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ALMOST OPEN AND ALMOST HOMEOMORPHISMS

Gui Seok Kim* and Kyung Bok Lee**

Abstract. This paper is devoted to the study of various notions
of almost openness and almost homeomorphisms and the charac-
terization of some of them in terms of the relative interior operator.
Generally, openness (or quasi-openness) for a continuous map f is
well known. We define openness (or quasi-openness) at a point x
using the relative interior operator and characterize that a contin-
uous map f is almost open, almost quasi-open, almost embedding
and almost homeomorphsims.

1. Introduction and preliminaries

The main purpose of this paper is to extend the following Theorem
A and Theorem B for almost continuity maps and homeomorphisms to
open maps and almost homeomorphisms.

Theorem A [6]. Let E be a Baire Space, F be a second countable
space and f be a mapping of E into F . Then the set of points of almost
continuity of f is dense in E.

Theorem B [8]. Let f : X → Y and g : Y → Z be continuous. If
g◦f : X → Z is a homeomorphism, then g one-to-one (or f onto) implies
that f and g are homeomorphisms.

We prove here the following results.
Theorem A′. Let f : X1 → X2 be a continuous, closed and proper

map. For every V1 ∈ UX1 the set Int{y ∈ X2 : f is V1 open at each
x ∈ f−1(y)} is an open and dense subset of X2. In particular, if X1

is metrizable and X2 is Baire, then {y ∈ X2 : f is V1 open at each
x ∈ f−1(y)} is a residual subset of X2.

Theorem B′. Let f : X1 → X2 and g : X2 → X3 be continuous maps.
Then
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(1) Assume f is surjective. g ◦ f is an almost homeomorphism if and
only if both f and g are almost homeomorphisms.

(2) Assume g is an almost homeomorphism. If g ◦ f is almost open,
then f is almost quasi-open.

(3) Assume g is an almost homeomorphism. If g ◦ f is almost quasi-
open and g is closed, then f is almost quasi-open.

We now introduce notions and definitions necessary for our works. Throu
ghout the present paper, X1 and X2 always mean topological spaces and
by f : X1 → X2 we denote a map. Let A and B be subsets of X. The
closure of A and the interior of A are denoted by A and IntA, respec-
tively. A subset B of A is dense in A means that A ⊂ B. A subset
A of X is said to be pre-open if A ⊂ IntA in [6]. This set is called by
quasi-open in [2].

A relation F : X1 → X2 is considered a map from X1 to the power
set of X2, that is, each x ∈ X1 corresponds to a subset F (x) of X2, or a
subset of X1 ×X2 so that y ∈ F (x) means (x, y) ∈ F .

For relations F : X1 → X2 and G : X2 → X3 we define the inverse
F−1 : X2 → X1 and the composition G ◦ F (simply GF ): X1 → X3 by

x ∈ F−1(y) ⇐⇒ y ∈ F (x), i.e., F−1 = {(y, x) | (x, y) ∈ F}.
y ∈ (GF )(x) ⇐⇒ z ∈ F (x) and y ∈ G(z) for some z ∈ X2.

In other words, GF is the projection to X1 × X3 of the subset
{(x, z, y) ∈ X1 ×X2 ×X3 | (x, z) ∈ F and (z, y) ∈ G}.

A relation F : X1 → X2 is called a closed relation if it is a closed
subset of X1 × X2. It is a pointwise closed relation if F (x) is a closed
subset of X2 for every x ∈ X1. Clearly, a closed relation is a pointwise
closed relation. F is called a compact relation if F (x) is a compact subset
of X2 for any x ∈ X1.

Remark that in general, a compact relation need not be a closed
relation. For example, let X = [0, 1] and F = {([0, 1

2) ∪ (1
2 , 1]) ×

[13 , 2
3 ]} ∪ {(1

2 , 1
2)}. Then F is a compact and pointwise closed relation

but F is not a closed relation. We are concerned with subsets of a
cartesian product X×X of a set with itself. These subsets are relations
on X. If U = U−1, then U is called symmetric. The set of all pairs
(x, x) for x in X is called the identity relation, or the diagonal, and is
denoted by 4(X) or simply 4. For each subset A of X the set U(A) is
defined to be {y : (x, y) ∈ U for some x in A}, and if x is a point of
X, then U(x) is U({x}). For each U and V and each A it is true that
(U ◦ V )(A) = U(V (A)). Finally, a simple definition will be needed.

Definition 1.1. [4] A uniformity for a set X is a non-void family
UX of subsets of X ×X such that
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(1) each member of UX contains the diagonal 4;
(2) If U ∈ UX , then U−1 ∈ UX ;
(3) if U ∈ UX , then there exists V ∈ UX such that V V = V 2 ⊂ U ;
(4) if U and V are members of UX , then U ∩ V ∈ UX ; and
(5) if U ∈ UX and U ⊂ V ⊂ X ×X, then V ∈ UX .
The pair (X, UX) (simply denote UX) is a uniform space.

The metric antecedents of the conditions above are not hard to dis-
cern. The first is derived from the condition that d(x, x) = 0 and the
second derives from the condition that d(x, y) = d(y, x). The third
is a vestigial form of the triangle inequality - it says roughly that for
r-spheres there are (r/2)- spheres. The fourth and fifth resemble axioms
for the neighborhood system of a point and they will be used to derive
the corresponding properties for a neighborhood system relative to a
topology which will presently be defined.

There may be many different uniformities for a set X. The largest of
these is the family of all those subsets of X ×X which contain 4 and
the smallest is the family whose only member is X ×X. If X is the set
of real numbers the usual uniformity for X is the family UX

2. Semi-continuous relations

In this section, we develop the fundamentals of the upper and lower
semi-continuous relations.

Let f : X1 → X2 be a map. We define the equivalence relation:
Ef = (f × f)−1(1X2) = {(x1, x2) : f(x2) = f(x1)} = f−1 ◦ f .

Definition 2.1. Let F : X1 → X2 and H : X2 → X2 be relations.
we define the relation F ∗H on X1 by:

F ∗H = {(x1, x2) : F (x2) ⊂ (H ◦ F )(x1)}.
Proposition 2.2. Let F : X1 → X2 be a relation. The following

properties hold:
(1) For relations H1, H2 on X2 we have

H1 ⊂ H2 implies F ∗H1 ⊂ F ∗H2 and
F ∗(H1)F ∗(H2) ⊂ F ∗(H1H2).

(2) For relations H on X2 and K on X1:
FK ⊂ HF if and only if K ⊂ F ∗H.

For any relation H on X2:
F (F ∗H) ⊂ HF .

with equality when F is a surjective map.
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(3) 1∗X2
H = H, and if G : X0 → X1 and F : X1 → X2 are relations,

then:
G∗(F ∗H) ⊂ (FG)∗H

with equality when G is a map.

(4) For a map f : X1 → X2 and relations F : X0 → X1 and G : X0 →
X2:

fF ⊂ G ⇐⇒ F ⊂ f−1G.

(5) For a map f : X1 → X2 and relation H on X2:
f∗H = f−1Hf = (f × f)−1(H) = {(x1, x2) : f(x2) ∈ H(f(x1))}.
So when f is a map:

f∗(H−1) = (f∗H)−1 and
Ef (f∗H)Ef = f∗H.

