DOI QR코드

DOI QR Code

Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations

  • Shin, Jung Hee (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Baek, Jung Hwan (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Chung, Jin (Department of Radiology, Ewha Womans University School of Medicine) ;
  • Ha, Eun Ju (Department of Radiology, Ajou University School of Medicine) ;
  • Kim, Ji-hoon (Department of Radiology, Seoul National University College of Medicine) ;
  • Lee, Young Hen (Department of Radiology, Ansan Hospital, Korea University College of Medicine) ;
  • Lim, Hyun Kyung (Department of Radiology, Soonchunhyang University Seoul Hospital) ;
  • Moon, Won-Jin (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Na, Dong Gyu (Department of Radiology, Human Medical Imaging and Intervention Center) ;
  • Park, Jeong Seon (Department of Radiology, Hanyang University College of Medicine, Hanyang University Hospital) ;
  • Choi, Yoon Jung (Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Hahn, Soo Yeon (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jeon, Se Jeong (Department of Radiology, Wonkwang University Hospital) ;
  • Jung, So Lyung (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Dong Wook (Department of Radiology, Busan Paik Hospital, Inje University College of Medicine) ;
  • Kim, Eun-Kyung (Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Kwak, Jin Young (Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Lee, Chang Yoon (Department of Radiology, Research Institute and Hospital, National Cancer Center) ;
  • Lee, Hui Joong (Department of Radiology, Kyungpook National University Hospital) ;
  • Lee, Jeong Hyun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee, Joon Hyung (Department of Radiology, Dong-A University Medical Center) ;
  • Lee, Kwang Hui (Department of Radiology, Newwoori Namsan Hospital) ;
  • Park, Sun-Won (Department of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine) ;
  • Sung, Jin Young (Department of Radiology and Thyroid Center, Daerim St. Mary's Hospital)
  • Received : 2016.01.15
  • Accepted : 2016.01.22
  • Published : 2016.06.01

Abstract

The rate of detection of thyroid nodules and carcinomas has increased with the widespread use of ultrasonography (US), which is the mainstay for the detection and risk stratification of thyroid nodules as well as for providing guidance for their biopsy and nonsurgical treatment. The Korean Society of Thyroid Radiology (KSThR) published their first recommendations for the US-based diagnosis and management of thyroid nodules in 2011. These recommendations have been used as the standard guidelines for the past several years in Korea. Lately, the application of US has been further emphasized for the personalized management of patients with thyroid nodules. The Task Force on Thyroid Nodules of the KSThR has revised the recommendations for the ultrasound diagnosis and imaging-based management of thyroid nodules. The review and recommendations in this report have been based on a comprehensive analysis of the current literature and the consensus of experts.

Keywords

Acknowledgement

Supported by : Korean Society of Radiology

References

  1. Vander JB, Gaston EA, Dawber TR. The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med 1968;69:537-540 https://doi.org/10.7326/0003-4819-69-3-537
  2. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) 1977;7:481-493 https://doi.org/10.1111/j.1365-2265.1977.tb01340.x
  3. Mandel SJ. A 64-year-old woman with a thyroid nodule. JAMA 2004;292:2632-2642 https://doi.org/10.1001/jama.292.21.2632
  4. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:1941-1946 https://doi.org/10.1210/jcem.87.5.8504
  5. Nam-Goong IS, Kim HY, Gong G, Lee HK, Hong SJ, Kim WB, et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf) 2004;60:21-28 https://doi.org/10.1046/j.1365-2265.2003.01912.x
  6. Smith-Bindman R, Lebda P, Feldstein VA, Sellami D, Goldstein RB, Brasic N, et al. Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: results of a population-based study. JAMA Intern Med 2013;173:1788-1796 https://doi.org/10.1001/jamainternmed.2013.9245
  7. Vaccarella S, Dal Maso L, Laversanne M, Bray F, Plummer M, Franceschi S. The impact of diagnostic changes on the rise in thyroid cancer incidence: a population-based study in selected high-resource countries. Thyroid 2015;25:1127-1136 https://doi.org/10.1089/thy.2015.0116
  8. Ahn HY, Park YJ. Incidence and clinical characteristics of thyroid cancer in Korea. Korean J Med 2009;77:537-542
  9. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006;295:2164-2167 https://doi.org/10.1001/jama.295.18.2164
  10. Gharib H, Hegedus L, Pacella CM, Baek JH, Papini E. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab 2013;98:3949-3957 https://doi.org/10.1210/jc.2013-1806
  11. Moon WJ, Baek JH, Jung SL, Kim DW, Kim EK, Kim JY, et al. Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations. Korean J Radiol 2011;12:1-14 https://doi.org/10.3348/kjr.2011.12.1.1
  12. Shin JJ, Caragacianu D, Randolph GW. Impact of thyroid nodule size on prevalence and post-test probability of malignancy: a systematic review. Laryngoscope 2015;125:263-272 https://doi.org/10.1002/lary.24784
  13. Kamran SC, Marqusee E, Kim MI, Frates MC, Ritner J, Peters H, et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013;98:564-570 https://doi.org/10.1210/jc.2012-2968
  14. McHenry CR, Huh ES, Machekano RN. Is nodule size an independent predictor of thyroid malignancy? Surgery 2008;144:1062-1068; discussion 1068-1069 https://doi.org/10.1016/j.surg.2008.07.021
  15. Shrestha M, Crothers BA, Burch HB. The impact of thyroid nodule size on the risk of malignancy and accuracy of fine-needle aspiration: a 10-year study from a single institution. Thyroid 2012;22:1251-1256 https://doi.org/10.1089/thy.2012.0265
  16. Asanuma K, Kobayashi S, Shingu K, Hama Y, Yokoyama S, Fujimori M, et al. The rate of tumour growth does not distinguish between malignant and benign thyroid nodules. Eur J Surg 2001;167:102-105 https://doi.org/10.1080/110241501750070538
  17. Alexander EK, Hurwitz S, Heering JP, Benson CB, Frates MC, Doubilet PM, et al. Natural history of benign solid and cystic thyroid nodules. Ann Intern Med 2003;138:315-318 https://doi.org/10.7326/0003-4819-138-4-200302180-00010
  18. Erdogan MF, Gursoy A, Erdogan G. Natural course of benign thyroid nodules in a moderately iodine-deficient area. Clin Endocrinol (Oxf) 2006;65:767-771 https://doi.org/10.1111/j.1365-2265.2006.02664.x
  19. Ajmal S, Rapoport S, Ramirez Batlle H, Mazzaglia PJ. The natural history of the benign thyroid nodule: what is the appropriate follow-up strategy? J Am Coll Surg 2015;220:987-992 https://doi.org/10.1016/j.jamcollsurg.2014.12.010
  20. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133 https://doi.org/10.1089/thy.2015.0020
  21. Na DG, Kim JH, Kim DS, Kim SJ. Thyroid nodules with minimal cystic changes have a low risk of malignancy. Ultrasonography 2016;35:153-158 https://doi.org/10.14366/usg.15070
  22. Salmaslioglu A, Erbil Y, Dural C, Issever H, Kapran Y, Ozarmagan S, et al. Predictive value of sonographic features in preoperative evaluation of malignant thyroid nodules in a multinodular goiter. World J Surg 2008;32:1948-1954 https://doi.org/10.1007/s00268-008-9600-2
  23. Henrichsen TL, Reading CC, Charboneau JW, Donovan DJ, Sebo TJ, Hay ID. Cystic change in thyroid carcinoma: prevalence and estimated volume in 360 carcinomas. J Clin Ultrasound 2010;38:361-366
  24. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011;260:892-899 https://doi.org/10.1148/radiol.11110206
  25. Na DG, Baek JH, Sung JY, Kim JH, Kim JK, Choi YJ, et al. Thyroid imaging reporting and data system risk stratification of thyroid nodules: categorization based on solidity and echogenicity. Thyroid 2016;26:562-572 https://doi.org/10.1089/thy.2015.0460
  26. Lee MJ, Kim EK, Kwak JY, Kim MJ. Partially cystic thyroid nodules on ultrasound: probability of malignancy and sonographic differentiation. Thyroid 2009;19:341-346 https://doi.org/10.1089/thy.2008.0250
  27. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology 2008;247:762-770 https://doi.org/10.1148/radiol.2473070944
  28. Bonavita JA, Mayo J, Babb J, Bennett G, Oweity T, Macari M, et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone? AJR Am J Roentgenol 2009;193:207-213 https://doi.org/10.2214/AJR.08.1820
  29. Moon WJ, Kwag HJ, Na DG. Are there any specific ultrasound findings of nodular hyperplasia ("leave me alone" lesion) to differentiate it from follicular adenoma? Acta Radiol 2009;50:383-388 https://doi.org/10.1080/02841850902740940
  30. Kim JY, Jung SL, Kim MK, Kim TJ, Byun JY. Differentiation of benign and malignant thyroid nodules based on the proportion of sponge-like areas on ultrasonography: imaging-pathologic correlation. Ultrasonography 2015;34:304-311 https://doi.org/10.14366/usg.15016
