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UNIQUE POINT OF COINCIDENCE FOR TWO

MAPPINGS WITH ϕ- OR ψ-φ-CONTRACTIVE

CONDITIONS ON 2-METRIC SPACES

Ming-Xing Xu*, Xin Huang**, and Yong-Jie Piao***

Abstract. We discuss and obtain some existence theorems of unique
point of coincidence for two mappings satisfying ϕ-contractive con-
ditions or ψ-φ-contractive conditions determined by semi-continuous
functions on non-complete 2-metric spaces, in which the mappings
do not satisfy commutativity and uniform boundedness. The ob-
tained results generalize and improve many well-known and corre-
sponding conclusions.

1. Introduction and preliminaries

There have appeared many common fixed point theorems of map-
pings with some contractive conditions on 2-metric spaces. But most of
them held under subsidiary conditions ([9, 11]), for example; commu-
tativity of mappings or uniform boundness of mappings at some point,
and so on. The authors in ([1, 2, 3, 4, 5, 6, 7, 8, 10]) obtained general-
ized results of coincidence points and common fixed points for infinite
or finite family of mappings satisfying generalized linear or non-linear
contractive or quasi-contractive conditions and expansive conditions un-
der removing the above subsidiary conditions. These obtained results
greatly generalize and improve the corresponding conclusions.

In this paper, we will introduce three real functions with some kind
of properties to establish contractive conditions of two self-mappings
on 2-metric spaces, and construct convergent sequences to discuss the
existence problems of unique points of coincidence of the given mappings.
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Definition 1.1. ([5, 6, 9]) A 2-metric space (X, d) consists of a
nonempty set X and a function d : X ×X ×X → [0,+∞) such that

(i) for distant elements x, y ∈ X, there exists an u ∈ X such that
d(x, y, u) 6= 0;

(ii) d(x, y, z) = 0 ⇐⇒ at least two elements in {x, y, z} are equal;
(iii) d(x, y, z) = d(u, v, w), where {u, v, w} is any permutation of {x, y, z};
(iv) d(x, y, z) ≤ d(x, y, u) + d(x, u, z) + d(u, y, z) for all x, y, z, u ∈ X.

Definition 1.2. ([5, 6, 9]) A sequence {xn}n∈N in 2-metric space
(X, d) is said to be a Cauchy sequence, if for each ε > 0 there exists N ∈
N such that d(xn, xm, a) < ε for all a ∈ X and n,m > N . {xn}n∈N is said
to be convergent to x ∈ X, if for each a ∈ X, limn→+∞ d(xn, x, a) = 0.
And we write that xn → x and call x the limit of {xn}n∈N.

Definition 1.3. ([5, 6, 9]) A 2-metric space (X, d) is said to be
complete, if every cauchy sequence in X is convergent.

Lemma 1.4. ([12]) Let {xn} be a sequence in 2-metric space (X, d)
such that limn→∞ d(xn, xn+1, a) = 0 for all a ∈ X. If {xn} is not a
Cauchy sequence, then there exist a ∈ X and ε > 0 such that for each
i ∈ N there exist m(i), n(i) ∈ N with m(i), n(i) > i such that

(i) m(i) > n(i) and n(i)→∞ as i→∞;
(ii) d(xm(i), xn(i), a) > ε, but d(xm(i)−1, xn(i), a) ≤ ε.

Lemma 1.5. ([5, 6, 7]) If a sequence {xn} in a 2-metric space (X, d)
converges to x ∈ X, then

lim
n→∞

d(xn, b, c) = d(x, b, c),∀ b, c ∈ X.

Definition 1.6. ([5, 6, 7]) Let f, g : X → X be two mappings. If
w = fx = gx for some w, x ∈ X, then x is called a coincidence point of
f and g, w is called a point of coincidence of f and g.

Definition 1.7. ([5, 6, 7]) Two mappings f, g : X → X are called
be weakly compatible if fgx = gfx whenever fx = gx for x ∈ X

Lemma 1.8. ([5, 6, 7]) If f, g : X → X are weakly compatible and
have an unique point of coincidence w, then w is the unique common
fixed point of f and g.

