DOI QR코드

DOI QR Code

Analysis of Grounding Resistance and Soil Resistivity Using Mock-up System in Jeju Soil

제주토양 목업시스템을 사용한 접지저항 및 대지저항률 분석

  • Boo, Chang-Jin (Department of Electrical Engineering, Jeju International University) ;
  • Ko, Bong-Woon (Department of Electrical Engineering, Jeju International University) ;
  • Kim, Jeong-Hyuk (Department of Electrical Engineering, Jeju International University) ;
  • Oh, Seong-Bo (Department of Electrical Engineering, Jeju National University)
  • 부창진 (제주국제대학교 전기공학과) ;
  • 고봉운 (제주국제대학교 전기공학과) ;
  • 김정혁 (제주국제대학교 전기공학과) ;
  • 오성보 (제주대학교 전기공학과)
  • Received : 2016.07.01
  • Accepted : 2016.08.11
  • Published : 2016.08.31

Abstract

The installation of grounding systems is important for the safe operation of power systems, and the soil resistivity is an important design consideration for such systems. It varies markedly with the soil type, moisture content and temperature. The Jeju geological structure is formed in a multi-layered structure characteristic of volcanic areas and, and the geological ground resistance values can appear even constructed the same areas ground system different from the soil structure. In this study, a mock-up system using representative soil from Jeju was constructed to analyze the variation of the grounding resistance. The mock-up system was configured using the Gauss-Newton algorithm inversion method to analyze the model numerically using the Wenner method through the soil resistivity measurements used to create the ground model. Also, we analyzed the change in the general ground resistance characteristics of the copper rod, copper pipe, and carbon rod that are used for grounding. The variation of the grounding resistance with the hydration status was found to be $2.9[{\Omega}]$, $16.5[{\Omega}]$ and $20.1[{\Omega}]$ for the copper rod, copper pipes, and carbon rod, respectively, and the influence of the ground moisture resistance of the carbon rod was found to be the lowest with a value of $141[{\Omega}]$.

접지 시스템은 전력설비의 안전적 운영을 위해 필수적이며, 주요 고려대상인 대지저항률은 토양 종류, 수분, 온도에 따라 변하기 때문에 접지 시스템 설계에서 가장 중요하다. 제주의 지질구조는 화산지역의 특성상 다층구조를 형성하고 있어 지질구조에 따른 접지 저항값은 동일한 접지시스템 구축 지역이라도 지층구조에 따라 접지저항값이 다르게 나타날 수 있다. 본 논문에서는 제주의 대표적인 3종류의 토양에 접지를 설치하였을 때 접지저항 특성 변화를 분석하기 위해 3층 구조의 토양목업 시스템을 구성하였다. 구성된 토양 목업 시스템에서 웨너법을 사용하여 대지저항률을 측정하였으며, 대지모델을 수치적으로 분석할 수 있는 역산방법으로 Gauss-Newton 알고리즘을 사용하여 대지모델을 생성하였다. 기존 접지분야에서 사용되는 1차원 대지분석이 아닌 2차원 역산방법을 적용한 결과 실제 토양 목업에 구성한 3종류 층상 구조와 같은 3층 대지구조로 나타낼 수 있었다. 또한 일반적으로 접지에 사용되는 동봉, 동관, 탄소봉을 사용하여 접지의 변화특성을 분석한 결과 수분공급 상태에 따른 접지저항 변화폭은 동봉은 $2.9[{\Omega}]$, 동관은 $16.5[{\Omega}]$, 탄소봉의 경우 $20.1[{\Omega}]$으로 나타났으며, 수분의 영향으로 .탄소봉의 접지저항이 $141[{\Omega}]$으로 가장 낮게 나타남을 확인 하였다.

Keywords

References

  1. P. Simonds, "Designing and testing low-resistance grounding systems,"IEEE Power Engineering Review, vol. 20, pp. 19-21, 2000. DOI: http://dx.doi.org/10.1109/39.876880
  2. H.S. Lee, Introduction of grounding system, Dong Il, 1995.
  3. Y. Sasaki, "Resolution of resistivity tomography inferred from numerical simulation," Geophysical Prospecting, vol. 57, pp. 1270-1281, 1992.
  4. D.W. Oldenberg and Y. Li, "Estimating of investigation in DC resistivity and IP survey," Geophysics, vol. 64, no. 2, pp. 403-416, 1999. DOI: http://dx.doi.org/10.1190/1.1444545
  5. G. F. Tagg, Earth Resistance, George Newnes Ltd., 1964.
  6. F. Dawalibi and D. Mukhedkar, "Optimum design of substation grounding in two-layer earth structure - Part II comparison between theoretical and experimental results," IEEE Trans. Power Apparatus and Systems, vol. PAS-94, no. 2, pp. 262-266, 1975. DOI: http://dx.doi.org/10.1109/T-PAS.1975.31850
  7. M.H. Loke, and T. Dahlin, "A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion," Journal of Applied Geophysics, vol. 49, pp. 149-162, 2002. DOI: http://dx.doi.org/10.1016/S0926-9851(01)00106-9
  8. A.C. Tripp, G.W. Hohmann, and C.M. Swift Jr., "Two-dimensional resistivity inversion," Geophysics, vol. 49, pp. 1708-1717, 1984. DOI: http://dx.doi.org/10.1190/1.1441578
  9. Anil Kumar Khambampati and Kyung Youn Kim, "Three-Dimensional Subsurface Resistivity Profile using Electrical Resistance Tomography for Designing Grounding Grid", Journal of The Institute of Electronics and Information Engineers, vol. 53, pp. 117-128, 2016. DOI: http://dx.doi.org/10.5573/ieie.2016.53.4.117
  10. Irfan Akca, "ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data", Acta Geophysica, vol. 64, pp. 443-462, 2016. DOI: http://dx.doi.org/10.1515/acgeo-2015-0071