  31. Kobayashi K, Hirokawa M, Yabuta T, Fukushima M, Kihara M, Takamura Y, et al. Papillary thyroid carcinoma with honeycomb-like multiple small cysts: characteristic features on ultrasonography. Eur Thyroid J 2013;2:270-274
  32. Cappelli C, Castellano M, Pirola I, Cumetti D, Agosti B, Gandossi E, et al. The predictive value of ultrasound findings in the management of thyroid nodules. QJM 2007;100:29-35
  33. Kim EK, Park CS, Chung WY, Oh KK, Kim DI, Lee JT, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol 2002;178:687-691 https://doi.org/10.2214/ajr.178.3.1780687
  34. Alexander EK, Marqusee E, Orcutt J, Benson CB, Frates MC, Doubilet PM, et al. Thyroid nodule shape and prediction of malignancy. Thyroid 2004;14:953-958 https://doi.org/10.1089/thy.2004.14.953
  35. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 1995;196:123-134 https://doi.org/10.1148/radiology.196.1.7784555
  36. Jeh SK, Jung SL, Kim BS, Lee YS. Evaluating the degree of conformity of papillary carcinoma and follicular carcinoma to the reported ultrasonographic findings of malignant thyroid tumor. Korean J Radiol 2007;8:192-197 https://doi.org/10.3348/kjr.2007.8.3.192
  37. Yoon JH, Kim EK, Hong SW, Kwak JY, Kim MJ. Sonographic features of the follicular variant of papillary thyroid carcinoma. J Ultrasound Med 2008;27:1431-1437 https://doi.org/10.7863/jum.2008.27.10.1431
  38. Kim DS, Kim JH, Na DG, Park SH, Kim E, Chang KH, et al. Sonographic features of follicular variant papillary thyroid carcinomas in comparison with conventional papillary thyroid carcinomas. J Ultrasound Med 2009;28:1685-1692 https://doi.org/10.7863/jum.2009.28.12.1685
  39. Kwak JY, Jung I, Baek JH, Baek SM, Choi N, Choi YJ, et al. Image reporting and characterization system for ultrasound features of thyroid nodules: multicentric Korean retrospective study. Korean J Radiol 2013;14:110-117 https://doi.org/10.3348/kjr.2013.14.1.110
  40. Seo H, Na DG, Kim JH, Kim KW, Yoon JW. Ultrasound-based risk stratification for malignancy in thyroid nodules: a four-tier categorization system. Eur Radiol 2015;25:2153-2162 https://doi.org/10.1007/s00330-015-3621-7
  41. Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology 2005;237:794-800 https://doi.org/10.1148/radiol.2373050220
  42. Andrioli M, Carzaniga C, Persani L. Standardized ultrasound report for thyroid nodules: the endocrinologist's viewpoint. Eur Thyroid J 2013;2:37-48 https://doi.org/10.1159/000347144
  43. Su HK, Dos Reis LL, Lupo MA, Milas M, Orloff LA, Langer JE, et al. Striving toward standardization of reporting of ultrasound features of thyroid nodules and lymph nodes: a multidisciplinary consensus statement. Thyroid 2014;24:1341-1349 https://doi.org/10.1089/thy.2014.0110
  44. Grant EG, Tessler FN, Hoang JK, Langer JE, Beland MD, Berland LL, et al. Thyroid ultrasound reporting lexicon: white paper of the ACR thyroid imaging, reporting and data system (TIRADS) committee. J Am Coll Radiol 2015;12(12 Pt A):1272-1279 https://doi.org/10.1016/j.jacr.2015.07.011
  45. Langer JE, Khan A, Nisenbaum HL, Baloch ZW, Horii SC, Coleman BG, et al. Sonographic appearance of focal thyroiditis. AJR Am J Roentgenol 2001;176:751-754 https://doi.org/10.2214/ajr.176.3.1760751
  46. Frates MC, Marqusee E, Benson CB, Alexander EK. Subacute granulomatous (de Quervain) thyroiditis: grayscale and color Doppler sonographic characteristics. J Ultrasound Med 2013;32:505-511 https://doi.org/10.7863/jum.2013.32.3.505
  47. Scheible W, Leopold GR, Woo VL, Gosink BB. High-resolution real-time ultrasonography of thyroid nodules. Radiology 1979;133:413-417 https://doi.org/10.1148/133.2.413
  48. Propper RA, Skolnick ML, Weinstein BJ, Dekker A. The nonspecificity of the thyroid halo sign. J Clin Ultrasound 1980;8:129-132 https://doi.org/10.1002/jcu.1870080206
  49. Lu C, Chang TC, Hsiao YL, Kuo MS. Ultrasonographic findings of papillary thyroid carcinoma and their relation to pathologic changes. J Formos Med Assoc 1994;93:933-938
  50. Haber RS. Role of ultrasonography in the diagnosis and management of thyroid cancer. Endocr Pract 2000;6:396-400 https://doi.org/10.4158/EP.6.5.396
  51. Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey RB Jr. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med 2003;22:1083-1090 https://doi.org/10.7863/jum.2003.22.10.1083
  52. Seo HS, Lee DH, Park SH, Min HS, Na DG. Thyroid follicular neoplasms: can sonography distinguish between adenomas and carcinomas? J Clin Ultrasound 2009;37:493-500 https://doi.org/10.1002/jcu.20625
  53. Brito JP, Gionfriddo MR, Al Nofal A, Boehmer KR, Leppin AL, Reading C, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab 2014;99:1253-1263 https://doi.org/10.1210/jc.2013-2928
  54. Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid 2015;25:538-550 https://doi.org/10.1089/thy.2014.0353
  55. Ahuja A, Chick W, King W, Metreweli C. Clinical significance of the comet-tail artifact in thyroid ultrasound. J Clin Ultrasound 1996;24:129-133 https://doi.org/10.1002/(SICI)1097-0096(199603)24:3<129::AID-JCU4>3.0.CO;2-J
  56. Beland MD, Kwon L, Delellis RA, Cronan JJ, Grant EG. Nonshadowing echogenic foci in thyroid nodules: are certain appearances enough to avoid thyroid biopsy? J Ultrasound Med 2011;30:753-760 https://doi.org/10.7863/jum.2011.30.6.753
  57. Malhi H, Beland MD, Cen SY, Allgood E, Daley K, Martin SE, et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am J Roentgenol 2014;203:1310-1316 https://doi.org/10.2214/AJR.13.11934
  58. Popowicz B, Klencki M, Lewinski A, Slowinska-Klencka D. The usefulness of sonographic features in selection of thyroid nodules for biopsy in relation to the nodule's size. Eur J Endocrinol 2009;161:103-111 https://doi.org/10.1530/EJE-09-0022
  59. Lu Z, Mu Y, Zhu H, Luo Y, Kong Q, Dou J, et al. Clinical value of using ultrasound to assess calcification patterns in thyroid nodules. World J Surg 2011;35:122-127 https://doi.org/10.1007/s00268-010-0827-3
  60. Na DG, Kim DS, Kim SJ, Ryoo JW, Jung SL. Thyroid nodules with isolated macrocalcification: malignancy risk and diagnostic efficacy of fine-needle aspiration and core needle biopsy. Ultrasonography 2015 Dec 27 [Epub]. http://dx.doi.org/10.14366/usg.15074
  61. Kim BM, Kim MJ, Kim EK, Kwak JY, Hong SW, Son EJ, et al. Sonographic differentiation of thyroid nodules with eggshell calcifications. J Ultrasound Med 2008;27:1425-1430 https://doi.org/10.7863/jum.2008.27.10.1425
  62. Park M, Shin JH, Han BK, Ko EY, Hwang HS, Kang SS, et al. Sonography of thyroid nodules with peripheral calcifications. J Clin Ultrasound 2009;37:324-328 https://doi.org/10.1002/jcu.20584
  63. Rago T, Vitti P, Chiovato L, Mazzeo S, De Liperi A, Miccoli P, et al. Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in 'cold' thyroid nodules. Eur J Endocrinol 1998;138:41-46 https://doi.org/10.1530/eje.0.1380041
  64. Frates MC, Benson CB, Doubilet PM, Cibas ES, Marqusee E. Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med 2003;22:127-131; quiz 132-134 https://doi.org/10.7863/jum.2003.22.2.127
  65. Appetecchia M, Solivetti FM. The association of colour flow Doppler sonography and conventional ultrasonography improves the diagnosis of thyroid carcinoma. Horm Res 2006;66:249-256
  66. Ma JJ, Ding H, Xu BH, Xu C, Song LJ, Huang BJ, et al. Diagnostic performances of various gray-scale, color Doppler, and contrast-enhanced ultrasonography findings in predicting malignant thyroid nodules. Thyroid 2014;24:355-363 https://doi.org/10.1089/thy.2013.0150
  67. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 2010;255:260-269 https://doi.org/10.1148/radiol.09091284
  68. Zhou JQ, Zhou C, Zhan WW, Zhou W, Dong YJ. Maximal, minimal, and mean pulsed Doppler parameters: which should be utilized in the diagnosis of thyroid nodules? Clin Radiol 2014;69:e477-e484 https://doi.org/10.1016/j.crad.2014.08.006
  69. Fukunari N, Nagahama M, Sugino K, Mimura T, Ito K, Ito K. Clinical evaluation of color Doppler imaging for the differential diagnosis of thyroid follicular lesions. World J Surg 2004;28:1261-1265 https://doi.org/10.1007/s00268-004-7597-8
  70. Miyakawa M, Onoda N, Etoh M, Fukuda I, Takano K, Okamoto T, et al. Diagnosis of thyroid follicular carcinoma by the vascular pattern and velocimetric parameters using high resolution pulsed and power Doppler ultrasonography. Endocr J 2005;52:207-212 https://doi.org/10.1507/endocrj.52.207
  71. De Nicola H, Szejnfeld J, Logullo AF, Wolosker AM, Souza LR, Chiferi V Jr. Flow pattern and vascular resistive index as predictors of malignancy risk in thyroid follicular neoplasms. J Ultrasound Med 2005;24:897-904 https://doi.org/10.7863/jum.2005.24.7.897
  72. Iared W, Shigueoka DC, Cristofoli JC, Andriolo R, Atallah AN, Ajzen SA, et al. Use of color Doppler ultrasonography for the prediction of malignancy in follicular thyroid neoplasms: systematic review and meta-analysis. J Ultrasound Med 2010;29:419-425 https://doi.org/10.7863/jum.2010.29.3.419
  73. Choi YJ, Yun JS, Kim DH. Clinical and ultrasound features of cytology diagnosed follicular neoplasm. Endocr J 2009;56:383-389 https://doi.org/10.1507/endocrj.K08E-310