Proof. (1) By the definition of F ∗H, F ∗H1 ⊂ F ∗H2 for every H1 ⊂
H2. Let (x1, x3) ∈ F ∗(H1)F ∗(H2) be given. By the definition of compo-
sition, we can find x2 ∈ X2 such that (x1, x2) ∈ F ∗(H2) and (x2, x3) ∈
F ∗(H1). In other words, F (x2) ⊂ H2F (x1) and F (x3) ⊂ H1F (x2).
Hence F (x3) ⊂ H1F (x2) ⊂ H1H2F (x1).

(2) Let A be a subset of X1 and x ∈ A. If F (A) ⊂ HF (x1), then
F (x) ⊂ HF (x1). Hence (x1, x) ∈ F ∗H, i.e., x ∈ (F ∗H)(x1). Con-
versely, we assume that A ⊂ (F ∗H)(x1). If y ∈ F (A), then there exists
x ∈ A ⊂ (F ∗H)(x1) such that y ∈ F (x) ⊂ HF (x1). Hence we obtain
the following property.

F (A) ⊂ HF (x1) ⇐⇒ A ⊂ (F ∗H)(x1).
Replace A by K(x1) and we get:

(FK)(x1) ⊂ (HF )(x1) ⇐⇒ K(x1) ⊂ (F ∗H)(x1).
Hence FK ⊂ HF ⇐⇒ K ⊂ F ∗H.
In particular, with K = F ∗H we have FK ⊂ HF if and only if

K ⊂ F ∗H. For the surjective map case, we first consider (5).
(5) It is clear that (x1, x2) ∈ f∗H if and only if f(x2) ∈ H(f(x1)).

This says f∗H = (f × f)−1(H) and f∗H = f−1Hf , f∗H = f−1Hf =
(f × f)−1(H) = {(x1, x2) : f(x2) ∈ H(f(x1))}. From this f∗(H−1) =
(f∗H)−1 is obvious.

When f is a surjective map, ff∗H = ff−1Hf = Hf by ff−1 = 1X2 .
(3) 1∗X2

H = H is clear. By (2), FG(G∗(F ∗H)) ⊂ F (F ∗H)G ⊂ HFG.
The G∗F ∗H ⊂ (FG)∗H by (2). If G = g is a map, (Fg)((Fg)∗H)g−1 ⊂
(H(Fg))g−1 ⊂ HF and g((Fg)∗H)g−1 ⊂ F ∗H. By (5), (Fg)∗H ⊂
g−1g((Fg)∗H)g−1g ⊂ g−1(F ∗H)g = g∗(F ∗H). Alternatively, observe
that (x1, x2) ∈ (Fg)∗H if and only if F (g(x2) ⊂ HF (g(x1)) and so if
and only if (g(x1), g(x2)) ∈ F ∗H.



Almost open and almost homeomorphisms 401

(4) Recall that for subsets A of X1 and B of X2 f(A) ⊂ B ⇐⇒
A ⊂ f−1(B). Put A = F (x0) and B = G(x0) for given x0 ∈ X0. Then
fF ⊂ G ⇐⇒ F ⊂ f−1G.

(5) For a map f , Ef = (f×f)−1(1X2) = {(x1, x2) : f(x1) = f(x2)} =
f−1f = f∗1X2 . Since f is a map, f = f1X1 ⊂ ff−1f ⊂ 1X2f = f and
f−1 = 1X1f

−1 ⊂ f−1ff−1 ⊂ f−11X2 = f−1. Hence fEf = ff−1f = f
and Eff−1 = f−1ff−1 = f−1.

Finally, by (1), Ef (f∗H)Ef = f∗1X2(f
∗H)f∗1X2 ⊂ f∗(1X2H)f∗1X2 =

(f∗H)(f∗1X2) ⊂ f∗(H1X2) = f∗(H). Since 1X1 ⊂ f−1f and Ef =
f−1f = f∗1X2 , f∗H = 1X1(f

∗H)1X1 ⊂ f−1f(f∗H)f−1f = Ef (f∗H)Ef

and f∗(H−1) = f−1H−1f = (f−1Hf)−1 = (f∗H)−1.

Definition 2.3. For a relation F : X1 → X2, V2 ∈ UX2 and x ∈ X1

we call F is V2 upper semicontinuous at x, when x ∈Int((F ∗V2)(x)); V2

lower semicontinuous at x, when x ∈Int((F ∗V2)−1(x)); V2 continuous at
x, when (x, x) ∈IntF ∗V2 in X1×X1. F is upper semicontinuous / lower
semicontinuous / continuous at x if it is V2 upper semicontinuous / V2

lower semicontinuous / V2 continuous at x for all V2 in UX2 , respectively.
F is upper semicontinuous / lower semicontinuous / continuous if it
satisfies the corresponding condition at every x in X1. F is uniformly
continuous provided that for every V2 ∈ UX2 there exists V1 ∈ UX1 such
that FV1 ⊂ V2F .

The following examples show that F is upper semicontinuous but is
not lower semicontinuous at x, G is lower semicontinuous but is not
upper semicontinuous at x, and H is continuous at x.

Example 2.4. Define a relation F on R by F = (−∞, 0) × {1} ∪
[0, ∞) × [12 , 3

2 ] and let ε ∈ (0, 1
2) be given. By definition of F ∗Vε,

if (x, y) ∈ F ∗Vε, then F (y) ⊂ Vε(F (x)) = B(F (x), ε), where Vε =
{(x1, x2) ∈ R × R : d(x1, x2) < ε}. If x ∈ (−∞, 0), then F (y) ⊂
B(F (x), ε) = B({1}, ε) = (1 − ε, 1 + ε) ⊂ (1

2 , 3
2). Hence y ∈

(−∞, 0). If x ∈ [0, ∞), then F (y) ⊂ B(F (x), ε) = B([12 , 3
2 ], ε) =

(1
2 − ε, 3

2 + ε). Hence y ∈ (−∞, ∞). This means that F ∗Vε ⊂
(−∞, 0) × (−∞, 0) ∪ [0, ∞) × (−∞, ∞). Let (x, y) ∈ (−∞, 0) ×
(−∞, 0) ∪ [0, ∞) × (−∞, ∞) be given. If x < 0 and y < 0, then
F (y) = {1} ⊂ (1 − ε, 1 + ε) = B({1}, ε) = B(F (x), ε) = Vε(F (x)).
Hence (x, y) ∈ F ∗Vε. If x ≥ 0 and y ∈ R, F (y) ⊂ [12 , 3

2 ] ⊂ (1
2 − ε, 3

2 + ε)
= B([12 , 3

2 ], ε) = B(F (x), ε) = Vε(F (x)). Hence (x, y) ∈ F ∗Vε. Fi-
nally, we know that F ∗Vε = (−∞, 0)× (−∞, 0) ∪ [0, ∞)× (−∞, ∞).
Since F ∗Vε(0) = (−∞, ∞), 0 ∈ (−∞, ∞) = IntF ∗Vε(0). Therefore
F is Vε upper semicontinuous at 0. Since (F ∗Vε)−1 = (−∞, 0) ×
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(−∞, 0) ∪ (−∞, ∞) × [0, ∞), (F ∗Vε)−1(0) = [0, ∞). It means that
0 /∈ (0, ∞) = Int(F ∗Vε)−1(0). Consequently, F is not Vε lower semicon-
tinuous at 0.