2. Unique point of coincidence and common fixed point

Let ϕ : [0,∞) → [0,∞) be a non-decreasing function satisfying the
following conditions:
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(ϕ1): ϕ(0) = 0; (ϕ2): 0 < ϕ(t) < t for all t > 0; (ϕ3):
∑∞

n=1 ϕ
n(t) <

∞ for each t ∈ (0,∞).

Theorem 2.1. Let (X, d) be a 2-metric space, f, g : X → X two
mappings such that fX ⊂ gX. Suppose that

(2.1) d(fx, fy, a) ≤ ϕ
(
M(x, y, a)

)
, ∀ x, y, a ∈ X,

whereM(x, y, a) = max
{
d(gx, gy, a), d(gx, fx, a), d(gy, fy, a), 12 [d(gx, fy,

a) +d(gy, fx, a)]
}

and ϕ is upper semi-continuous. If fX or gX is com-
plete, and X is bounded (i.e., supx,y,z∈X d(x, y, z) < +∞), then f and g
have a unique point of coincidence. Furthermore, if f and g are weakly
compatible, then f and g have a unique common fixed point.

Proof. Take x0 ∈ X and construct sequences {xn} and {yn} satisfying

yn = fxn = gxn+1, n = 0, 1, 2, · · · .

For any fixed n ≥ 1, in view of (2.1),

d(yn, yn+1, yn+2)

= d(fxn+2, fxn+1, yn)

≤ ϕ(M(xn+2, xn+1, yn)),

= ϕ
(
max

{
d(gxn+2, gxn+1, yn), d(gxn+2, fxn+2, yn), d(gxn+1, fxn+1, yn),

d(gxn+2, fxn+1, yn) + d(gxn+1, fxn+2, yn)

2

})
= ϕ

(
d(yn+2, yn+1, yn)

)
.

Hence by (ϕ2),

d(yn, yn+1, yn+2) = 0, ∀ n = 1, 2, , · · · .

Suppose that d(yk, yn, yn+1) = 0 for n− k ≥ 1, then by (2.1),

d(yn+1, yn+2, yk) = d(fxn+1, fxn+2, yk) ≤ ϕ(M(xn+1, xn+2, yk)),

where

M(xn+1, xn+2, yk)

= max
{
d(gxn+1, gxn+2, yk), d(gxn+1, fxn+1, yk), d(gxn+2, fxn+2, yk),

d(gxn+1, fxn+2, yk) + d(gxn+2, fxn+1, yk)

2

}
= max

{
d(yn+1, yn+2, yk),

d(yn, yn+2, yk)

2

}
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But d(yn, yn+2, yk) ≤ d(yn, yn+1, yk) + d(yn+1, yn+2, yk) + d(yn, yn+1,
yn+2) = d(yn+1, yn+2, yk), hence

M(xn+1, xn+2, yk) = d(yn+1, yn+2, yk),

therefore

d(yk, yn+1, yn+2) ≤ ϕ(d(yn+1, yn+2, yk)),

which implies that d(yk, yn+1, yn+2) = 0 by (ϕ2). Hence

(2.2) d(yk, yn, yn+1) = 0, ∀ k, n ∈ N, k ≤ n.

For every m,n, l ∈ N with m ≤ n ≤ l, using (2.2), we obtain

d(ym, yn, yl)

≤ d(ym, yn, yl−1) + d(ym, yl−1, yl) + d(yn, yl−1, yl) = d(ym, yn, yl−1)

≤ · · ·
≤ d(ym, yn, yn+1)

= 0.

Hence we have

(2.3) d(ym, yn, yl) = 0,∀ m,n, l ∈ N.