  74. Trimboli P, Sorrenti S. Low value of color flow-doppler in predicting malignancy of thyroid follicular neoplasms. Diagn Cytopathol 2009;37:391-392 https://doi.org/10.1002/dc.21050
  75. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015;41:1126-1147 https://doi.org/10.1016/j.ultrasmedbio.2015.03.009
  76. Kwak JY, Kim EK. Ultrasound elastography for thyroid nodules: recent advances. Ultrasonography 2014;33:75-82 https://doi.org/10.14366/usg.13025
  77. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab 2007;92:2917-2922 https://doi.org/10.1210/jc.2007-0641
  78. Asteria C, Giovanardi A, Pizzocaro A, Cozzaglio L, Morabito A, Somalvico F, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid 2008;18:523-531 https://doi.org/10.1089/thy.2007.0323
  79. Moon HJ, Sung JM, Kim EK, Yoon JH, Youk JH, Kwak JY. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology 2012;262:1002-1013 https://doi.org/10.1148/radiol.11110839
  80. Cappelli C, Pirola I, Gandossi E, Agosti B, Cimino E, Casella C, et al. Real-time elastography: a useful tool for predicting malignancy in thyroid nodules with nondiagnostic cytologic findings. J Ultrasound Med 2012;31:1777-1782 https://doi.org/10.7863/jum.2012.31.11.1777
  81. Nell S, Kist JW, Debray TP, de Keizer B, van Oostenbrugge TJ, Borel Rinkes IH, et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol 2015;84:652-661 https://doi.org/10.1016/j.ejrad.2015.01.003
  82. Rago T, Scutari M, Santini F, Loiacono V, Piaggi P, Di Coscio G, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab 2010;95:5274-5280 https://doi.org/10.1210/jc.2010-0901
  83. Choi WJ, Park JS, Koo HR, Kim SY, Chung MS, Tae K. Ultrasound elastography using carotid artery pulsation in the differential diagnosis of sonographically indeterminate thyroid nodules. AJR Am J Roentgenol 2015;204:396-401 https://doi.org/10.2214/AJR.14.12871
  84. Samir AE, Dhyani M, Anvari A, Prescott J, Halpern EF, Faquin WC, et al. Shear-wave elastography for the preoperative risk stratification of follicular-patterned lesions of the thyroid: diagnostic accuracy and optimal measurement plane. Radiology 2015;277:565-573 https://doi.org/10.1148/radiol.2015141627
  85. Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: a systematic review and meta-analysis. Eur J Endocrinol 2014;170:R203-R211 https://doi.org/10.1530/EJE-13-0995
  86. Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009;94:1748-1751 https://doi.org/10.1210/jc.2008-1724
  87. Russ G, Royer B, Bigorgne C, Rouxel A, Bienvenu-Perrard M, Leenhardt L. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol 2013;168:649-655 https://doi.org/10.1530/EJE-12-0936
  88. Park JY, Lee HJ, Jang HW, Kim HK, Yi JH, Lee W, et al. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid 2009;19:1257-1264 https://doi.org/10.1089/thy.2008.0021
  89. Kim DW, Lee EJ, In HS, Kim SJ. Sonographic differentiation of partially cystic thyroid nodules: a prospective study. AJNR Am J Neuroradiol 2010;31:1961-1966 https://doi.org/10.3174/ajnr.A2204
  90. Park JM, Choi Y, Kwag HJ. Partially cystic thyroid nodules: ultrasound findings of malignancy. Korean J Radiol 2012;13:530-535 https://doi.org/10.3348/kjr.2012.13.5.530
  91. Vera MI, Merono T, Urrutia MA, Parisi C, Morosan Y, Rosmarin M, et al. Differential profile of ultrasound findings associated with malignancy in mixed and solid thyroid nodules in an elderly female population. J Thyroid Res 2014;2014:761653
  92. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and EuropeanThyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocr Pract 2010;16 Suppl 1:1-43
  93. Wemeau JL, Sadoul JL, d'Herbomez M, Monpeyssen H, Tramalloni J, Leteurtre E, et al. Guidelines of the French society of endocrinology for the management of thyroid nodules. Ann Endocrinol (Paris) 2011;72:251-281 https://doi.org/10.1016/j.ando.2011.05.003
  94. Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G, et al. Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 2014;81 Suppl 1:1-122
  95. National Comprehensive Cancer Network. 2014 Practice Guidelines in Oncology-Thyroid Carcinoma v.2. Web site. http://www.nccn.org/. Accessed May 18, 2015
  96. Andersen PE, Kinsella J, Loree TR, Shaha AR, Shah JP. Differentiated carcinoma of the thyroid with extrathyroidal extension. Am J Surg 1995;170:467-470 https://doi.org/10.1016/S0002-9610(99)80331-6
  97. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. Prognostic significance of extrathyroid extension of papillary thyroid carcinoma: massive but not minimal extension affects the relapse-free survival. World J Surg 2006;30:780-786 https://doi.org/10.1007/s00268-005-0270-z
  98. Riemann B, Kramer JA, Schmid KW, Dralle H, Dietlein M, Schicha H, et al. Risk stratification of patients with locally aggressive differentiated thyroid cancer. Results of the MSDS trial. Nuklearmedizin 2010;49:79-84 https://doi.org/10.3413/nukmed-0302
  99. Radowsky JS, Howard RS, Burch HB, Stojadinovic A. Impact of degree of extrathyroidal extension of disease on papillary thyroid cancer outcome. Thyroid 2014;24:241-244 https://doi.org/10.1089/thy.2012.0567
  100. Lee CY, Kim SJ, Ko KR, Chung KW, Lee JH. Predictive factors for extrathyroidal extension of papillary thyroid carcinoma based on preoperative sonography. J Ultrasound Med 2014;33:231-238 https://doi.org/10.7863/ultra.33.2.231
  101. Kwak JY, Kim EK, Youk JH, Kim MJ, Son EJ, Choi SH, et al. Extrathyroid extension of well-differentiated papillary thyroid microcarcinoma on US. Thyroid 2008;18:609-614 https://doi.org/10.1089/thy.2007.0345
  102. Shimamoto K, Satake H, Sawaki A, Ishigaki T, Funahashi H, Imai T. Preoperative staging of thyroid papillary carcinoma with ultrasonography. Eur J Radiol 1998;29:4-10 https://doi.org/10.1016/S0720-048X(97)00184-8
  103. Choi JS, Chung WY, Kwak JY, Moon HJ, Kim MJ, Kim EK. Staging of papillary thyroid carcinoma with ultrasonography: performance in a large series. Ann Surg Oncol 2011;18:3572-3578 https://doi.org/10.1245/s10434-011-1783-3
  104. Park JS, Son KR, Na DG, Kim E, Kim S. Performance of preoperative sonographic staging of papillary thyroid carcinoma based on the sixth edition of the AJCC/UICC TNM classification system. AJR Am J Roentgenol 2009;192:66-72 https://doi.org/10.2214/AJR.07.3731
  105. Moon SJ, Kim DW, Kim SJ, Ha TK, Park HK, Jung SJ. Ultrasound assessment of degrees of extrathyroidal extension in papillary thyroid microcarcinoma. Endocr Pract 2014;20:1037-1043 https://doi.org/10.4158/EP14016.OR
  106. Kim SS, Lee BJ, Lee JC, Kim SJ, Lee SH, Jeon YK, et al. Preoperative ultrasonographic tumor characteristics as a predictive factor of tumor stage in papillary thyroid carcinoma. Head Neck 2011;33:1719-1726 https://doi.org/10.1002/hed.21658
  107. Ito Y, Miyauchi A, Oda H, Kobayashi K, Kihara M, Miya A. Revisiting low-risk thyroid papillary microcarcinomas resected without observation: was immediate surgery necessary? World J Surg 2016;40:523-528 https://doi.org/10.1007/s00268-015-3184-4
  108. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418-428 https://doi.org/10.1016/0002-9343(94)90321-2
  109. Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005;103:2269-2273 https://doi.org/10.1002/cncr.21055
  110. Koo JH, Shin JH, Han BK, Ko EY, Kang SS. Cystic thyroid nodules after aspiration mimicking malignancy: sonographic characteristics. J Ultrasound Med 2010;29:1415-1421 https://doi.org/10.7863/jum.2010.29.10.1415
  111. Park NH, Kim DW, Park HJ, Lee EJ, Park JS, Park SI, et al. Thyroid cysts treated with ethanol ablation can mimic malignancy during sonographic follow-up. J Clin Ultrasound 2011;39:441-446 https://doi.org/10.1002/jcu.20861
  112. Zacharia TT, Perumpallichira JJ, Sindhwani V, Chavhan G. Gray-scale and color Doppler sonographic findings in a case of subacute granulomatous thyroiditis mimicking thyroid carcinoma. J Clin Ultrasound 2002;30:442-444 https://doi.org/10.1002/jcu.10087
  113. Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg 2010;34:28-35 https://doi.org/10.1007/s00268-009-0303-0
  114. Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 2014;24:27-34 https://doi.org/10.1089/thy.2013.0367
  115. Pacini F. Management of papillary thyroid microcarcinoma: primum non nocere! J Clin Endocrinol Metab 2013;98:1391-1393 https://doi.org/10.1210/jc.2013-1634
  116. Takami H, Ito Y, Okamoto T, Onoda N, Noguchi H, Yoshida A. Revisiting the guidelines issued by the Japanese Society of Thyroid Surgeons and Japan Association of Endocrine Surgeons: a gradual move towards consensus between Japanese and western practice in the management of thyroid carcinoma. World J Surg 2014;38:2002-2010 https://doi.org/10.1007/s00268-014-2498-y
  117. Oda H, Miyauchi A, Ito Y, Yoshioka K, Nakayama A, Sasai H, et al. Incidences of unfavorable events in the management of low-risk papillary microcarcinoma of the thyroid by active surveillance versus immediate surgery. Thyroid 2016;26:150-155 https://doi.org/10.1089/thy.2015.0313