Example 2.5. Define a relation G on R by G = (−∞, 0] × {1} ∪
(0, ∞) × [12 , 3

2 ] and let ε ∈ (0, 1
2) be given. Since G∗Vε = (−∞, 0] ×

(−∞, 0]∪ (0, ∞)× (−∞, ∞), G∗Vε(0) = (−∞, 0]. We know that G is
not Vε upper semicontinuous at 0 because 0 /∈ (−∞, 0) = IntG∗Vε(0).
Since (G∗Vε)−1 = (−∞, 0]×(−∞, 0]∪(−∞, ∞)×(0, ∞), (G∗Vε)−1(0) =
(−∞, ∞). It means that G is Vε lower semicontinuous at 0 because
0 ∈ (−∞, ∞) = Int(G∗Vε)−1(0).

Example 2.6. Define a relation H on R by H = (−∞, ∞)× [12 , 3
2 ]

and let ε > 0 be given. Since H∗Vε = (−∞, ∞) × (−∞, ∞), H is Vε

continuous at 0 because (0, 0) ∈ (−∞, ∞)× (−∞, ∞) = IntH∗Vε.

Lemma 2.7. Let F : X1 → X2 be a relation and V2 ∈ UX2 .

(1) Let Ṽ2, ⊂ V2. If F is Ṽ2 upper semicontinuous at x / Ṽ2 lower

semicontinuous at x / Ṽ2 continuous at x, then F satisfies the corre-
sponding property for V2.

(2) If F is V2 continuous at x, then F is V2 upper semicontinuous at

x and V2 lower semicontinuous at x. If Ṽ2 ∈ UX2 with Ṽ 2
2 ⊂ V2 and F

is Ṽ2 upper semicontinuous at x and Ṽ2 lower semicontinuous at x, then
F is V2 continuous at x.

(3) F is continuous at x if and only if F is upper semicontinuous at x
and lower semicontinuous at x. If F is uniformly continuous, then F is
continuous. If F is continuous and X1 is compact, then F is uniformly
continuous.

Proof. (1) This follows from Proposition 2.2 (1).
(2) If F be V2 continuous at x, (x, x) ∈ IntF ∗V2. This means

that x ∈ Int(F ∗V2)(x) and x ∈ Int(F ∗V2)−1(x). Therefore, F is V2

upper semicontinuous at x and V2 lower semicontinuous at x. Let
Ṽ2 ∈ UX2 with Ṽ 2

2 ⊂ V2, F be Ṽ2 upper semicontinuous at x and Ṽ2

lower semicontinuous at x. Since Ṽ2 ⊂ V2, x ∈ Int((F ∗V2)(x)) and
x ∈ Int((F ∗V2)−1(x)). It means that F is V2 continous at x.

(3) By Definition 2.3, the proof of (3) is obvious.

Theorem 2.8. Let F : X1 → X2 be a pointwise closed relation.
Assume that F is upper semicontinuous and F (x) is compact for ev-
ery x ∈ X1. For every V2 ∈ UX2 the set of V2 continuity points,
{x : (x, x) ∈ IntF ∗V2}, is open and dense in X1.
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Proof. The set of V2 continuity points, {x : (x, x) ∈ IntF ∗V2}, is
always open. By Lemma 2.7 (2), it suffices to prove that the set of
V2 upper semicontinuous points and the set of V2 lower semicontinuous
points are each dense.

Fix V2 ∈ UX2 , x1 ∈ X1, and O1 an open set containing x1. We claim
that O1 ∩ {x : (x, x) ∈ IntF ∗V2} 6= ∅.

We produce x0 ∈ O1 at which F is V2 lower semicontinuous. Choose
Ṽ , W ∈ UX2 , symmetric, with Ṽ closed and such that Ṽ 2 ⊂ V2, W 2 ⊂ Ṽ

and W 2 ⊂ Ṽ . Because F is upper semicontinuous, there is an open set
Õ ⊂ O1 such that x ∈ Õ implies F (x) ⊂ W (F (x1)), i.e. (x1, x) ∈ F ∗W .
Because F (x1) is compact, it has a finite subset R such that F (x1) ⊂
W (R). Define for x ∈ Õ:

R(x) = R ∩ Ṽ (F (x)).
Clearly, for x ∈ Õ:

(2.1) R(x) ⊂ Ṽ (F (x)) and (R− R(x)) ∩ Ṽ(R(x)) = ∅.
If there exists y ∈ F (x) ∩ Ṽ (R − R(x)), then y ∈ F (x) and y ∈

Ṽ (F (x)). This is a contradiction for (R −R(x)) ∩ Ṽ (R(x)) = ∅. Hence
we get:

F (x) ∩ Ṽ (R−R(x)) = ∅ and F(x) ⊂ Ṽ(R(x));

F (x) ∩ Ṽ (R−R(x)) = ∅ and F(x) ⊂ Ṽ(R(x)).
(2.2)

Since F is upper semicontinuous and F (x1) ⊂ W (R), we obtain the
following property.

F (x) ⊂ W (F (x1)) ⊂ W 2(R) ⊂ Ṽ (R(x)) ∪ Ṽ (R−R(x)).
Now choose x0 ∈ Õ so that R(x0) is minimal in the family {R(x) :

x ∈ Õ} of subsets of the finite set R.
Since F (x0) is compact and Ṽ (R−R(x0)) is the finite union of closed

sets, and thus is closed, there exists W0 ∈ UX2 such that
W0(F (x0)) ∩ Ṽ (R−R(x0)) = ∅.

Since F is upper semicontinuous:
O0 ≡ {x ∈ Õ : (x0, x) ∈ F ∗W0}

is a neighborhood of x0. For x ∈ O0, W0(F (x0))∩ Ṽ (R−R(x0)) = ∅
implies R(x)∩ (R−R(x0)) = ∅, so R(x) ⊂ R(x0). By the minimality of
R(x0), we have R(x) = R(x0) for all x ∈ O0. Therefore we obtain that

F (x0) ⊂ Ṽ (R(x0)) = Ṽ (R(x)) ⊂ Ṽ 2(F (x)) ⊂ V2(F (x))
for all x ∈ O0.
This means O0 × {x0} ⊂ F ∗V2, so F is V2 lower semicontinuous at

x0, i.e. x0 ∈ O1 ∩ {x : (x, x) ∈ IntF ∗V2}. Hence the set of V2 upper
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semicontinuous points is dense. Similarly, we can derive the fact that
the set of V2 lower semicontinuous points is dense.

Theorem 2.9. Let F : X1 → X2 be a pointwise closed relation.
Assume that F is lower semicontinuous and X2 is compact. For every
V2 ∈ UX2 the set of V2 continuity points, {x : (x, x) ∈ IntF ∗V2}, is open
and dense in X1.

Proof. If x1 ∈ X1 and O1 is an open set containing x1, then we can
choose Ṽ , W ∈ UX2 symmetric with Ṽ open, Ṽ 2 ⊂ V2, and W 2 ⊂ Ṽ .
Choose R a finite subset of X2 such that W (R) = X2, and define R(x)
for all x ∈ X2 according to R(x) = R ∩ Ṽ (F (x)). Then for all x ∈ X2,
(2-1) and (2-2) hold as before.