For any fixed n ≥ 1 and a ∈ X,

d(yn, yn+1, a) = d(fxn, fxn+1, a) ≤ ϕ(M(xn, xn+1, a)),

where

M(xn, xn+1, a)

= max
{
d(gxn, gxn+1, a), d(gxn, fxn, a), d(gxn+1, fxn+1, a),

d(gxn, fxn+1, a) + d(gxn+1, fxn, a)

2

}
= max

{
d(yn−1, yn, a), d(yn, yn+1, a),

d(yn−1, yn+1, a)

2

}
.

But using Definition 1.1(iv) and (2.3), we obtain

d(yn−1, yn+1, a) ≤ d(yn−1, yn, a) + d(yn, yn+1, a),

hence

M(xn, xn+1, a) = max
{
d(yn−1, yn, a), d(yn, yn+1, a)

}
.

If there exists a ∈ X such that d(yn−1, yn, a) < d(yn, yn+1, a), then
M(xn, xn+1, a) = d(yn, yn+1, a) > 0, hence by (ϕ2), we have

d(yn, yn+1, a) ≤ ϕ(M(xn, xn+1, a)) = ϕ(d(yn, yn+1, a)) < d(yn, yn+1, a),



Unique point of coincidence for mappings 421

which is a contradiction. So M(xn, xn+1, a) = d(yn−1, yn, a) for all n ∈ N
and a ∈ X, therefore, for all n ∈ N and a ∈ X,

d(yn, yn+1, a) ≤ ϕ(M(xn, xn+1, a)) = ϕ(d(yn−1, yn, a)).

Continuing this process, we obtain that for all n ∈ N and a ∈ X,

d(yn, yn+1, a) ≤ ϕn(d(y0, y1, a)).

Since X is bounded, there exists M > 0 such that d(y0, y1, a) < M
for all a ∈ X. So we have

d(yn, yn+1, a) ≤ ϕn(M), ∀n ∈ N, a ∈ X.

For any m,n ∈ N with n > m and a ∈ X,

d(ym, yn, a)

≤ d(ym, ym+1, a) + d(ym+1, yn, a) + d(ym, yn, ym+1)

= d(ym, ym+1, a) + d(ym+1, yn, a)

≤ d(ym, ym+1, a) + d(ym+1, ym+2, a) + d(ym+2, yn, a) + d(ym+1, yn, ym+2)

= d(ym, ym+1, a) + d(ym+1, ym+2, a) + d(ym+2, yn, a)

≤ · · ·
≤ d(ym, ym+1, a) + d(ym+1, ym+2, a) + · · ·+ d(yn−1, yn, a)

≤
n−1∑
k=m

ϕk(M).

Hence by (ϕ3), we know that {yn} is a Cauchy sequence in X.

Suppose that gX is complete, then there exist u, v ∈ X such that
yn = fxn = gxn+1 → u = gv as n→∞.

For any n and a ∈ X,

d(yn, fv, a) = d(fxn, fv, a)

≤ ϕ(M(xn, v, a)

= ϕ(max
{
d(gxn, gv, a), d(gxn, fxn, a), d(gv, fv, a),

d(gxn, fv, a) + d(gv, fxn, a)

2

}
)

= ϕ(max
{
d(yn−1, gv, a), d(yn−1, yn, a), d(gv, fv, a),

d(yn−1, fv, a) + d(gv, yn, a)

2

}
).

Letting n→∞, then we obtain from the above and Lemma 1.5 that
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d(gv, fv, a) = lim
n→∞

d(yn, fv, a)

≤ lim sup
n→∞

ϕ(max
{
d(yn−1, gv, a), d(yn−1, yn, a), d(gv, fv, a),

d(yn−1, fv, a) + d(gv, yn, a)

2

}
)

≤ ϕ( lim
n→∞

max
{
d(yn−1, gv, a), d(yn−1, yn, a), d(gv, fv, a),

d(yn−1, fv, a) + d(gv, yn, a)

2

}
)

= ϕ(d(gv, fv, a)).

This implies that
d(gv, fv, a) = 0, ∀ a ∈ X,

hence
fv = gv = u.