  118. Brito JP, Ito Y, Miyauchi A, Tuttle RM. A clinical framework to facilitate risk stratification when considering an active surveillance alternative to immediate biopsy and surgery in papillary microcarcinoma. Thyroid 2016;26:144-149 https://doi.org/10.1089/thy.2015.0178
  119. Ghossein R, Ganly I, Biagini A, Robenshtok E, Rivera M, Tuttle RM. Prognostic factors in papillary microcarcinoma with emphasis on histologic subtyping: a clinicopathologic study of 148 cases. Thyroid 2014;24:245-253 https://doi.org/10.1089/thy.2012.0645
  120. Lecumberri B, Alvarez-Escola C, Martin-Vaquero P, Nistal M, Martin V, Riesco-Eizaguirre G, et al. Solitary hemorrhagic cerebellar metastasis from occult papillary thyroid microcarcinoma. Thyroid 2010;20:563-567 https://doi.org/10.1089/thy.2010.0062
  121. Jeon MJ, Kim WG, Choi YM, Kwon H, Lee YM, Sung TY, et al. Features predictive of distant metastasis in papillary thyroid microcarcinomas. Thyroid 2016;26:161-168 https://doi.org/10.1089/thy.2015.0375
  122. Noguchi S, Yamashita H, Uchino S, Watanabe S. Papillary microcarcinoma. World J Surg 2008;32:747-753 https://doi.org/10.1007/s00268-007-9453-0
  123. Roti E, Rossi R, Trasforini G, Bertelli F, Ambrosio MR, Busutti L, et al. Clinical and histological characteristics of papillary thyroid microcarcinoma: results of a retrospective study in 243 patients. J Clin Endocrinol Metab 2006;91:2171-2178 https://doi.org/10.1210/jc.2005-2372
  124. Mercante G, Frasoldati A, Pedroni C, Formisano D, Renna L, Piana S, et al. Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. Thyroid 2009;19:707-716 https://doi.org/10.1089/thy.2008.0270
  125. Cibas ES, Ali SZ. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2009;19:1159-1165 https://doi.org/10.1089/thy.2009.0274
  126. Moon HJ, Kim EK, Yoon JH, Kwak JY. Malignancy risk stratification in thyroid nodules with nondiagnostic results at cytologic examination: combination of thyroid imaging reporting and data system and the Bethesda System. Radiology 2015;274:287-295 https://doi.org/10.1148/radiol.14140359
  127. Kim SY, Han KH, Moon HJ, Kwak JY, Chung WY, Kim EK. Thyroid nodules with benign findings at cytologic examination: results of long-term follow-up with US. Radiology 2014;271:272-281 https://doi.org/10.1148/radiol.13131334
  128. Rosario PW. Thyroid nodules with atypia or follicular lesions of undetermined significance (Bethesda Category III): importance of ultrasonography and cytological subcategory. Thyroid 2014;24:1115-1120 https://doi.org/10.1089/thy.2013.0650
  129. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis. Acta Cytol 2012;56:333-339 https://doi.org/10.1159/000339959
  130. Singh RS, Wang HH. Timing of repeat thyroid fine-needle aspiration in the management of thyroid nodules. Acta Cytol 2011;55:544-548 https://doi.org/10.1159/000334214
  131. Lubitz CC, Nagarkatti SS, Faquin WC, Samir AE, Hassan MC, Barbesino G, et al. Diagnostic yield of nondiagnostic thyroid nodules is not altered by timing of repeat biopsy. Thyroid 2012;22:590-594 https://doi.org/10.1089/thy.2011.0442
  132. Yeon JS, Baek JH, Lim HK, Ha EJ, Kim JK, Song DE, et al. Thyroid nodules with initially nondiagnostic cytologic results: the role of core-needle biopsy. Radiology 2013;268:274-280 https://doi.org/10.1148/radiol.13122247
  133. Samir AE, Vij A, Seale MK, Desai G, Halpern E, Faquin WC, et al. Ultrasound-guided percutaneous thyroid nodule core biopsy: clinical utility in patients with prior nondiagnostic fine-needle aspirate. Thyroid 2012;22:461-467 https://doi.org/10.1089/thy.2011.0061
  134. Na DG, Kim JH, Sung JY, Baek JH, Jung KC, Lee H, et al. Core-needle biopsy is more useful than repeat fine-needle aspiration in thyroid nodules read as nondiagnostic or atypia of undetermined significance by the Bethesda system for reporting thyroid cytopathology. Thyroid 2012;22:468-475 https://doi.org/10.1089/thy.2011.0185
  135. Choi SH, Baek JH, Lee JH, Choi YJ, Hong MJ, Song DE, et al. Thyroid nodules with initially non-diagnostic, fine-needle aspiration results: comparison of core-needle biopsy and repeated fine-needle aspiration. Eur Radiol 2014;24:2819-2826 https://doi.org/10.1007/s00330-014-3325-4
  136. Ha EJ, Baek JH, Lee JH, Song DE, Kim JK, Shong YK, et al. Sonographically suspicious thyroid nodules with initially benign cytologic results: the role of a core needle biopsy. Thyroid 2013;23:703-708 https://doi.org/10.1089/thy.2012.0426
  137. Kwak JY, Kim EK, Kim HJ, Kim MJ, Son EJ, Moon HJ. How to combine ultrasound and cytological information in decision making about thyroid nodules. Eur Radiol 2009;19:1923-1931 https://doi.org/10.1007/s00330-009-1369-7
  138. Kwak JY, Koo H, Youk JH, Kim MJ, Moon HJ, Son EJ, et al. Value of US correlation of a thyroid nodule with initially benign cytologic results. Radiology 2010;254:292-300 https://doi.org/10.1148/radiol.2541090460
  139. Chernyavsky VS, Shanker BA, Davidov T, Crystal JS, Eng O, Ibrahim K, et al. Is one benign fine needle aspiration enough? Ann Surg Oncol 2012;19:1472-1476 https://doi.org/10.1245/s10434-011-2079-3
  140. Shin JH, Han BK, Ko K, Choe YH, Oh YL. Value of repeat ultrasound-guided fine-needle aspiration in nodules with benign cytological diagnosis. Acta Radiol 2006;47:469-473 https://doi.org/10.1080/02841850600635921
  141. Hwang SH, Sung JM, Kim EK, Moon HJ, Kwak JY. Imaging-cytology correlation of thyroid nodules with initially benign cytology. Int J Endocrinol 2014;2014:491508
  142. Moon HJ, Kim EK, Kwak JY. Malignancy risk stratification in thyroid nodules with benign results on cytology: combination of thyroid imaging reporting and data system and Bethesda system. Ann Surg Oncol 2014;21:1898-1903 https://doi.org/10.1245/s10434-014-3556-2
  143. Rosario PW, Calsolari MR. What is the best criterion for repetition of fine-needle aspiration in thyroid nodules with initially benign cytology? Thyroid 2015;25:1115-1120 https://doi.org/10.1089/thy.2015.0253
  144. Chehade JM, Silverberg AB, Kim J, Case C, Mooradian AD. Role of repeated fine-needle aspiration of thyroid nodules with benign cytologic features. Endocr Pract 2001;7:237-243 https://doi.org/10.4158/EP.7.4.237
  145. Orlandi A, Puscar A, Capriata E, Fideleff H. Repeated fine-needle aspiration of the thyroid in benign nodular thyroid disease: critical evaluation of long-term follow-up. Thyroid 2005;15:274-278 https://doi.org/10.1089/thy.2005.15.274
  146. Pinchot SN, Al-Wagih H, Schaefer S, Sippel R, Chen H. Accuracy of fine-needle aspiration biopsy for predicting neoplasm or carcinoma in thyroid nodules 4 cm or larger. Arch Surg 2009;144:649-655 https://doi.org/10.1001/archsurg.2009.116
  147. Carrillo JF, Frias-Mendivil M, Ochoa-Carrillo FJ, Ibarra M. Accuracy of fine-needle aspiration biopsy of the thyroid combined with an evaluation of clinical and radiologic factors. Otolaryngol Head Neck Surg 2000;122:917-921 https://doi.org/10.1016/S0194-5998(00)70025-8
  148. Albuja-Cruz MB, Goldfarb M, Gondek SS, Allan BJ, Lew JI. Reliability of fine-needle aspiration for thyroid nodules greater than or equal to 4 cm. J Surg Res 2013;181:6-10 https://doi.org/10.1016/j.jss.2012.06.030
  149. Porterfield JR Jr, Grant CS, Dean DS, Thompson GB, Farley DR, Richards ML, et al. Reliability of benign fine needle aspiration cytology of large thyroid nodules. Surgery 2008;144:963-968; discussion 968-969 https://doi.org/10.1016/j.surg.2008.09.006
  150. Kuru B, Gulcelik NE, Gulcelik MA, Dincer H. The false-negative rate of fine-needle aspiration cytology for diagnosing thyroid carcinoma in thyroid nodules. Langenbecks Arch Surg 2010;395:127-132 https://doi.org/10.1007/s00423-009-0470-3
  151. Yoon JH, Kwak JY, Moon HJ, Kim MJ, Kim EK. The diagnostic accuracy of ultrasound-guided fine-needle aspiration biopsy and the sonographic differences between benign and malignant thyroid nodules 3 cm or larger. Thyroid 2011;21:993-1000 https://doi.org/10.1089/thy.2010.0458
  152. Nou E, Kwong N, Alexander LK, Cibas ES, Marqusee E, Alexander EK. Determination of the optimal time interval for repeat evaluation after a benign thyroid nodule aspiration. J Clin Endocrinol Metab 2014;99:510-516 https://doi.org/10.1210/jc.2013-3160
  153. Nakamura H, Hirokawa M, Ota H, Kihara M, Miya A, Miyauchi A. Is an increase in thyroid nodule volume a risk factor for malignancy? Thyroid 2015;25:804-811 https://doi.org/10.1089/thy.2014.0567
  154. Ho AS, Sarti EE, Jain KS, Wang H, Nixon IJ, Shaha AR, et al. Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid 2014;24:832-839 https://doi.org/10.1089/thy.2013.0317
  155. Faquin WC, Baloch ZW. Fine-needle aspiration of follicular patterned lesions of the thyroid: Diagnosis, management, and follow-up according to National Cancer Institute (NCI) recommendations. Diagn Cytopathol 2010;38:731-739
  156. Kim DW, Lee EJ, Jung SJ, Ryu JH, Kim YM. Role of sonographic diagnosis in managing Bethesda class III nodules. AJNR Am J Neuroradiol 2011;32:2136-2141 https://doi.org/10.3174/ajnr.A2686