Choose x0 ∈ O1 so that R(x0) is maximal in the family {R(x) : x ∈
O1}. Since Ṽ is open and F (x0) is compact, there exists W0 ∈ UX2

symmetric such that for each y ∈ R(x0) there exists zy ∈ F (x0) such
that W0(zy) ⊂ Ṽ (y). Because F is lower semicontinuous:

O0 ≡ {x ∈ O1 : F (x0) ⊂ W0(F (x))}
is a neighborhood of x0. For each x ∈ O0 and y ∈ R(x0), Ṽ (y)

contains W0(zy), which meets F (x). Thus y ∈ Ṽ (F (x)). Consequently,
R(x0) ⊂ R(x), so by the maximality of R(x0), we have R(x0) = R(x)
for x ∈ O0. Hence for all x ∈ O0:

F (x) ⊂ Ṽ (R(x)) = Ṽ (R(x0)) ⊂ Ṽ 2(F (x0)) ⊂ V2(F (x0)).
This says {x0}×O0 ⊂ F ∗V2, so F is upper semicontinuous at x0.

Lemma 2.10. X is a Baire space if and only if given any countable
collection {Un} of open sets in X, each of which is dense in X, their
intersection ∩Un is also dense in X.

Proof. See [9] Lemma 7.1.

Lemma 2.11. Let f : X1 → X2 be a continuous map.
(1) Let f be a closed map. Assume A is an Ef invariant set, i.e.,

A = Ef (A). If B is closed and B ⊂ A, then B1 = Ef (B) is an Ef

invariant closed subset of X1 satisfying B ⊂ B1 ⊂ A. If O is open and
A ⊂ O, then O1 = {x : Ef (x) ⊂ O} is an Ef invariant open subset of
X1 satisfying A ⊂ O1 ⊂ O. The relations Ef on X1 and f−1 : X2 → X1

are upper semicontinuous.
(2) If f is a proper map(i.e., point inverses are compact) and f−1 is

upper semicontinuous, then f is a closed map.

Proof. (1) If B is closed, then B1 = Ef (B) = f−1f(B) is closed
when f is a continuous, closed map. B ⊂ A = Ef (A) implies B ⊂
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Ef (B) ⊂ Ef (A) = A. Since O is open, O1 = {x : Ef (x) ⊂ O} =
X1 − Ef (X − O) is open. If A is invariant, then A1 = {x : Ef (x) ⊂
A} = A. Therefore A ⊂ O implies A = A1 ⊂ O1 ⊂ O. Similarly,
{y ∈ X2 : f−1(y) ⊂ O} = X2−f(X1−O) is open in X2. In particular, for
any V1 ∈ UX1 and y ∈ X2, y ∈ {y1 ∈ X2 : f−1(y1) ⊂ IntV1(f−1(y))} ⊂
((f−1)∗V1)(y). Then y ∈ Int((f−1)∗V1)(y) for any V1 ∈ UX1 . Thus
f−1 is upper semicontinuous at y. By Proposition 2.2 (3), since f is
a map, E∗

fV1 = f∗(f−1)∗V1 = f−1((f−1)∗V1)f . Hence for any x ∈
X1, (E∗

fV1)(x) = f−1((f−1)∗V1(f(x))). Then f(x) ∈ Int(f−1)∗V1(f(x))
implies x ∈ Int(Ef )∗V1(x), so Ef is upper semicontinuous at x.

(2) If A is closed in X1, y 6∈ f(A) and f−1(y) is compact, then
there exists V1 ∈ UX1 such that V1(f−1(y)) ∩ A = ∅. If f−1 is up-
per semicontinuous at y, then there exists O2 open with y ∈ O2 and
f−1(O2) ⊂ V1(f−1(y)). Then O2 ∩ f(A) = ∅ and y 6∈ f(A). Hence f is
a closed map.

3. Genericity and almost homeomorphisms

In this section, we define openness (or quasi-openness) at a point x
using the relative interior operator and characterize that a continuous
map f is almost open, almost quasi-open, almost embedding and almost
homeomorphsim.

For a continuous map f : X1 → X2 and let A ⊂ X1, we define the
relative interior operator:

IntfA = (IntA) ∩ f−1(Intf(A)).
Clearly, IntfA is an open subset of IntA. For x ∈ X1, x ∈ IntfA if

and only if x ∈ IntA and f(x) ∈ Intf(A).

Definition 3.1. Let f : X1 → X2 be a continuous map. For V1 ∈
UX1 and x ∈ X1, we call f is V1 open at x if x ∈ IntfV1(x). f is open at
x provided it is V1 open at x for all V1 ∈ UX1 and f is open if f is open
at x for every x ∈ X1.

The equivalent conditions of V1 openness are the following.

Lemma 3.2. Let f : X1 → X2 be a continuous map. Then the
following statements are equivalent:

(1) f is V1 open at x.
(2) If U is a neighborhood of x in X1, then f(U) is a neighborhood of

f(x) in X2.
(3) For any subset A of X1, x ∈ IntA implies x ∈ IntfA.
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Proof. (1)⇒(2). If f is V1 open at x for all V1 ∈ UX1 , then x ∈
IntfV1(x). Let U be a neighborhood of x in X1. By the definition
of the relative interior operator, x ∈ f−1(Intf(V1(x))). It means that
f(x) ∈ f(f−1(Intf(V1))) ⊂ Intf(V1(x)) ⊂ f(U).

(2)⇒(3). Let A be a subset of X1 and x ∈ IntA. By the hypothesis,
f(IntA) is a neighborhood of f(x). It means that x ∈ f−1(Intf(A)).
Thus, x ∈ IntfA.

(3)⇒(1). Since x ∈ V1(x), x ∈ IntV1(x). By (3), x ∈ IntfV1(x). It
means that f is V1 open at x.

Lemma 3.3. Let f : X1 → X2 be a continuous map and let y ∈
X2 and V1 be a symmetric element of UX1 . If f−1 is V1 lower semi-
continuous at y, then f is V1 open at x and Ef is V1 lower semicontinuous
at x for all x ∈ f−1(y). If f−1(y) is compact and f is V1 open at every
x ∈ f−1(y), then f−1 is V 2

1 lower semicontinuous at y. In particular, if
f−1(y) = ∅, then f−1 is lower semicontinuous at y.

Proof. If f−1 is V1 lower semicontinuous at y, then there exists V2 ∈
UX2 such that V2(y) ⊂ ((f−1)∗V1)−1(y). This is, y1 ∈ V2(y) implies
f−1(y) ⊂ V1(f−1(y1)), so V2(y) ⊂ f(V1(x)) for all x ∈ f−1(y). For x1 ∈
f−1(V2(y)) setting y1 = f(x1) shows Ef (x) = f−1(y) ⊂ V1(Ef (x1)).
Thus Ef is V1 lower semicontinuous at x1.

If f−1(y) is compact, then there exists {x1, · · · , xn} in f−1(y) ⊂
∪n

i=1V1(xi). If f is V1 open at each xi, then there exists V2 ∈ UX2

such that V2(y) ⊂ ∩n
i=1f(V1(xi)). If y1 ∈ V2(y), f−1(y1) ∩ V1(xi) 6=

∅, so f−1(y1) ∩ V 2
1 (x) 6= ∅ for every x ∈ f−1(y). That is V2(y) ⊂

((f−1)∗(V 2
1 ))−1(y) and f−1 is V 2

1 lower semicontinuous at y.

