DOI QR코드

DOI QR Code

An analytical study on the thermal performance of multi-tube CO2 water heater

다중관형 CO2 급탕열교환기의 열적성능에 대한 해석연구

  • Chang, Keun Sun (Department of Mechanical Engineering, Sunmoon University) ;
  • Choi, Youn Sung (Department of Mechanical Engineering, Graduate School of Sunmoon University) ;
  • Kim, Young-Jae (Department of Environmental and Bio-Chemical Engineering, Sunmoon University)
  • 장근선 (선문대학교 기계공학과) ;
  • 최연성 (선문대학교 기계공학과대학원) ;
  • 김영재 (선문대학교 환경생명화학공학과)
  • Received : 2016.06.07
  • Accepted : 2016.08.11
  • Published : 2016.08.31

Abstract

In this study, the heat transfer and pressure drop characteristics were evaluated for multi-tube $CO_2$ water heaters with lengths of 4.5 m and 7.5 m. The evaluation was done using the -NTU method, and the results were compared with experimental data. Water flows through the shell side of the water heater, while $CO_2$ flows through 8 inner tubes. The heater uses a counter-current design to maximize the heat transfer efficiency. The energy balance equation describing the flows of $CO_2$ and water for each node is set up using the section-by-section method. The calculated heat transfer rates agree well with the experimental data within ${\pm}5%$ error. The outlet water temperature decreased linearly with the increase of the water flow rate. The calculated heat transfer rates agreed well with the experimental data within ${\pm}3%$ error. The results show that the heat transfer rate increases almost linearly with the increase of water flow rate or $CO_2$ inlet temperature in both the 4.5-m and 7.5-m water heaters, whereas the water outlet temperature linearly decreases with the increase of the water flow rate. The comparison of the $CO_2$ pressure drop between the calculation and experiment results shows good agreement at the high $CO_2$ flow rate within 5 % error, but the value is about 20 % higher in the experimental pressure drop at the low $CO_2$ flow rate.

본 연구에서는 길이 4.5 m와 7.5 m의 다중관 $CO_2$ 급탕 열교환기의 열전달 및 압력강하 특성을 ${\epsilon}-NTU$ 방법을 사용하여 해석하고 결과를 기존의 실험 데이터와 비교하였다. 급탕 열교환기는 쉘측에 물이 흐르고 8개로 구성된 내부 튜브에 $CO_2$를 흐르게 하였으며 열전달 효율을 최대화하기 위하여 대향류로 설계하였다. 각 노드에 대한 물과 $CO_2$ 냉매의 유동에 대한 에너지 평형 방정식은 단면분할법을 이용하여 해석하였다. 열전달율 계산값은 실험값과 ${\pm}5%$ 범위 내에서 잘 일치하였다. 반면에 물의 출구온도는 물 유량이 증가함에 따라 거의 선형적으로 감소하며 계산값과 실험값은 ${\pm}3%$ 내에서 일치하였다. 결과에서 열전달율은 4.5 m와 7.5 m 급탕 열교환기 모두 물 유량 또는 $CO_2$ 입구온도가 증가함에 따라 거의 선형적으로 증가하였으며, 반면에 물 유량이 증가함에 따라 물의 출구온도는 선형적으로 감소하였다. $CO_2$ 압력강하 계산값과 실험값은 $CO_2$가 고유량일 때 5 % 내에서 잘 일치한 반면에 $CO_2$가 저유량일 때 실험값이 약 20 % 높게 나타났다.

Keywords

References

  1. Boewe, D. E. et al., "The role of suction line heat exchanger in transcritical R744 mobile A/C system", SAETP 01-0583, 1999.
  2. Chen, Y. and Gu, J., "The optimum high pressure for $CO_2$ transcritical refrigeration system with internal heat exchanger", Int. J. of Refrig., vol. 28, no. 8, pp. 1238-1249, 2005. DOI: http://dx.doi.org/10.1016/j.ijrefrig.2005.08.009
  3. Development of environmentally benign and high efficiency $CO_2$ heat pump system, The 3rd stage report on the development of next generation new technology, Ministry of Knowledge Economy, 2011.
  4. Yu, P., Lin, K., Lin, W. and Wang, C., "Performance of a tube-in-tube $CO_2$ gas cooler", Int. J. Refrig., vol. 35, pp. 2033-2038, 2012. DOI: http://dx.doi.org/10.1016/j.ijrefrig.2012.06.010
  5. Neksa, P., Rekstad, H., Zakeri, R. and Schiefloe, P., "$CO_2$-heat pump water heater: characteristics, system and environmental results", Int. J. Refrig., vol. 21, pp. 172-179, 1998. DOI: http://dx.doi.org/10.1016/S0140-7007(98)00017-6
  6. Hwang, Y. and Radermacher, R., "Options for a two-stage transcritical carbon dioxide cycle", 5th IIR-Gustav Lorentzen Natural Working Fluids Conference at Guangzhou, pp. 143-149, 2002.
  7. Fernandez, N., Hwang, Y. and Radermacher, R., "Comparison of $CO_2$ heat pump water heater performance with baseline cycle and two high COP cycles", Int. J. Refrig., vol. 33, pp. 635-644, 2010. DOI: http://dx.doi.org/10.1016/j.ijrefrig.2009.12.008
  8. Oh, S. et al., "Experimental study on compact $CO_2$ gas cooler", ISSN 1226-9549, vol. 34, no. 1, pp. 30-36, 2010. https://doi.org/10.5916/jkosme.2010.34.1.030
  9. Park, Y. et al., "Optimization design of the HX in the $CO_2$ heat pump water heater", KSME 11TE087, pp. 332-340, 2011.
  10. Kim, Y. R., Development of heat exchangers for a heat pump for simultaneous refrigeration and water heating, The 2nd stage report on the development of next generation new technology, Ministry of Knowledge Economy, 2007.
  11. NIST, REFPROP version 6.01, NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures, US Department of Commerce, Gaithersburg, Maryland, USA, 1998.
  12. Gnielinski, V., International Chemical Engineering, 16, 2, pp. 359, 1976.
  13. Incropera, F. P. and DeWitt, D. P., Introduction to Heat Transfer, 3rd ed., NewYork, John Wiley & Sons, 1996.
  14. Petukhov, B. S., Advanced Heat Transfer, 6, pp. 503-565, 1970. DOI: http://dx.doi.org/10.1016/S0065-2717(08)70153-9