  157. Gweon HM, Son EJ, Youk JH, Kim JA. Thyroid nodules with Bethesda system III cytology: can ultrasonography guide the next step? Ann Surg Oncol 2013;20:3083-3088 https://doi.org/10.1245/s10434-013-2990-x
  158. Yoo WS, Choi HS, Cho SW, Moon JH, Kim KW, Park HJ, et al. The role of ultrasound findings in the management of thyroid nodules with atypia or follicular lesions of undetermined significance. Clin Endocrinol (Oxf) 2014;80:735-742 https://doi.org/10.1111/cen.12348
  159. Jeong SH, Hong HS, Lee EH, Cha JG, Park JS, Kwak JJ. Outcome of thyroid nodules characterized as atypia of undetermined significance or follicular lesion of undetermined significance and correlation with Ultrasound features and BRAF(V600E) mutation analysis. AJR Am J Roentgenol 2013;201:W854-W860 https://doi.org/10.2214/AJR.12.9901
  160. Bongiovanni M, Krane JF, Cibas ES, Faquin WC. The atypical thyroid fine-needle aspiration: past, present, and future. Cancer Cytopathol 2012;120:73-86 https://doi.org/10.1002/cncy.20178
  161. Hyeon J, Ahn S, Shin JH, Oh YL. The prediction of malignant risk in the category "atypia of undetermined significance/follicular lesion of undetermined significance" of the Bethesda System for Reporting Thyroid Cytopathology using subcategorization and BRAF mutation results. Cancer Cytopathol 2014;122:368-376 https://doi.org/10.1002/cncy.21396
  162. Sullivan PS, Hirschowitz SL, Fung PC, Apple SK. The impact of atypia/follicular lesion of undetermined significance and repeat fine-needle aspiration: 5 years before and after implementation of the Bethesda System. Cancer Cytopathol 2014;122:866-872 https://doi.org/10.1002/cncy.21468
  163. Renshaw AA. Does a repeated benign aspirate change the risk of malignancy after an initial atypical thyroid fine-needle aspiration? Am J Clin Pathol 2010;134:788-792 https://doi.org/10.1309/AJCPRA9Y2XQVFOFV
  164. VanderLaan PA, Marqusee E, Krane JF. Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: should repeated fna be the preferred initial approach? Am J Clin Pathol 2011;135:770-775 https://doi.org/10.1309/AJCP4P2GCCDNHFMY
  165. Wu HH, Inman A, Cramer HM. Subclassification of "atypia of undetermined significance" in thyroid fine-needle aspirates. Diagn Cytopathol 2014;42:23-29 https://doi.org/10.1002/dc.23052
  166. Park KT, Ahn SH, Mo JH, Park YJ, Park do J, Choi SI, et al. Role of core needle biopsy and ultrasonographic finding in management of indeterminate thyroid nodules. Head Neck 2011;33:160-165 https://doi.org/10.1002/hed.21414
  167. Hahn SY, Shin JH, Han BK, Ko EY, Ko ES. Ultrasonography-guided core needle biopsy for the thyroid nodule: does the procedure hold any benefit for the diagnosis when fine-needle aspiration cytology analysis shows inconclusive results? Br J Radiol 2013;86:20130007 https://doi.org/10.1259/bjr.20130007
  168. Lee KH, Shin JH, Oh YL, Hahn SY. Atypia of undetermined significance in thyroid fine-needle aspiration cytology: prediction of malignancy by US and comparison of methods for further management. Ann Surg Oncol 2014;21:2326-2331 https://doi.org/10.1245/s10434-014-3568-y
  169. Na DG, Min HS, Lee H, Won JK, Seo HB, Kim JH. Role of core needle biopsy in the management of atypia/follicular lesion of undetermined significance thyroid nodules: comparison with repeat fine-needle aspiration in subcategory nodules. Eur Thyroid J 2015;4:189-196 https://doi.org/10.1159/000437051
  170. Bernet V, Hupart KH, Parangi S, Woeber KA. AACE/ACE disease state commentary: molecular diagnostic testing of thyroid nodules with indeterminate cytopathology. Endocr Pract 2014;20:360-363 https://doi.org/10.4158/EP14066.PS
  171. Ferris RL, Baloch Z, Bernet V, Chen A, Fahey TJ 3rd, Ganly I, et al. American thyroid association statement on surgical application of molecular profiling for thyroid nodules: current impact on perioperative decision making. Thyroid 2015;25:760-768 https://doi.org/10.1089/thy.2014.0502
  172. Kwak JY, Kim EK, Kim MJ, Hong SW, Choi SH, Son EJ, et al. The role of ultrasound in thyroid nodules with a cytology reading of "suspicious for papillary thyroid carcinoma". Thyroid 2008;18:517-522 https://doi.org/10.1089/thy.2007.0271
  173. Mulla M, Schulte KM. Central cervical lymph node metastases in papillary thyroid cancer: a systematic review of imaging-guided and prophylactic removal of the central compartment. Clin Endocrinol (Oxf) 2012;76:131-136 https://doi.org/10.1111/j.1365-2265.2011.04162.x
  174. Rotstein L. The role of lymphadenectomy in the management of papillary carcinoma of the thyroid. J Surg Oncol 2009;99:186-188 https://doi.org/10.1002/jso.21234
  175. Sivanandan R, Soo KC. Pattern of cervical lymph node metastases from papillary carcinoma of the thyroid. Br J Surg 2001;88:1241-1244 https://doi.org/10.1046/j.0007-1323.2001.01843.x
  176. Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid 2012;22:1144-1152 https://doi.org/10.1089/thy.2012.0043
  177. Amdur RJ, Mazzaferri EL. Essentials of Thyroid Cancer Management. New York: Springer, 2005:212-215
  178. Spate VL, Morris JS, Nichols TA, Baskett CK, Mason MM, Horsman TL, et al. Longitudinal study of iodine in toenails following IV administration of an iodine containing contrast agent. J Radioanal Nucl Chem 1998;236:71-76 https://doi.org/10.1007/BF02386320
  179. Padovani RP, Kasamatsu TS, Nakabashi CC, Camacho CP, Andreoni DM, Malouf EZ, et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid 2012;22:926-930 https://doi.org/10.1089/thy.2012.0099
  180. Sohn SY, Choi JH, Kim NK, Joung JY, Cho YY, Park SM, et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid 2014;24:872-877 https://doi.org/10.1089/thy.2013.0238
  181. Ho JD, Tsang JF, Scoggan KA, Leslie WD. Urinary iodine clearance following iodinated contrast administration: a comparison of euthyroid and postthyroidectomy subjects. J Thyroid Res 2014;2014:580569
  182. Mishra A, Pradhan PK, Gambhir S, Sabaretnam M, Gupta A, Babu S. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J Surg Res 2015;193:731-737 https://doi.org/10.1016/j.jss.2014.07.065
  183. Tala Jury HP, Castagna MG, Fioravanti C, Cipri C, Brianzoni E, Pacini F. Lack of association between urinary iodine excretion and successful thyroid ablation in thyroid cancer patients. J Clin Endocrinol Metab 2010;95:230-237 https://doi.org/10.1210/jc.2009-1624
  184. Kim E, Park JS, Son KR, Kim JH, Jeon SJ, Na DG. Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography. Thyroid 2008;18:411-418 https://doi.org/10.1089/thy.2007.0269
  185. Ahn JE, Lee JH, Yi JS, Shong YK, Hong SJ, Lee DH, et al. Diagnostic accuracy of CT and ultrasonography for evaluating metastatic cervical lymph nodes in patients with thyroid cancer. World J Surg 2008;32:1552-1558 https://doi.org/10.1007/s00268-008-9588-7
  186. Lesnik D, Cunnane ME, Zurakowski D, Acar GO, Ecevit C, Mace A, et al. Papillary thyroid carcinoma nodal surgery directed by a preoperative radiographic map utilizing CT scan and ultrasound in all primary and reoperative patients. Head Neck 2014;36:191-202 https://doi.org/10.1002/hed.23277
  187. Lee DW, Ji YB, Sung ES, Park JS, Lee YJ, Park DW, et al. Roles of ultrasonography and computed tomography in the surgical management of cervical lymph node metastases in papillary thyroid carcinoma. Eur J Surg Oncol 2013;39:191-196 https://doi.org/10.1016/j.ejso.2012.07.119
  188. Yeh MW, Bauer AJ, Bernet VA, Ferris RL, Loevner LA, Mandel SJ, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid 2015;25:3-14 https://doi.org/10.1089/thy.2014.0096
  189. Choi JS, Kim J, Kwak JY, Kim MJ, Chang HS, Kim EK. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. AJR Am J Roentgenol 2009;193:871-878 https://doi.org/10.2214/AJR.09.2386
  190. Leenhardt L, Erdogan MF, Hegedus L, Mandel SJ, Paschke R, Rago T, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2:147-159 https://doi.org/10.1159/000354537
  191. Rosario PW, de Faria S, Bicalho L, Alves MF, Borges MA, Purisch S, et al. Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med 2005;24:1385-1389 https://doi.org/10.7863/jum.2005.24.10.1385
  192. Leboulleux S, Girard E, Rose M, Travagli JP, Sabbah N, Caillou B, et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007;92:3590-3594 https://doi.org/10.1210/jc.2007-0444
  193. Ito Y, Jikuzono T, Higashiyama T, Asahi S, Tomoda C, Takamura Y, et al. Clinical significance of lymph node metastasis of thyroid papillary carcinoma located in one lobe. World J Surg 2006;30:1821-1828 https://doi.org/10.1007/s00268-006-0211-5
  194. Sywak M, Cornford L, Roach P, Stalberg P, Sidhu S, Delbridge L. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery 2006;140:1000-1005; discussion 1005-1007 https://doi.org/10.1016/j.surg.2006.08.001
  195. Hwang HS, Orloff LA. Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer. Laryngoscope 2011;121:487-491 https://doi.org/10.1002/lary.21227
  196. Gemsenjager E, Perren A, Seifert B, Schuler G, Schweizer I, Heitz PU. Lymph node surgery in papillary thyroid carcinoma. J Am Coll Surg 2003;197:182-190 https://doi.org/10.1016/S1072-7515(03)00421-6