Proposition 3.4. Let f : X1 → X2 be a continuous map. Then the
following statements are equivalent:

(1) f is open.
(2) If U is open in X1, then f(U) is open in X2.
(3) For all A ⊂ X1, IntA = IntfA.

Proof. This is obvious from Lemma 3.2.

Definition 3.5. Let f : X1 → X2 be a continuous map. We call f is
almost open provided that for all A ⊂ X1, IntA 6= ∅ implies Intf(A) 6= ∅.

The equivalent conditions of almost openness are the following.

Theorem 3.6. Let f : X1 → X2 be a continuous map. Then the
following statements are equivalent:

(1) f is almost open.
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(2) D dense in X2 implies f−1(D) is dense in X1.
(3) If U is open in X1, then IntfU = U ∩ f−1(Intf(U)) is dense in U .
(4) For every V1 ∈ UX1 , {x : f is V1 open at x} is dense in X1.
(5) For every V1 ∈ UX1 , {x : (x, f(x)) ∈ Int(f ◦V1)} is open and dense

in X1.

Proof. (1)⇒(2). Suppose that f−1(D) is not dense in X1. Then
U = X1 − f−1(D) is a nonempty open set. By (1), Intf(U) 6= ∅. Since
f(U) ∩D = ∅, Intf(U) ∩D = ∅. This is a contradiction.

(2)⇒(3). For any A ⊂ X1, D = (Intf(A)) ∪ (X2 − f(A)) is dense in
X2. By (2), f−1(A) is dense in X1. If U is an open subset of X1, then
IntfU = U ∩ f−1(D) is dense in U .

(3)⇒(4). Let V1 ∈ UX1 and x ∈ X1. Also, let V2 be an open, symmet-
ric element of UX1 such that V 2

2 ⊂ V1. By (3), V2(x)∩f−1(Intf(V2(x))) is
open and dense in V2(x). Choose x1 ∈ V2(x) ∩ f−1(Intf(V2(x))). Then
f(x1) ∈ f(f−1(Intf(V2(x)))) ⊂ Intf(V2(x)). Since V2 can be chosen
arbitrarily small, f is V1 open at points of a dense set.

(4)⇒(1). For all A ⊂ X1, let IntA 6= ∅. If V 2
1 (x) ⊂ IntA let x1 ∈

V1(x) at which f is V1 open. Since f(V1(x1)) ⊂ f(V 2
1 (x)) ⊂ f(A),

f(V1(x1)) is a neighborhood of f(x1).
(4) ⇐⇒ (5). For V1 symmetric in UX1 , {x : (x, f(x)) ∈ Int(f ◦ V1)}

⊂ {x : f is V1 open at x} ⊂ {x : (x, f(x)) ∈ Int(f ◦ V 2
1 )}.

Observe that U1 × U2 ⊂ f ◦ V1 if and only if U2 ⊂ f(V1(x1)) for
all x1 ∈ U1. The first inclusion is clear, and the second follows from
f(V1(x)) ⊂ f(V 2

1 (x1)) for all x ∈ V1(x). Together these inclusions yield
the equivalence.

Theorem 3.7. Let f : X1 → X2 and g : X2 → X3 be continuous
maps. If both f and g are almost open, then g ◦ f is almost open. If
g ◦ f is almost open and f is surjective, then g is almost open.

Proof. Let f and g be almost open and let IntA be a nonempty subset
of X1. Since f and g are almost open, Intf(A) and Intg(f(A)) are
nonempty subsets of X2 and X3, respectively. Let g ◦ f be almost open,
f be surjective and IntA2 be a nonempty subset of X2. Since f is
continuous and surjective, f−1(IntA2) is a nonempty open subset of
X1. Int((g ◦ f)(f−1(IntA2))) = Intg(IntA2) is a nonempty subset of X3

because g ◦ f is almost open. Therefore g is almost open.

Theorem 3.8. Let f : X1 → X2 be a continuous, closed and proper
map. For every V1 ∈ UX1 , the set:

Int{y ∈ X2 : f is V1 open at each x ∈ f−1(y)}
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is an open and dense subset of X2. In particular, if X1 is metrizable and
X2 is Baire, then

{y ∈ X2 : f is V1 open at each x ∈ f−1(y)}
is a residual subset of X2.

Proof. By Lemma 2.11 (1), f−1 is an upper semicontinuous relation.
By Theorem 2.8, {y : (y, y) ∈ Int(f−1)∗V1} is open and dense in X2 and
it is contained in the set of points at which f−1 is a lower semicontinuous
relation. By Lemma 3.3, f is V1 open at every point x ∈ X1 such that
y = f(x) lies in this set. As usual when X1 is metrizable, we can intersect
over a countable base for UX1 to obtain a residual subset of X2.

Generally {x : f is almost open at x} is not dense when f is a
continuous, closed and proper map.

Example 3.9. Define f : [0, 1] → [0, 2] by f(x) = 1. Then f is
a continuous, closed and proper map. But {x : f is almost open at
x} = ∅.

A subset A of X is called quasi-open if A ⊂ IntA. For any subset A
of X define the quasi-interior:

QIntA = A ∩ IntA.
For a continuous map f : X1 → X2 and a subset A of X1, define
QIntfA = (QIntA) ∩ f−1(QIntf(A)) = (QIntA) ∩ f−1(Intf(A)).
The two definitions agree because f−1(f(A)) ⊃ A. In particular:

x ∈ QIntfA if and only if x ∈ QIntA and f(x) ∈ Intf(A).

Proposition 3.10. The following properties are hold
(1) A is quasi-open in X if and only if there exist open subset U and

dense set D such that A = U ∩ D. In particular, any open set or any
dense set is quasi-open.

(2) The arbitrary union of quasi-open sets is quasi-open. If A is
quasi-open and U is open, then A ∩ U is quasi-open.

(3) The QIntA is dense in IntA. QIntA is the largest quasi-open set
contained in A. In particular, QInt(QIntA) = QIntA. The set A is
quasi-open if and only if A = QIntA. QIntA = ∅ if and only if A is
nowhere dense.

(4) If f : X1 → X2 is continuous and A ⊂ X1, then QIntfA is a quasi-
open subset of QIntA. If A is quasi-open, then f(QIntfA) = QIntf(A)
which is quasi-open in X2. If U is open, then QIntfU is open.

Proof. (1) Let A be quasi-open in X, i.e., A ⊂ IntA. Put D =
A ∪ (X − A). Then D is dense in X. Since A is quasi-open, A =
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D ∩ IntA = (A ∪ (X − A)) ∩ IntA. Conversely, let A = U ∩D where U
is open and D is dense in X. Then A is dense in U , i.e., A = U . Thus
A ⊂ U ⊂ IntU = IntA. Since A∩X = A, any open set or any dense set
is quasi-open.

(2) Let {Aα : α ∈ Λ} be quasi-open, i.e., Aα ⊂ IntAα for all α ∈
Λ. Since Aα is quasi-open for all α ∈ Λ, ∪α∈ΛAα ⊂ ∪α∈ΛIntAα ⊂
Int(∪α∈ΛAα) ⊂ Int(∪α∈ΛAα).

