ y).

Hence we get x ∗ y ∈ Fixa(D)(K). Also, we get D(x + y, a) = D(x, a) +
D(y, a) = f(x)+f(y) = f(x+y), and so x+y ∈ Fixa(D). This completes
the proof.

Proposition 3.16. Let D be a ∗-symmetric bi-f -multiplier on K
with f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ K. If x ∈ Fixa(D) and let f be
an endomorphism on K, then x ∗ y ∈ Fixa(D).

Proposition 3.17. Let K be additively cancellative and let D be
a additive ∗-symmetric bi-f -multiplier on K and let f be an endomor-
phism on K. Then Fixa(D) is a k-ideal of K.
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Proof. Let x+ y ∈ Fixa(D) and y ∈ FixD(K). Then we have f(x)+
f(y) = f(x + y) = D(x + y, a) = D(x, a) + D(y, a) = D(x, a) + f(y).
Since K is additively cancellative,we have f(x) = D(x, a), which implies
x ∈ Fixa(D). This completes the proof.

Definition 3.18. Let K be an incline algebra and let D : K×K → K
be a symmetric mapping. Define a set Ker(D) by

Ker(D) = {x ∈ K | D(0, x) = 0}.
Proposition 3.19. Let D be a additive ∗-symmetric bi-f -multiplier

on K. If x ≤ y and y ∈ Ker(D), then we have x ∈ Ker(D).

Proof. Let x ≤ y and y ∈ Ker(D). Then we get x + y = y and
D(0, y) = 0. Hence we get

0 = D(0, y) = D(0, x + y)

= D(0, x) + D(0, y)

= D(0, x) + 0 = D(0, x),

which implies x ∈ Ker(D). This completes the proof.

Proposition 3.20. Let D be a additive ∗-symmetric bi-f -multiplier
on K. Then Ker(D) is a subincline of K.

Proof. Let x, y ∈ Ker(D). Then D(x, 0) = 0, and so
D(0, x ∗ y) = D(x ∗ y, 0) = D(x, 0) ∗ f(y)

= 0 ∗ f(y) = 0,

which implies x ∗ y ∈ Ker(D). Now D(x + y, 0) = D(x, 0) + D(y, 0) =
0 + 0 = 0. Hence x + y ∈ Ker(D). This completes the proof.

Theorem 3.21. Let D be a additive ∗-symmetric bi-f -multiplier on
K. Then Ker(D) is an ideal of K.

Proof. By Proposition 3.10 and 11, It is obvious that Ker(D) is an
ideal of K.

4. +-Symmetric bi-f-multipliers of incline algebras

Definition 4.1. Let K be an incline algebra and let D : K×K → K
be a symmetric mapping. We call D a +-symmetric bi-f-multiplier on
K if there exists a function f : K → K such that

D(x, y + z) = D(x, y) + f(z)
for all x, y, z ∈ K.
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Example 4.2. Let K be an incline algebra. Define a mapping on K
by D(x, y) = x+ f(y) where f : K → K satisfies f(x+ y) = f(x)+ f(y)
for all x, y ∈ K. Then we can see that D is a +-symmetric bi-f -multiplier
on K.

Proposition 4.3. Let D be a +-symmetric bi-f -multiplier on K.
Then the following identities hold.

(i) f(y) ≤ D(x, y), for all x, y, z ∈ K,
(ii) D(x, y) + f(y) ≤ D(x, y), for all x, y ∈ K.

Proof. (i) Let D be a +-symmetric bi-f -multiplier on K. Then we
have

D(x, y) = D(x, y + y) = D(x, 0) + f(y),

which implies f(y) ≤ D(x, y).
(ii) Let D be a +-symmetric bi-f -multiplier on K. Then we have

D(x, y) = D(x, 0 + y) = D(x, 0) + f(y),

which implies D(x, 0) + f(y) ≤ D(x, y).

Proposition 4.4. Let D be a +-symmetric bi-f -multiplier on K
with f(x + y) = f(x) + f(y) for all x, y ∈ K. If x ∈ Fixa(D), then
x + y ∈ Fixa(D) for all y ∈ K.

Proof. Let D be a +-symmetric bi-f -multiplier on K and x ∈ Fixa(D).
Then we have D(a, x) = f(x). Hence

D(a, x + y) = D(a, x) + f(y) = f(x) + f(y)

= f(x + y),

which implies x + y ∈ FixD(K).

Proposition 4.5. Let D be a +-symmetric bi-f -multiplier on an
incline algebra K that is additively cancellative. If f(x+y) = f(x)+f(y)
for all x, y ∈ K and x + y ∈ Fixa(D) and y ∈ Fixa(D), then x ∈
Fixa(D).

Proof. Let D be a +-symmetric bi-f -multiplier and x+y ∈ Fixa(D).
Then

f(x) + f(y) = f(x + y) = D(a, x + y)

= D(a, x) + f(y)

Therefore we get D(a, x) + f(y) = f(x) + f(y). Since K is additively
cancellative, we have D(a, x) = f(x), which implies x ∈ Fixa(D).
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