  197. Cranshaw IM, Carnaille B. Micrometastases in thyroid cancer. An important finding? Surg Oncol 2008;17:253-258 https://doi.org/10.1016/j.suronc.2008.04.005
  198. Bardet S, Malville E, Rame JP, Babin E, Samama G, De Raucourt D, et al. Macroscopic lymph-node involvement and neck dissection predict lymph-node recurrence in papillary thyroid carcinoma. Eur J Endocrinol 2008;158:551-560 https://doi.org/10.1530/EJE-07-0603
  199. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. Preoperative ultrasonographic examination for lymph node metastasis: usefulness when designing lymph node dissection for papillary microcarcinoma of the thyroid. World J Surg 2004;28:498-501 https://doi.org/10.1007/s00268-004-7192-z
  200. Bardet S, Ciappuccini R, Quak E, Rame JP, Blanchard D, de Raucourt D, et al. Prognostic value of microscopic lymph node involvement in patients with papillary thyroid cancer. J Clin Endocrinol Metab 2015;100:132-140 https://doi.org/10.1210/jc.2014-1199
  201. Rondeau G, Fish S, Hann LE, Fagin JA, Tuttle RM. Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid 2011;21:845-853 https://doi.org/10.1089/thy.2011.0011
  202. Robenshtok E, Fish S, Bach A, Dominguez JM, Shaha A, Tuttle RM. Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients. J Clin Endocrinol Metab 2012;97:2706-2713 https://doi.org/10.1210/jc.2012-1553
  203. Na DG, Lee JH, Jung SL, Kim JH, Sung JY, Shin JH, et al. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol 2012;13:117-125 https://doi.org/10.3348/kjr.2012.13.2.117
  204. Bennedbaek FN, Nielsen LK, Hegedus L. Effect of percutaneous ethanol injection therapy versus suppressive doses of L-thyroxine on benign solitary solid cold thyroid nodules: a randomized trial. J Clin Endocrinol Metab 1998;83:830-835
  205. Sung JY, Baek JH, Kim KS, Lee D, Yoo H, Kim JK, et al. Single-session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology 2013;269:293-300 https://doi.org/10.1148/radiol.13122134
  206. Sung JY, Kim YS, Choi H, Lee JH, Baek JH. Optimum first-line treatment technique for benign cystic thyroid nodules: ethanol ablation or radiofrequency ablation? AJR Am J Roentgenol 2011;196:W210-W214 https://doi.org/10.2214/AJR.10.5172
  207. Dossing H, Bennedbaek FN, Hegedus L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol 2011;165:123-128 https://doi.org/10.1530/EJE-11-0220
  208. Lim HK, Lee JH, Ha EJ, Sung JY, Kim JK, Baek JH. Radiofrequency ablation of benign non-functioning thyroid nodules: 4-year follow-up results for 111 patients. Eur Radiol 2013;23:1044-1049 https://doi.org/10.1007/s00330-012-2671-3
  209. Sung JY, Baek JH, Jung SL, Kim JH, Kim KS, Lee D, et al. Radiofrequency ablation for autonomously functioning thyroid nodules: a multicenter study. Thyroid 2015;25:112-117 https://doi.org/10.1089/thy.2014.0100
  210. Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid 2010;20:1253-1261 https://doi.org/10.1089/thy.2010.0189
  211. Papini E, Rago T, Gambelunghe G, Valcavi R, Bizzarri G, Vitti P, et al. Long-term efficacy of ultrasound-guided laser ablation for benign solid thyroid nodules. Results of a three-year multicenter prospective randomized trial. J Clin Endocrinol Metab 2014;99:3653-3659 https://doi.org/10.1210/jc.2014-1826
  212. Ha EJ, Baek JH, Kim KW, Pyo J, Lee JH, Baek SH, et al. Comparative efficacy of radiofrequency and laser ablation for the treatment of benign thyroid nodules: systematic review including traditional pooling and bayesian network meta-analysis. J Clin Endocrinol Metab 2015;100:1903-1911 https://doi.org/10.1210/jc.2014-4077

Cited by

  1. A Multicenter Prospective Validation Study for the Korean Thyroid Imaging Reporting and Data System in Patients with Thyroid Nodules vol.17, pp.5, 2016, https://doi.org/10.3348/kjr.2016.17.5.811
  2. The Revised 2016 Korean Thyroid Association Guidelines for Thyroid Nodules and Cancers: Differences from the 2015 American Thyroid Association Guidelines vol.31, pp.3, 2016, https://doi.org/10.3803/enm.2016.31.3.373
  3. 2016 Revised Korean Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Thyroid Cancer vol.9, pp.2, 2016, https://doi.org/10.11106/ijt.2016.9.2.59
  4. Ultrasonographic prediction of highly aggressive telomerase reverse transcriptase (TERT) promoter-mutated papillary thyroid cancer vol.57, pp.2, 2016, https://doi.org/10.1007/s12020-017-1340-3
  5. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee vol.14, pp.5, 2016, https://doi.org/10.1016/j.jacr.2017.01.046
  6. Radiofrequency ablation of low-risk small papillary thyroidcarcinoma: preliminary results for patients ineligible for surgery vol.33, pp.2, 2016, https://doi.org/10.1080/02656736.2016.1230893
  7. Ultrasound Has a Role in Predicting Tumor Invasiveness in Follicular Variant of Papillary Thyroid Carcinoma vol.29, pp.10, 2016, https://doi.org/10.1089/ct.2017;29.371-374
  8. A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment vol.27, pp.4, 2016, https://doi.org/10.1089/thy.2016.0372
  9. Ultrasound-Pathology Discordant Nodules on Core-Needle Biopsy: Malignancy Risk and Management Strategy vol.27, pp.5, 2016, https://doi.org/10.1089/thy.2016.0462
  10. Cytology-Ultrasonography Risk-Stratification Scoring System Based on Fine-Needle Aspiration Cytology and the Korean-Thyroid Imaging Reporting and Data System vol.27, pp.7, 2016, https://doi.org/10.1089/thy.2016.0603
  11. Serial Neck Ultrasonographic Evaluation of Changes in Papillary Thyroid Carcinoma During Pregnancy vol.27, pp.6, 2017, https://doi.org/10.1089/thy.2016.0618
  12. Risk Stratification of Thyroid Nodules on Ultrasonography: Current Status and Perspectives vol.27, pp.12, 2017, https://doi.org/10.1089/thy.2016.0654
  13. Role of Ultrasound in Predicting Tumor Invasiveness in Follicular Variant of Papillary Thyroid Carcinoma vol.27, pp.9, 2017, https://doi.org/10.1089/thy.2016.0677
  14. Detection of Malignancy Among Suspicious Thyroid Nodules <1 cm on Ultrasound with Various Thyroid Image Reporting and Data Systems vol.27, pp.10, 2016, https://doi.org/10.1089/thy.2017.0034
  15. Comparison of Core-Needle Biopsy and Fine-Needle Aspiration for Evaluating Thyroid Incidentalomas Detected by 18 F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: A Pr vol.27, pp.10, 2017, https://doi.org/10.1089/thy.2017.0192
  16. Validation of Three Scoring Risk-Stratification Models for Thyroid Nodules vol.27, pp.12, 2016, https://doi.org/10.1089/thy.2017.0363
  17. Multiinstitutional Analysis of Thyroid Nodule Risk Stratification Using the American College of Radiology Thyroid Imaging Reporting and Data System vol.208, pp.6, 2016, https://doi.org/10.2214/ajr.16.17613
  18. Methodology for Developing Evidence-Based Clinical Imaging Guidelines: Joint Recommendations by Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency vol.18, pp.1, 2016, https://doi.org/10.3348/kjr.2017.18.1.208
  19. Core Needle Biopsy of the Thyroid: 2016 Consensus Statement and Recommendations from Korean Society of Thyroid Radiology vol.18, pp.1, 2017, https://doi.org/10.3348/kjr.2017.18.1.217
  20. Innovative Techniques for Image-Guided Ablation of Benign Thyroid Nodules: Combined Ethanol and Radiofrequency Ablation vol.18, pp.3, 2016, https://doi.org/10.3348/kjr.2017.18.3.461
  21. Thyroid Radiofrequency Ablation: Updates on Innovative Devices and Techniques vol.18, pp.4, 2016, https://doi.org/10.3348/kjr.2017.18.4.615
  22. Current Radiological Approach in Thyroid Nodules vol.8, pp.5, 2016, https://doi.org/10.4236/jct.2017.85037
  23. Preoperative differentiation between noninvasive follicular thyroid neoplasm with papillary‐like nuclear features (NIFTP) and non‐NIFTP vol.86, pp.3, 2016, https://doi.org/10.1111/cen.13263
  24. Ultrasonographic imaging of papillary thyroid carcinoma variants vol.36, pp.2, 2016, https://doi.org/10.14366/usg.16048
  25. Ultrasound examination of thyroid nodules vol.44, pp.3, 2016, https://doi.org/10.3179/jjmu.jjmu.r.102
  26. Features of papillary thyroid microcarcinoma associated with lateral cervical lymph node metastasis vol.86, pp.6, 2017, https://doi.org/10.1111/cen.13322
  27. Likelihood of malignancy in thyroid nodules according to a proposed Thyroid Imaging Reporting and Data System (TI-RADS) classification merging suspicious and benign ultrasound features vol.61, pp.3, 2016, https://doi.org/10.1590/2359-3997000000262
  28. Two themes in thyroid cancer: artful diagnosis and shortened lives vol.61, pp.3, 2016, https://doi.org/10.1590/2359-3997000000275
  29. The Role of Core Needle Biopsy for Thyroid Nodules with Initially Indeterminate Results on Previous Fine-Needle Aspiration: A Systematic Review and Meta-Analysis vol.38, pp.7, 2016, https://doi.org/10.3174/ajnr.a5182
  30. Metastatic renal cell carcinoma in the thyroid gland: ultrasonographic features and the diagnostic role of core needle biopsy vol.36, pp.3, 2017, https://doi.org/10.14366/usg.16037