Let A be quasi-open and let U be open. By (1), A = V ∩D for some
open V and dense D. Thus A ∩ U = (U ∩ V ) ∩D is quasi-open.

(3) Since A is dense in A and IntA is open in A, QIntA = A ∩ IntA
is dense in IntA. We have that QInt(QIntA) = QIntA ∩ Int(QIntA) =
QIntA∩ Int(IntA) = A∩ IntA∩ IntA = QIntA. Clearly, A is quasi-open
if and only if A = QIntA. Thus QIntA is qusi-open.

(4) Since QIntA is quasi-open and f−1(Intf(A)) is open, QIntfA =
QIntA ∩ f−1(QIntf(A)) = QIntA ∩ f−1(Intf(A)) is quasi-open which
also shows that QIntfA is open when A is open. By (3), f(QIntfA) =
f(QIntA ∩ f−1(Intf(A))) = f(QIntA) ∩ Intf(A) = f(A) ∩ Intf(A) =
QIntf(A).

Generally, IntfA ⊂ IntA ⊂ QIntA ⊂ A and IntfA ⊂ QIntfA ⊂
QIntA ⊂ A for any subset A of X1. The followings are examples in
which equalities are not hold by the above inclusion relations.

Example 3.11. If A = ([0, 1] ∩Q) ∪ [1, 2], then IntA ( QIntA ( A.

Define f : R → R by f(x) = |x|. Let B = [−1, 1] − {−1
2 , 1

2}. Then
IntfB ( IntB.

Define f : R → R by f(x) = |x − 1|. Let C = ([0, 1] ∩ Q) ∪ [1, 2].
Then IntfC ( QIntfC.

Definition 3.12. Let f : X1 → X2 be a continuous map. For x ∈ X1

and V1 ∈ UX1 , we call f is V1 quasi-open at x if x ∈ QIntfV1(x). If f is
V1 quasi-open at x for every V1 ∈ UX1 , then we call f is quasi-open at
x. If f is quasi-open at every x ∈ X1, then we call f is quasi-open.

Theorem 3.13. Let f : X1 → X2 be a continuous map. For x ∈ X1

the following conditions are equivalent.
(1) f is quasi-open at x.
(2) For all A ⊂ X1, x ∈ QIntA implies x ∈ QIntfA.
(3) If U is an open neighborhood of x in X1, then QIntfU is an

open neighborhood of x in X1 with f(x) in f(QIntfU) = QIntf(U)
quasi-open in X2.
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(4) If U is a neighborhood of x in X1, then f(U) is a neighborhood
of f(x) in X2.

Proof. (1)⇒(2). Let A ⊂ X1 and x ∈ QIntA. Assume V1 is open in
UX1 with V1(x) ⊂ A. Since f(x) ∈ Intf(V1(x)). there exists open U2 in
X2 such that f(x) ∈ U2 ⊂ Intf(V1(x)) ⊂ f(V1(x)) ⊂ f(A) ⊂ f(A). This
means that x ∈ f−1(U2) ⊂ f−1(Intf(A)), i.e., x ∈ QIntfA.

(2)⇒(3). Since U is open, U is quasi-open. By Proposition 3.10,
f(QIntfU) = QIntf(U). If x ∈ U , then x ∈ QIntfU . This means that
f(x) ∈ f(QIntfU) = QIntf(U).

(3)⇒(4). Let U be a neighborhood of x. By (3), f(x) ∈ f(QIntfU) =
QIntf(U). This means that f(x) ∈ QIntf(U) ⊂ IntQIntf(U) ⊂ f(U).

(4)⇒(1). Let V1 ∈ UX1 be given. Since V1(x) is neighborhood of x,
f(V1(x)) is a neighborhood of f(x).

Theorem 3.14. Let f : X1 → X2 be a continuous map. The follow-
ing conditions are equivalent.

(1) f is quasi-open.
(2) For all A ⊂ X1, QIntA = QIntfA.
(3) If A is quasi-open in X1, then f(A) is quasi-open in X2.
(4) If U is open in X1, then f(U) is quasi-open in X2.
(5) For all U open in X1, U = QIntfU .

Proof. (1)⇒(2). This is obvious from Theorem 3.13 (1) ⇐⇒ (2).
(2)⇒(3). Let A be quasi-open in X1. Since A = QIntA = QIntfA,

A ⊂ f−1(Intf(A)). This means that f(A) ⊂ Intf(A).
(3)⇒(4). Since U is open, U is quasi-open. By (3), f(U) is quasi-

open.
(4)⇒(1). Let V1 ∈ UX1 and x ∈ X1. Since V1(x) is an open neigh-

borhood of x, f(x) ∈ Intf(V1(x)).
(2)⇒(5). Since U open in X1, QIntfU = QIntU = U .
(5)⇒(4). Let U be open in X1. By (5), U = QIntf (U) ⊂ f−1(Intf(U)).

This means that f(U) ⊂ Intf(U), i.e., f(U) is quasi-open in X2.

Theorem 3.15. Let f : X1 → X2 and g : X2 → X3 be continuous
maps. If both f and g are quasi-open, then g ◦ f is quasi-open. If g ◦ f
is quasi-open and f is surjective, then g is quasi-open.

Proof. Let f and g be quasi-open and let A1 be quasi-open in X1.
By Proposition 3.14 (3), f(A1) and g(f(A1)) are quasi-open in X2 and
X3, respectively. Let g ◦ f be quasi-open, f be surjective and U2 be
an open subset of X2. Since f is continuous, f−1(U2) is open in X1.
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(g ◦ f)(f−1(U2)) = g(U2) is quasi-open because g ◦ f is quasi-open and
f is surjective.

Definition 3.16. Let f : X1 → X2 be a continuous map. We call f
is almost quasi-open when for all A ⊂ X1, IntA 6= ∅ implies Intf(A) 6= ∅.

Theorem 3.17. Let f : X1 → X2 be a continuous map. The follow-
ing conditions are equivalent.

(1) f is almost quasi-open.
(2) For every V1 ∈ UX1 , {x : f is V1 quasi-open at x} is dense in X1.
(3) For every V1 ∈ UX1 , Int{x : f is V1 quasi-open at x} is open and

dense in X1.
(4) If A is quasi-open in X1, then QIntfA is dense in A.
(5) For all A ⊂ X1, QIntA 6= ∅ implies QIntf(A) 6= ∅.
(6) B is nowhere dense in X2 implies f−1(B) is nowhere dense in X1.
(7) D is open and dense in X2 implies f−1(D) is dense in X1.

Proof. (1)⇒(2). Let V1 ∈ UX1 and x ∈ X1. Let V = V −1 be open
in UX1 , with V 2 ⊂ V1. By (1), Intf(V (x)) 6= ∅. Since QIntfV (x) =
QIntV (x)∩f−1(Intf(V (x))) is open and nonemptyset, we can find x1 ∈
QIntfV (x) and notice that f(x1) ∈ Intf(V (x)) ⊂ Intf(V1(x1)). Thus, f
is V1 quasi-open at x1 . Since V can be chosen arbitrarily small, {x : f
is V1 quasi-open at x} is dense.

(2)⇒(3). Let V1 ∈ UX1 be given and let V = V −1 be open in UX1

with V 2 ⊂ V1. f is V quasi-open at x if and only if there is an open
neighborhood U of x such that f(U) ⊂ Intf(V (x)). By (2), V (x)∩{x : f
is V1 quasi-open at x} 6= ∅ for all x ∈ X. If x1 ∈ U ∩V (x), then f(U) ⊂
Intf(V1(x1)). So f is V1 quasi-open at every point of a neighborhood of
x.

