DOI QR코드

DOI QR Code

Numerical Simulation of Sloshing Test for Fuel Tank of Rotorcraft

회전익항공기용 연료탱크 슬로싱 시험 수치해석

  • Received : 2016.05.09
  • Accepted : 2016.07.07
  • Published : 2016.07.31

Abstract

The rapid turning and acceleration movement of a rotorcraft leads to a sloshing phenomenon in the fuel tank. Sloshing caused by rapid movement can affect the internal components by creating an excessive load. In severe situations, the resulting damage to the internal components and pipes can also lead to the tearing of the fuel tank itself. Therefore, to improve the survivability of the crew, the internal components of the fuel tank must be designed to retain their structural soundness during the sloshing phenomenon. In order to accomplish this, the sloshing load acting on the components first needs to be determined. This paper investigates the sloshing load applied to the internal components by performing numerical analysis for rotary-wing aircraft fuel tanks in the sloshing test. Fluid-Structural Interaction (FSI) analysis based on smoothed particle hydrodynamics (SPH) is conducted and the conditions specified in the US military standard (MIL-DTL-27422D) are employed for the numerical simulation. Based on this numerical simulation, by analyzing the load applied to the internal components of the fuel tank due to the sloshing phenomenon, the possibility of obtaining the design data by numerical analysis is examined.

항공기의 가속도 운동이나 급격한 선회는 연료탱크 내부에서 슬로싱(연료 쏠림) 현상을 발생시킨다. 급격한 기동으로 발생하는 슬로싱 현상은 연료탱크 내부에 장착되는 구성품들에 상당한 하중으로 작용될 수 있다. 심각한 상황에서는 연료탱크 내부 구성품 및 배관의 파손이 발생하여 연료탱크 자체의 찢어짐으로도 이어질 수 있다. 따라서, 슬로싱 현상에 대해 연료탱크 내부 구성품이 구조 건전성을 보유하도록 설계되어야만 승무원의 생존성을 향상시킬 수 있다. 이러한 점을 고려하여 연료탱크 내부 구성품의 설계를 위해서는 구성품에 작용하는 슬로싱 하중의 확보가 선행되어야 한다. 본 논문에서는 회전익 항공기용 연료탱크 내부에서 발생할 수 있는 슬로싱 수치해석을 수행하여 내부 구성품에 작용하는 슬로싱 하중을 고찰하였다. 슬로싱 수치해석을 위해 입자법을 기반으로 하는 유체-구조 연성해석을 수행하였고, 미군사 규격(MIL-DTL-27422D)에서 규정하는 시험조건을 수치해석 조건으로 적용하였다. 수치해석 결과로써 슬로싱 현상에 의해 회전익항공기용 연료탱크 내부 구성품에 작용하는 하중과 최대 등가응력을 분석함으로써 유체-구조 연성해석을 통해 슬로싱 하중을 고려할 수 있는 설계 데이터 확보 가능성을 검토하였다.

Keywords

References

  1. In Sik Nho, Min-Seok Ki, Sung-Chan Kim, "A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System", Journal of the Society of Naval Architects of Korea, Vol. 48, No. 5, pp.451-456, 2011. DOI: http://dx.doi.org/10.3744/SNAK.2011.48.5.451
  2. Graczyk, M. & Moan, T., "A Probabilistic Assessment of Design Sloshing Pressure Time Histories in LNG Tanks", Ocean Engineering, 35, pp.834-855, 2008. DOI: http://dx.doi.org/10.1016/j.oceaneng.2008.01.020
  3. Jang Ryong Shin, Kyung Sik Choi, Sin Young Kang, "An Analytic Solution to Sloshing Natural Periods for a Prismatic Liquid Cargo Tank with Baffles", Journal of Ocean Engineering and Technology, Vol.19, No.6, pp.16-21, 2005.
  4. Sang Hyuk Lee, Nahmkeon Hur, "A Numerical Study on Flows in a Fuel Tank with Baffles and Porous Media to Reduce Sloshing Noise", Korean Society for Computational Fluids Engineering, Vol.14, No.2, pp.68-76, 2009.
  5. Sejin Ahn, Seongho Yoon, "Experimental Study and Evaluation Method for Sloshing Noise of Fuel Tank on Passenger Vehicle", Transactions of the Korean Society for Noise and Vibration Engineering, Vol.24, No.6, pp.444-451, 2014. DOI: http://dx.doi.org/10.5050/KSNVE.2014.24.6.444
  6. U.S.Army Aviation and Missile Command, "Detail Specification for the Tank, Fuel, Crash- Resistant, Ballistic-Tolerant, Aircraft, MIL-DTL-27422D", 30 January 2007.
  7. J.J. Monaghan, "Smoothed Particle Hydrodynamics", Annual Review of Astronomy and Astrophysics, Vol.30, pp.543-574, 1992. DOI: http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
  8. J.J. Monaghan, R.A. Gingold, "Shock Simulation by the Particle Method SPH", Journal of Computational Physics, Vol.52, No.2, pp.374-389, 1983. DOI: http://dx.doi.org/10.1016/0021-9991(83)90036-0
  9. Philipp Hahn, "On the Use of Meshless Methods in Acoustic Simulations", University of Wisconsin-Madison, Thesis of Master, 2009.
  10. Hyun_Gi Kim, Sung Chan Kim, Jong Won Lee, In Hee Hwang, et al, "Slosh & Vibration Qualification Test for Fuel Tank of Rotorcraft", Journal of the Korea Academia-Industrial Cooperation Society, Vol.14, No.1, pp.62-68, 2011.
  11. Hyun_Gi Kim, Sung Chan Kim, "Study on the Phase II Qualification Test for Fuel Cell of Rotorcraft", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 14, No.3, pp.1054-1060, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.3.1054