So u is a point of coincidence of f and g.
Suppose that u1 is another point of coincidence of f and g, then there

exists v1 satisfying u1 = fv1 = gv1, and there exists a ∈ X satisfying
d(u, u1, a) > 0. By (2.1) and (ϕ2), we obtain the following contradiction

d(u, u1, a) = d(fv, fv1, a)

≤ ϕ(M(v, v1, a)) = ϕ(max
{
d(gv, gv1, a), d(gv, fv, a), d(gv1, fv1, a),

d(gv, fv1, a) + d(gv1, fv, a)

2

}
)

= ϕ(d(u, u1, a)) < d(u, u1, a).

Hence u is the unique point of coincidence of f and g.
Suppose that fX is complete. Then there exist u, v, w ∈ X such that

yn = fxn → u = fw = gv since fX ⊂ gX, hence the corresponding
conclusion follows from the similar discussion, and the rest proof follows
from Lemma 1.8.

A mapping ψ : [0,∞)→ [0,∞) is called an altering distance function
if ψ is continuous and non-decreasing and ψ(t) = 0⇔ t = 0.

Theorem 2.2. Let (X, d) be a 2-metric space, f, g : X → X two
mappings such that fX ⊂ gX. Suppose that

(2.4) ψ(d(fx, fy, a)) ≤ ψ(M(x, y, a))− φ(M(x, y, a)),∀ x, y, a ∈ X,
where, M(x, y, a) is that in Theorem 2.1, ψ is an altering distance func-
tion, φ : [0,∞) → [0,∞) is a lower semi-continuous function such that
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φ(t) = 0⇔ t = 0. If fX or gX is complete, then f and g have a unique
point of coincidence. Furthermore, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. Take x0 ∈ X and construct sequences {xn} and {yn} satisfying

yn = fxn = gxn+1, ∀n = 0, 1, 2, 3, · · · .
For any n ∈ N,

ψ(d(fxn+1, fxn+2, yn)) ≤ ψ(M(xn+1, xn+2, yn))−φ(M(xn+1, xn+2, yn)),

where M(xn+1, xn+2, yn) = d(yn+1, yn+2, yn) (see Theorem 2.1). Hence

ψ(d(yn+1, yn+2, yn)) ≤ ψ(d(yn+1, yn+2, yn))− φ(d(yn+1, yn+2, yn)),

so
φ(d(yn+1, yn+2, yn)) = 0, ∀ n ∈ N.

By the property of φ,

(2.5) d(yn, yn+1, yn+2) = 0, ∀ n ∈ N.
Suppose that d(yk, yn, yn+1) = 0, where n ≥ k+ 1. Using (2.4), we have

ψ(d(fxn+1, fxn+2, yk)) ≤ ψ(M(xn+1, xn+2, yk))−φ(M(xn+1, xn+2, yk)),

whereM(xn+1, xn+2, yk) = max
{
d(yn+1, yn+2, yk), d(yn,yn+2,yk)

2

}
(see The-

orem 2.1). By (2.5) and the assumption,

d(yn, yn+2, yk) ≤ d(yn, yn+1, yn+2) + d(yn+1, yn+2, yk) + d(yn, yn+1, yk)

= d(yn+1, yn+2, yk),

so
M(xn+1, xn+2, yk) = d(yn+1, yn+2, yk).

Hence

ψ(d(yk, yn+1, yn+2)) ≤ ψ(d(yk, yn+1, yn+2))− φ(d(yk, yn+1, yn+2)),

which implies that

(2.6) φ(d(yk, yn+1, yn+2)) = 0 =⇒ d(yk, yn+1, yn+2) = 0.

Therefore, in view of (2.5) and (2.6), we have the next fact:

(2.7) d(yk, yn, yn+1) = 0, ∀ n, k ∈ N, n ≥ k ≥ 1.

For all m,n, k ∈ N with k ≥ n ≥ m, using (2.7), we have

d(ym, yn, yk) ≤ d(ym, yn, yk−1) + d(ym, yk−1, yk) + d(yn, yk−1, yk)

= d(ym, yn, yk−1).