(3)⇒(4). Let A be quasi-open in X1. Since QIntfA ⊂ A, QIntfA ⊂
A. For a neighborhood U of x ∈ A, choose V1 open in UX1 such that
V1(x) ⊂ U . Since A is quasi-open in X1, there exists x1 ∈ V1(x)∩A such
that f is V1 quasi-open at x1. This means that f(x1) ∈ Intf(V1(x)) ⊂
Intf(U) = Intf(A). Since x1 ∈ A = QIntA, it follows that x1 ∈ QIntfA.

(4)⇒(5). Let A be a subset of X1 with QIntA 6= ∅. Put A1 = QIntA.
By (4), QIntfA1 is dense in A1. Since A1 is quasi-open, QIntf(A1) =
f(QIntfA1) 6= ∅.

(5)⇒(1). Let A be a subset of X1 with IntA 6= ∅. Put U = IntA.
Since U is nonempty open, U is quasi-open. By (5), ∅ 6= QIntf(U) ⊂
Intf(A).
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(1)⇒(6). Let Intf−1(B) 6= ∅ and let A = f−1(B). Since f is continu-
ous, A is closed in X1 and f−1(B) ⊂ A. Since Intf−1(B) 6= ∅, IntA 6= ∅.
By (1), ∅ 6= Intf(A) ⊂ IntB.

(6)⇒(7). Let D be open and dense in X2 and put B = X2 − D.
Then B is nowhere dense in X2. By (6), f−1(B) is nowhere dense in
X1. This means that ∅ = Intf−1(B) = Intf−1(B) = Intf−1(X2 −D) =
Int(X1 − f−1(D)).

(7)⇒(1). Let A be a subset of X1 with IntA 6= ∅ and let Intf(A) = ∅.
Put D = X2 − f(A) and D is open and dense. By (7), f−1 is open
and dense. Since A ⊂ f−1(f(A)) ⊂ f−1(f(A)) and f−1(D) = X1 −
f−1(f(A)), f−1(D) ∩ A = ∅. This is a contradiction. Thus Intf(A) 6=
∅.

Theorem 3.18. Let f : X1 → X2 and g : X2 → X3 be continuous
maps. If both f and g are almost quasi-open, then g ◦ f is almost quasi-
open. If g ◦ f is almost quasi-open and f is surjective, then g is almost
quasi-open.

Proof. Let f and g be almost quasi-open and let QIntA be a nonempty
subset of X1. By Theorem 3.17, QIntf(A) and QIntg(f(A)) are nonempty
subsets of X2 and X3, respectively. Let g ◦f be almost quasi-open, f be
surjective and let U2 ≡ IntA2 be a nonempty set, where A2 ⊂ X2. Since
f is continuous and surjective, f−1(U2) = Intf−1(U2) is nonempty. By
Theorem 3.17, ∅ 6= Int(g ◦ f)(f−1(U2)) = Intg(U2) ⊂ Intg(A2).

Remark 3.19. If for every dense Gδ set B in X2 f−1(B) is dense in
X1, then f satisfies (7) of Theorem 3.17, so f is almost quasi-open. The
converse is true as well if X1 is Baire.

Definition 3.20. Let f : X1 → X2 be a continuous map. For x ∈ X1

and V1 ∈ UX1 , we call f is a V1 embedding at x if there exists V2 ∈ UX2

such that
(f∗V2)(x) = f−1(V2(f(x))) ⊂ V1(x).

This just says that the preimage of some neighborhood of f(x) is
contained in V1(x). Clearly f is a V1 embedding at x if and only if the
associated surjective map f : X1 → f(X1) is a V1 embedding at x. If f
is surjective and is a V1 embedding at x, then f is V1 open at x because
V2(f(x)) ⊂ f(V1(x)). If f is a V1 embedding at x for all V1 ∈ UX1 , then
we call f is an embedding at x.

Theorem 3.21. Let f : X1 → X2 be a continuous map. For x ∈ X1

the following conditions are equivalent.
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(1) f is an embedding at x.
(2) f−1u[f(x)] = u[x], where u[f(x)] is an uniform neighborhood of

f(x).
(3) For every V1 ∈ UX1 , there exists U2 a neighborhood of f(x) such

that f−1(U2)× f−1(U2) ⊂ V1.

If f is an embedding at x, then f−1(f(x)) = Ef (x) is {x}. Conversely
if f is a closed map and Ef (x) = {x}, then f is an embedding at x.

Proof. If V = V −1 and V 2 ⊂ V1, then f−1(U) ⊂ V (x) implies
f−1(U) × f−1(U) ⊂ V1. So (1)⇒(3). (3) obviously implies (1) which
is equivalent to (2), i.e.,{(f∗V2) (x) = f−1(V2(f(x))) : V2 ∈ UX2} is
a base for the neighborhood of x. Clearly if f is a V1 embedding at
x, then Ef (x) ⊂ V1(x). If f is an embedding at x, Ef (x) = {x}. If
V1 is open and f is closed, then f(X1 − V1(x)) is closed in X2 and
f(X1 − V1(x)) ∩ f(x) = ∅ if Ef (x) = {x}. In that case the complement
U satisfies f−1(U) ⊂ V1(x). The last assertion is already true at the V1

level as previously discussed.

Notice that f is an embedding at x, for all x ∈ X1 if and only if f is
an embedding, i.e., if and only if the surjective map f : X1 → f(X1) is
a homeomorphism.

Definition 3.22. A continuous map f : X1 → X2 is called an almost
embedding if U1 is open and nonempty in X1, then there exists U2 open
in X2 such that f−1(U2) is a nonempty subset of U1.

Theorem 3.23. Let f : X1 → X2 be a continuous map. The follow-
ing conditions are equivalent.

(1) f is an almost embedding.
(2) For every V1 ∈ UX1 , {x ∈ X1 : f−1(U) × f−1(U) ⊂ V1 for some

neighborhood U of f(x)} is open and dense in X1.
(3) For every V1 ∈ UX1 , {x ∈ X1 : f is a V1 embedding at x} is dense

in X1.
(4) For D ⊂ X1, f(D) dense in f(X1) implies D dense in X1.
(5) For all U open in X1 the open set:

Uf ≡ X1 − f−1(f(X1 − U)) = f−1(Int(X2 − f(X1 − U)))
is dense in U .

Proof. (1)⇒(2). If U1 is open and nonempty, then we shrink to get
U1×U1 ⊂ V1. By (1), there exist x ∈ U1 and U2 a neighborhood of f(x)
such that f−1(U2) ⊂ U1.

(2)⇒(3). This is obvious.
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(3)⇒(4). Assume f(D) is dense in f(X1). Given x0 ∈ X1 and W ∈
UX1 , we show that W (x0)∩D 6= ∅. Choose V1 ∈ UX1 symmetric such that
V 2

1 ⊂ W . By (3), there exists x1 ∈ V (x0) and f is a V1 embedding at x1.
This means that f−1(V2(f(x1))) = (f∗V2)(x1) ⊂ V1(x1) for some V2 ∈
UX2 . Since f(D) is dense in f(X1), we can find y1 ∈ f(D) ∩ V2(f(x1)).
Thus there exists x2 ∈ D such that f(x2) = y1 and f(x2) ∈ V2(f(x1)).
Therefore x ∈ f−1(V2(f(x1))) = (f∗V2)(x1) ⊂ V1(x1) ⊂ V1(V1(x0)) =
V 2

1 (x0) ⊂ W (x0). It means that x2 ∈ D ∩W (x0). Thus D is dense in
X1.