  31. Large (≥3cm) thyroid nodules with benign cytology: Can Thyroid Imaging Reporting and Data System (TIRADS) help predict false-negative cytology? vol.12, pp.10, 2016, https://doi.org/10.1371/journal.pone.0186242
  32. Predictive Factors for Occult Contralateral Papillary Thyroid Carcinoma in Patients with Ipsilateral Multifocality on Frozen Biopsy vol.60, pp.10, 2017, https://doi.org/10.3342/kjorl-hns.2017.00248
  33. Evaluation and Management of Indeterminate Thyroid Nodules : The Revolution of Risk Stratification Beyond Cytological Diagnosis vol.24, pp.5, 2016, https://doi.org/10.1177/1073274817729231
  34. Clinical features of recently diagnosed papillary thyroid carcinoma in elderly patients aged 65 and older based on 10 years of sonographic experience at a single institution in Korea vol.36, pp.4, 2016, https://doi.org/10.14366/usg.17010
  35. Korean Thyroid Imaging Reporting and Data System features of follicular thyroid adenoma and carcinoma: a single-center study vol.36, pp.4, 2016, https://doi.org/10.14366/usg.17020
  36. Updated guidelines on the preoperative staging of thyroid cancer vol.36, pp.4, 2016, https://doi.org/10.14366/usg.17023
  37. Thyroid disease in children and adolescents vol.36, pp.4, 2016, https://doi.org/10.14366/usg.17031
  38. The author's reply “Ultrasonography and cytology as predictors of noninvasive follicular thyroid (NIFTP) neoplasm with papillary‐like nuclear features: importance of the differential diagn vol.87, pp.5, 2016, https://doi.org/10.1111/cen.13432
  39. Occupational radiation exposure and its health effects on interventional medical workers: study protocol for a prospective cohort study vol.7, pp.12, 2017, https://doi.org/10.1136/bmjopen-2017-018333
  40. Ultrasound and clinicopathological features of papillary thyroid carcinomas with BRAF and TERT promoter mutations vol.8, pp.65, 2016, https://doi.org/10.18632/oncotarget.22430
  41. Intraobserver and Interobserver Variability in Ultrasound Measurements of Thyroid Nodules : Variability in Ultrasound Measurements of Thyroid Nodules vol.37, pp.1, 2016, https://doi.org/10.1002/jum.14316
  42. Three‐Dimensional Shear Wave Elastography for Differentiating Benign From Malignant Thyroid Nodules vol.37, pp.7, 2016, https://doi.org/10.1002/jum.14531
  43. Comparison of the Diagnostic Efficacy of Ultrasound-Guided Core Needle Biopsy With 18- Versus 20-Gauge Needles for Thyroid Nodules : Diagnostic Efficacy of Core Needle Biopsy for Thyroid Nodules vol.37, pp.11, 2016, https://doi.org/10.1002/jum.14614
  44. Complications following ultrasound-guided core needle biopsy of thyroid nodules: a systematic review and meta-analysis vol.28, pp.9, 2018, https://doi.org/10.1007/s00330-018-5367-5
  45. The role of core needle biopsy in the diagnosis of initially detected thyroid nodules: a systematic review and meta-analysis vol.28, pp.11, 2018, https://doi.org/10.1007/s00330-018-5494-z
  46. Distinguishing benign from malignant thyroid nodules using thyroid ultrasonography: utility of adding superb microvascular imaging and elastography vol.123, pp.4, 2016, https://doi.org/10.1007/s11547-017-0839-2
  47. Sonographic measurement of thyroid nodule changes after microwave ablation: relationship between multiple parameters vol.34, pp.5, 2016, https://doi.org/10.1080/02656736.2017.1418537
  48. Radiofrequency ablation of primary thyroid carcinoma: efficacy according to the types of thyroid carcinoma vol.34, pp.5, 2016, https://doi.org/10.1080/02656736.2018.1427288
  49. Using the American College of Radiology Thyroid Imaging Reporting and Data System Will Decrease the Number of Thyroid Nodule Biopsies While Improving Diagnostic Accuracy vol.30, pp.5, 2016, https://doi.org/10.1089/ct.2018;30.206-209
  50. Benign Nodules Show Little Change in Sonographic Appearance over Time vol.30, pp.10, 2018, https://doi.org/10.1089/ct.2018;30.476-479
  51. Preoperative Clinical and Sonographic Predictors for Lateral Cervical Lymph Node Metastases in Sporadic Medullary Thyroid Carcinoma vol.28, pp.3, 2016, https://doi.org/10.1089/thy.2017.0514
  52. Effect of Tumor Size on Risk of Metastatic Disease and Survival for Thyroid Cancer: Implications for Biopsy Guidelines vol.28, pp.3, 2016, https://doi.org/10.1089/thy.2017.0526
  53. Thyroid Incidentalomas Detected on 18 F-Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography: Malignant Risk Stratification and Management Plan vol.28, pp.6, 2016, https://doi.org/10.1089/thy.2017.0560
  54. Deep Learning-Based Computer-Aided Diagnosis System for Localization and Diagnosis of Metastatic Lymph Nodes on Ultrasound: A Pilot Study vol.28, pp.10, 2016, https://doi.org/10.1089/thy.2018.0082
  55. Diagnostic Performance of Ultrasound-Based Risk-Stratification Systems for Thyroid Nodules: Comparison of the 2015 American Thyroid Association Guidelines with the 2016 Korean Thyroid Association/Kore vol.28, pp.11, 2018, https://doi.org/10.1089/thy.2018.0094
  56. Persistent/Recurrent Differentiated Thyroid Cancer: Clinical and Radiological Characteristics of Persistent Disease and Clinical Recurrence Based on Computed Tomography Analysis vol.28, pp.11, 2016, https://doi.org/10.1089/thy.2018.0151
  57. Sonographically Estimated Risks of Malignancy for Thyroid Nodules Computed with Five Standard Classification Systems: Changes over Time and Their Relation to Malignancy vol.28, pp.9, 2016, https://doi.org/10.1089/thy.2018.0178
  58. A Single-Center Retrospective Validation Study of the American College of Radiology Thyroid Imaging Reporting and Data System vol.34, pp.2, 2018, https://doi.org/10.1097/ruq.0000000000000350
  59. Thyroid Imaging Reporting and Data System (TI-RADS): A User’s Guide vol.287, pp.1, 2018, https://doi.org/10.1148/radiol.2017171240
  60. US Fine-Needle Aspiration Biopsy for Thyroid Malignancy: Diagnostic Performance of Seven Society Guidelines Applied to 2000 Thyroid Nodules vol.287, pp.3, 2016, https://doi.org/10.1148/radiol.2018171074
  61. Reduction in Thyroid Nodule Biopsies and Improved Accuracy with American College of Radiology Thyroid Imaging Reporting and Data System vol.287, pp.1, 2016, https://doi.org/10.1148/radiol.2018172572
  62. Malignancy Risk and Related Factors of Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance in Thyroid Fine Needle Aspiration vol.2018, pp.None, 2016, https://doi.org/10.1155/2018/4521984
  63. Efficacy of Shear-Wave Elastography for Detecting Postoperative Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma vol.2018, pp.None, 2016, https://doi.org/10.1155/2018/9382649
  64. Prospective Validation of ATA and ETA Sonographic Pattern Risk of Thyroid Nodules Selected for FNAC vol.103, pp.6, 2018, https://doi.org/10.1210/jc.2018-00274
  65. Thy 3F and 3a malignancy rate, a multisite regional retrospective case series vol.100, pp.7, 2016, https://doi.org/10.1308/rcsann.2018.0103
  66. Comparison of Performance Characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association Guidelines vol.210, pp.5, 2018, https://doi.org/10.2214/ajr.17.18822
  67. Ultrasonographic Interval Changes in Solid Thyroid Nodules after Ultrasonography-Guided Fine-Needle Aspiration vol.19, pp.1, 2016, https://doi.org/10.3348/kjr.2018.19.1.158
  68. Quality of Life in Patients Treated with Percutaneous Laser Ablation for Non-Functioning Benign Thyroid Nodules: A Prospective Single-Center Study vol.19, pp.1, 2018, https://doi.org/10.3348/kjr.2018.19.1.175
  69. Impact of Nodule Size on Malignancy Risk Differs according to the Ultrasonography Pattern of Thyroid Nodules vol.19, pp.3, 2018, https://doi.org/10.3348/kjr.2018.19.3.534
  70. Primary Imaging Test and Appropriate Biopsy Methods for Thyroid Nodules: Guidelines by Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.623
  71. 2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.632
  72. Evaluation of Modified Core-Needle Biopsy in the Diagnosis of Thyroid Nodules vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.656
  73. Computer-Aided Diagnosis of Thyroid Nodules via Ultrasonography: Initial Clinical Experience vol.19, pp.4, 2016, https://doi.org/10.3348/kjr.2018.19.4.665
  74. Columnar Cell Variant of Papillary Thyroid Carcinoma: Ultrasonographic and Clinical Differentiation between the Indolent and Aggressive Types vol.19, pp.5, 2016, https://doi.org/10.3348/kjr.2018.19.5.1000
  75. Complementary Role of Elastography Using Carotid Artery Pulsation in the Ultrasonographic Assessment of Thyroid Nodules: A Prospective Study vol.19, pp.5, 2018, https://doi.org/10.3348/kjr.2018.19.5.992
  76. Ultrasonographic Features of Papillary Thyroid Carcinomas According to Their Subtypes vol.9, pp.None, 2016, https://doi.org/10.3389/fendo.2018.00223
  77. Hyperintense Thyroid Incidentaloma on Time of Flight Magnetic Resonance Angiography vol.9, pp.None, 2018, https://doi.org/10.3389/fendo.2018.00417
  78. Calcification Patterns in Papillary Thyroid Carcinoma are Associated with Changes in Thyroid Hormones and Coronary Artery Calcification vol.7, pp.8, 2018, https://doi.org/10.3390/jcm7080183