Continuing this process, we obtain the following fact: for all k ≥ n ≥ m,

(2.8) d(ym, yn, yk) ≤ d(ym, yn, yk−1) ≤ · · · ≤ d(ym, yn, yn+1) = 0.
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For any fixed n ∈ N and any a ∈ X,
ψ(d(yn+1, yn+2, a)) = ψ(d(fxn+1, fxn+2, a))

≤ ψ(M(xn+1, xn+2, a))− φ(M(xn+1, xn+2, a)),

where M(xn+1, xn+2, a) = max
{
d(yn, yn+1, a), (yn+1, yn+2, a)

}
(see The-

orem 2.1).
If d(yn, yn+1, a) < (yn+1, yn+2, a) for some a ∈ X, thenM(xn+1, xn+2,

a) = d(yn+1, yn+2, a) > 0. Hence using the property of φ, we have

ψ(d(yn+1, yn+2, a)) ≤ ψ(d(yn+1, yn+2, a))− φ(d(yn+1, yn+2, a))

< ψ(d(yn+1, yn+2, a)),

which is a contradiction. Hence

M(xn+1, xn+2, a) = d(yn, yn+1, a), ∀ a, n

and we have

ψ(d(yn+1, yn+2, a)) ≤ ψ(d(yn, yn+1, a))− φ(d(yn, yn+1, a))

≤ ψ(d(yn, yn+1, a)), ∀ a, n.
(2.9)

By the property of ψ, we obtain that

d(yn+1, yn+2, a) ≤ d(yn, yn+1, a), ∀ a, n.

So for any fixed a ∈ X, {d(yn, yn−1, a)} is a non-increasing and non-
negative real sequence, hence there exists r(a) ≥ 0 such that

lim
n→∞

d(yn, yn−1, a) = r(a).

Letting n → ∞ in the both sides of the first inequality in (2.9), we
obtain

ψ(r(a)) ≤ ψ(r(a))− lim inf
n→∞

φ(d(yn, yn+1, a))

≤ ψ(r(a))− φ( lim
n→∞

d(yn, yn+1, a))

= ψ(r(a))− φ(r(a)),

hence φ(r(a)) = 0, which implies that r(a) = 0. Therefore, we have

(2.10) lim
n→∞

d(yn, yn+1, a) = 0, ∀ a ∈ X.

If {yn} is not Cauchy, then by Lemma 1.4, there exist a ∈ X and
ε > 0 such that for any i ∈ N there exist m(i) > n(i) ∈ N satisfying

(i) m(i), n(i) > i, m(i) > n(i) + 1 and n(i)→∞ as i→∞;
(ii) d(ym(i), yn(i), a) > ε, but d(ym(i)−1, yn(i), a) ≤ ε, i = 1, 2, · · · .
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Using (2.8) and (2.10) and the following result

d(ym(i), yn(i), a)

≤ d(ym(i), ym(i)−1, a) + d(ym(i)−1, yn(i), a) + d(ym(i), yn(i), ym(i)−1),

we obtain

(2.11) lim
i→∞

d(ym(i), yn(i), a) = lim
i→∞

d(ym(i)−1, yn(i), a) = ε.

The following two inequalities hold

|d(ym(i), yn(i), a)− d(ym(i), yn(i)−1, a)|
≤ d(yn(i)−1, yn(i), a) + d(ym(i), yn(i), yn(i)−1)

and

|d(ym(i)−1, yn(i)−1, a)− d(ym(i), yn(i)−1, a)|
≤ d(ym(i)−1, ym(i), a) + d(ym(i), ym(i)−1, yn(i)−1),

hence using (2.8), (2.10) and (2.11), we have

lim
n→∞

d(ym(i), yn(i), a) = lim
n→∞

d(ym(i)−1, yn(i), a)