(4)⇒(5). Let D = Uf ∩(X1−U) = f−1(Int(X2−f(X1−U)))∪(X1−
U). f(D) = [f(X1)∩ Int(X2−f(X1−U))]∪f(X1−U) which is dense in
f(X1). By (4), D is dense in X1, so D∩U = (Uf∪(X1−U))∩U = Uf∩U
is dense in U .

(5)⇒(1). Let U1 be open and nonempty in X1. Put U2 = Int(X2 −
f(X1−U1)). By (5), f−1(U2) is dense in U1. Thus f−1(U2) is nonempty.

Definition 3.24. A continuous map f is called an almost homeo-
morphism if it is a surjective almost embedding.

Example 3.25. Let X = {a, b, c} and τ = {∅, {a, b, c}}. Let Y =
{1, 2} and σ = {∅, {1, 2}}. Define a map f : (X, τ) → (Y, σ) as follows:
f(a) = 1, f(b) = 1 and f(c) = 2. Then f is an almost homeomorphism.
However, f is not a homeomorphism.

Theorem 3.26. If f is an almost homeomorphism, then for any V1

closed in UX1

{x : f is V1 open at x} = {x : f is a V1 embedding at x},
{x : f is open at x} = {x : f is an embedding at x}.

Proof. In general, for a surjective continuous map f and V1 ∈ UX1 , if f
is V1 embedding at x, then there exists V2 ∈ UX2 such that (f∗V2)(x) =
f−1(V2(f(x))) ⊂ V1(x). It means that f(x) ∈ V2(f(x)) ⊂ f(V1(x)).
Thus f is V1 open at x.

If f is an almost embedding, A is closed in X1, and U is open in X2,
then the following property holds ;

if U ⊂ f(A), then f−1(U) ⊂ A.
If not, then U1 = f−1(U)−A is a nonempty open subset of X1. Since

f is almost embedding, there exists nonempty open U2 in X2 such that
f−1(U2) ⊂ U1. But U2 = f(f−1(U2)) ⊂ f(U1) ⊂ U ⊂ f(A). This is a
contradiction.

If V1 is closed and f is V1 open at x, then there exists open U of X2

such that f(x) ∈ U ⊂ f(V1(x)). Hence there exists V2 open in UX2 such
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that V2(f(x)) ⊂ U ⊂ f(V1(x)). By the above property, f−1(V2(f(x))) ⊂
V1(x). Hence f is V1 embedding at x.
{x : f is open at x} = {x : f is an embedding at x} is clear.

Theorem 3.27. Let f : X1 → X2 and g : X2 → X3 be continuous
maps. Then

(1) Assume f is surjective. g ◦ f is an almost homeomorphism if and
only if both f and g are almost homeomorphisms.

(2) Assume g is an almost homeomorphism. If g ◦ f is almost open,
then f is almost quasi-open.

(3) Assume g is an almost homeomorphism. If g ◦ f is almost quasi-
open and g is closed, then f is almost quasi-open.

Proof. (1) Let U1 be a nonempty subset of X1. Since g ◦ f is an
almost homeomorphism, there exists nonempty open U3 ⊂ X3 such that
(g ◦ f)−1(U3) is a nonempty subset of U1, i.e., f−1(g−1(U3)) ⊂ U1. Put
U2 ≡ g−1(U3). Since g is continuous, U2 is a nonempty open subset
of X2. It follows that f−1(U2) ⊂ U1. Hence f is an almost home-
omorphism. Let U2 be a nonempty open subset of X2. Since f is
surjective continuous, f−1(U2) is nonempty open in X1. By the def-
inition of the almost homeomorphism of g ◦ f , there exists nonempty
open U3 ⊂ X3 such that (g ◦ f)−1(U3) ⊂ f−1(U2). It follows that
g−1(U3) = f(f−1(g−1(U3))) ⊂ f(f−1(U2)) = U2. Hence g is an almost
homeomorphism.

Conversely, let f and g be almost homeomorphisms and let U1 be a
nonempty subset of X1. By the definition of the almost homeomorphism
of f and g, we can find nonempty open U2 ⊂ X2 and U3 ⊂ X3 such that
f−1(U2) ⊂ U1 and g−1(U3) ⊂ U2. This means that (g ◦ f)−1(U3) =
f−1(g−1(U3)) ⊂ f−1(U2) ⊂ U1.

(2) Let A be a subset of X1 with IntA 6= ∅. Since g ◦ f is al-
most open, Int(g ◦ f)(IntA) 6= ∅. Since g is surjective and contin-
uous, g−1(Intg(f(IntA))) is nonempty open in X2. Since g is an al-
most homeomorhpism, there exists nonempty open U3 in X3 such that
g−1(U3) ⊂ g−1(Intg(f(IntA))).

(3) Let A be a subset of X1 with IntA 6= ∅. Put U1 = IntA. Since
g ◦ f is almost quasi-open, Int(g ◦ f)(U1) 6= ∅. Since g is continuous
and closed, Intg(f(U1)) = Intg(f(U1)). Put U3 = Intg(f(U1)). Then
U3 is nonempty open and satisfies U3 ⊂ g(f(U1)) and g−1(U3) ⊂ f(U1).
This means that ∅ 6= g−1(U3) ⊂ Intf(U1) ⊂ Intf(A). Thus, f is amlost
quasi-open.



416 Gui Seok Kim and Kyung Bok Lee

References

[1] E. Akin, The General Topology of Dynamical Systems, A. M. S. Graduate
Studies in Mathematics Vol. 1 (1993).

[2] E. Akin Recurrence in Topological Dynamics; furstenberg families and Ellis
Actions, Plenum ZPress, New York, (1997).

[3] T. Husain, Topology and Maps, Mathematical concepts and methods in science
and engineering Vol. 5 (1977), Plenum Press, New York.

[4] J. L. Kelly, General Topology, Graduate Texts in Mathematics, Van Nostrand
Company Inc., (1975).

[5] G. S. Kim and K. B. Lee, Stability for a compact closed relation, Far East
Journal of Applied Math. 89 (2014), no. 2, 89-103.

[6] S. Lipschutz, General topology, The McGraw-Hill Companiess, Inc., (1968).
[7] P. E. Long and D. A. Carnahan, Comparing almost continuous functions, Pro-

ceeding of the American Math. Soc. 38 (1973), no. 2, 413-418.
[8] A. S. Mashhour, M. E. A. El-Monsef, and S. N. Deeb, On precontinuous and

weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
[9] J. R. Munkres, Topology a first course, Prentice Hall International, Inc., 1997.

*
Department of Mathematics
Hoseo University
ChungNam 337-850, Republic of Korea
E-mail : kgs 1119@hanmail.net

**
Department of Mathematics
Hoseo University
ChungNam 337-850, Republic of Korea
E-mail : kblee@hoseo.edu