= lim
i→∞

d(ym(i), yn(i)−1, a) = lim
i→∞

d(ym(i)−1, yn(i)−1, a) = ε.
(2.12)

Since

ψ(d(ym(i), yn(i), a)) = ψ(d(fxm(i), fxn(i), a))

≤ ψ(M(xm(i), xn(i), a))− φ(M(xm(i), xn(i), a)),

(2.13)

where

M(xm(i), xn(i), a)

= max
{
d(gxm(i), gxn(i), a), d(gxm(i), fxm(i), a), d(gxn(i), fxn(i), a),

d(gxm(i), fxn(i), a) + d(gxn(i), fxm(i), a)

2

}
= max

{
d(ym(i)−1, yn(i)−1, a), d(ym(i)−1, ym(i), a), d(yn(i−1), yn(i), a),

d(ym(i)−1, yn(i), a) + d(yn(i)−1, ym(i), a)

2

}
.

By (2.10) and (2.12), we know

(2.14) lim
i→∞

M(xm(i), xn(i), a) = ε.

Letting i→∞ in (2.13) and using (2.12) and (2.14), we obtain
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ψ(ε) ≤ ψ(ε)− lim inf
n→∞

φ(M(xm(i), xn(i), a))

≤ ψ(ε)− φ( lim
n→∞

M(xm(i), xn(i), a)) = ψ(ε)− φ(ε),

which implies that φ(ε) = 0, i.e., ε = 0. This is a contradiction, hence
{yn} is a Cauchy sequence.

Suppose that gX is complete. Then there exist u, v ∈ X such that
yn = fxn = gxn+1 → u = gv. For any n and a ∈ X, we have that

ψ(yn, fv, a) = d(fxn, fv, a) ≤ ψ(M(xn, v, a)− φ(M(xn, v, a)), (2.15)

where

M(xn, v, a)

= max
{
d(gxn, gv, a), d(gxn, fxn, a), d(gv, fv, a),

d(gxn, fv, a) + d(gv, fxn, a)

2

}
= max

{
d(yn−1, gv, a), d(yn−1, yn, a), d(gv, fv, a),

d(yn−1, fv, a) + d(gv, yn, a)

2

}
.

Let n→∞, then

lim
n→∞

M(xn, v, a) = d(gv, gv, a), ∀ a ∈ X.

Hence Letting n→∞ in (2.15), we obtain that

ψ(fv, gv, a)

≤ ψ(d(fv, gv, a))− lim inf
n→∞

φ(M(xn, v, a))

≤ ψ(d(fv, gv, a))− φ( lim
n→∞

M(xn, v, a))

= ψ(d(fv, gv, a))− φ(d(fv, gv, a)), ∀ a ∈ X.

This implies that φ(d(fv, gv, a)) = 0, ∀ a ∈ X =⇒ d(fv, gv, a) =
0, ∀ a ∈ X, hence

fv = gv = u.

Suppose that u1 is another point of coincidence of f and g, then there
exists v1 satisfying u1 = fv1 = gv1, and there exists a ∈ X satisfying
d(u, u1, a) > 0. By (2.4)

ψ(d(u, u1, a)) = ψ(d(fv, fv1, a)) ≤ ψ(M(v, v1, a))− φ(M(v, v1, a)),

where M(v, v1, a) = d(u, u1, a), hence

ψ(d(u, u1, a)) ≤ ψ(d(u, u1, a))− φ(d(u, u1, a)),

which implies d(u, u1, a) = 0, a contradiction. So u is the unique pint of
coincidence of f and g.
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Suppose that fX is complete. Then there exist u, v, w ∈ X such that
yn = fxn → u = fw = gv since fX ⊂ gX. The rest proof follows from
the similar discussion and Lemma 1.8.

Remark 2.3. (1) ϕ in Theorem 2.1 need not be a strictly increasing
function.

(2) We find that the condition ψ(t) = 0 ⇐⇒ t = 0 in Theorem 2.2
is superfluous. Hence we only need that ψ is a continuous and non-
decreasing function.
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