  79. A Comparison of Ultrasound-Guided Fine Needle Aspiration versus Core Needle Biopsy for Thyroid Nodules: Pain, Tolerability, and Complications vol.33, pp.1, 2016, https://doi.org/10.3803/enm.2018.33.1.114
  80. Value of ultrasonography in the diagnosis of primary hepatic carcinoma and thyroid carcinoma vol.16, pp.4, 2016, https://doi.org/10.3892/ol.2018.9272
  81. Assessment of Malignancy Risk in Thyroid Nodules Using a Practical Ultrasound Predictor Model: “Alpha Score” vol.8, pp.4, 2016, https://doi.org/10.4236/ojrad.2018.84022
  82. Prevention of total thyroidectomy in noninvasive follicular thyroid neoplasm with papillary‐like nuclear features (NIFTP) based on combined interpretation of ultrasonographic and cytopathologic vol.88, pp.1, 2016, https://doi.org/10.1111/cen.13473
  83. Indeterminate Thyroid Nodules: A Pragmatic Approach vol.7, pp.1, 2016, https://doi.org/10.1159/000484600
  84. Interobserver agreement of various thyroid imaging reporting and data systems vol.7, pp.1, 2016, https://doi.org/10.1530/ec-17-0336
  85. Analysis of postoperative ultrasonography surveillance after total thyroidectomy in patients with papillary thyroid carcinoma: a multicenter study vol.59, pp.2, 2016, https://doi.org/10.1177/0284185117700448
  86. Asymptomatic intrathyroidal pyriform sinus fistula mimicking thyroid cancer : A case report and literature review vol.97, pp.16, 2018, https://doi.org/10.1097/md.0000000000010488
  87. SONOGRAPHIC FEATURES OF MULTIFOCAL PAPILLARY THYROID CARCINOMAS vol.24, pp.4, 2016, https://doi.org/10.4158/ep-2017-0205
  88. Thyroid nodules with discordant results of ultrasonographic and fine-needle aspiration findings vol.61, pp.4, 2018, https://doi.org/10.5124/jkma.2018.61.4.225
  89. Improved Quality of Thyroid Ultrasound Reports After Implementation of the ACR Thyroid Imaging Reporting and Data System Nodule Lexicon and Risk Stratification System vol.15, pp.5, 2016, https://doi.org/10.1016/j.jacr.2018.01.024
  90. Prevalence of BRAF V600E Mutation in Follicular Variant of Papillary Thyroid Carcinoma and Non-Invasive Follicular Tumor with Papillary-Like Nuclear Features (NIFTP) in a BRAF vol.33, pp.27, 2016, https://doi.org/10.3346/jkms.2018.33.e75
  91. Role of core needle biopsy as a first-line diagnostic tool for thyroid nodules: a retrospective cohort study vol.37, pp.3, 2016, https://doi.org/10.14366/usg.17041
  92. Medullary thyroid carcinoma: Application of Thyroid Imaging Reporting and Data System (TI-RADS) Classification vol.61, pp.2, 2018, https://doi.org/10.1007/s12020-018-1594-4
  93. Core needle biopsy of thyroid nodules: outcomes and safety from a large single-center single-operator study vol.59, pp.8, 2016, https://doi.org/10.1177/0284185117741916
  94. Sonographic Presentation of Metastases to the Thyroid Gland: A Case Series vol.2, pp.8, 2018, https://doi.org/10.1210/js.2018-00124
  95. Web‐based thyroid imaging reporting and data system: Malignancy risk of atypia of undetermined significance or follicular lesion of undetermined significance thyroid nodules calculated by a comb vol.40, pp.9, 2016, https://doi.org/10.1002/hed.25173
  96. Value of CT added to ultrasonography for the diagnosis of lymph node metastasis in patients with thyroid cancer vol.40, pp.10, 2016, https://doi.org/10.1002/hed.25202
  97. Thyroid ultrasonography reporting: consensus of Italian Thyroid Association (AIT), Italian Society of Endocrinology (SIE), Italian Society of Ultrasonography in Medicine and Biology (SIUMB) and Ultras vol.41, pp.12, 2016, https://doi.org/10.1007/s40618-018-0935-8
  98. Modified Bethesda system informing cytopathologic adequacy improves malignancy risk stratification in nodules considered benign or atypia(follicular lesion) of undetermined significance vol.8, pp.None, 2016, https://doi.org/10.1038/s41598-018-31955-9
  99. Active Surveillance of Low-Risk Papillary Thyroid Microcarcinoma: A Multi-Center Cohort Study in Korea vol.28, pp.12, 2016, https://doi.org/10.1089/thy.2018.0263
  100. Reply to “Nonclassifiable Nodules in Korean Society of Thyroid Radiology TIRADS and Size Threshold of Fine-Needle Aspiration” vol.211, pp.6, 2016, https://doi.org/10.2214/ajr.18.20303
  101. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules vol.98, pp.15, 2016, https://doi.org/10.1097/md.0000000000015133
  102. Diagnostic accuracy of different computer-aided diagnostic systems for malignant and benign thyroid nodules classification in ultrasound images : A systematic review and meta-analysis protocol vol.98, pp.29, 2016, https://doi.org/10.1097/md.0000000000016227
  103. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules <10 mm in the maximum diameter: does size matter? vol.11, pp.None, 2016, https://doi.org/10.2147/cmar.s189358
  104. US-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: Efficacy and Safety in a Large Population vol.20, pp.12, 2016, https://doi.org/10.3348/kjr.2019.0192
  105. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  106. Management strategy for nerve damage during radiofrequency ablation of thyroid nodules vol.36, pp.1, 2016, https://doi.org/10.1080/02656736.2018.1554826
  107. Assessment of the American College of Radiology Thyroid Imaging Reporting and Data System for Thyroid Nodule Malignancy Risk Stratification in a Pediatric Population vol.212, pp.1, 2019, https://doi.org/10.2214/ajr.18.20099
  108. Reply to “Multiple Observers Are Needed for Guidelines Classification Comparison” vol.212, pp.1, 2016, https://doi.org/10.2214/ajr.18.20506
  109. Technical Report: A Cost-Effective, Easily Available Tofu Model for Training Residents in Ultrasound-Guided Fine Needle Thyroid Nodule Targeting Punctures vol.20, pp.1, 2016, https://doi.org/10.3348/kjr.2017.0772
  110. The Role of Core Needle Biopsy for the Evaluation of Thyroid Nodules with Suspicious Ultrasound Features vol.20, pp.1, 2016, https://doi.org/10.3348/kjr.2018.0101
  111. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” TIRADS vol.104, pp.1, 2019, https://doi.org/10.1210/jc.2018-01674
  112. Ultrasound Microvascular Blood Flow Evaluation: A New Tool for the Management of Thyroid Nodule? vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/7874890
  113. Ultrasonography, Cytology, and Thyroglobulin Measurement Results of Cervical Nodal Metastasis in Patients With Unclear Papillary Thyroid Carcinoma vol.10, pp.None, 2016, https://doi.org/10.3389/fendo.2019.00395
  114. Comparison of Different Risk-Stratification Systems for the Diagnosis of Benign and Malignant Thyroid Nodules vol.9, pp.None, 2016, https://doi.org/10.3389/fonc.2019.00378
  115. A computer-aided diagnosis system for the assessment and characterization of low-to-high suspicion thyroid nodules on ultrasound vol.124, pp.2, 2016, https://doi.org/10.1007/s11547-018-0942-z
  116. ACR TIRADS is Best to Decrease the Number of Thyroid Biopsies and Maintain Accuracy vol.31, pp.3, 2016, https://doi.org/10.1089/ct.2019;31.113-116
  117. Laser and radiofrequency ablations for benign and malignant thyroid tumors vol.36, pp.2, 2016, https://doi.org/10.1080/02656736.2019.1622795
  118. Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound vol.41, pp.4, 2016, https://doi.org/10.1002/hed.25415
  119. False negative rate of fine‐needle aspiration in thyroid nodules: impact of nodule size and ultrasound pattern vol.41, pp.4, 2016, https://doi.org/10.1002/hed.25530
  120. Computer-aided diagnosis system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators vol.29, pp.4, 2016, https://doi.org/10.1007/s00330-018-5772-9
  121. Comparison among TIRADS (ACR TI-RADS and KWAK- TI-RADS) and 2015 ATA Guidelines in the diagnostic efficiency of thyroid nodules vol.64, pp.1, 2019, https://doi.org/10.1007/s12020-019-01843-x
  122. Thyroid Sonography: Nuclear Medicine Point of View vol.7, pp.4, 2016, https://doi.org/10.1007/s40134-019-0319-7
  123. Thyroid Sonography: Nuclear Medicine Point of View vol.7, pp.4, 2016, https://doi.org/10.1007/s40134-019-0319-7
  124. Comparison between radioiodine therapy and single‐session radiofrequency ablation of autonomously functioning thyroid nodules: A retrospective study vol.90, pp.4, 2019, https://doi.org/10.1111/cen.13938
  125. Diagnostic Performance of Practice Guidelines for Thyroid Nodules: Thyroid Nodule Size versus Biopsy Rates vol.291, pp.1, 2016, https://doi.org/10.1148/radiol.2019181723
  126. Thyroid Nodules by US: More Imaging and/or More Intervention? vol.291, pp.1, 2019, https://doi.org/10.1148/radiol.2019190189
  127. Ethanol ablation as a treatment strategy for benign cystic thyroid nodules: a comparison of the ethanol retention and aspiration techniques vol.38, pp.2, 2016, https://doi.org/10.14366/usg.18033
  128. Ethanol Ablation of the Thyroid Nodules: 2018 Consensus Statement by the Korean Society of Thyroid Radiology vol.20, pp.4, 2019, https://doi.org/10.3348/kjr.2018.0696
  129. CYFRA 21-1 in Lymph Node Fine Needle Aspiration Washout Improves Diagnostic Accuracy for Metastatic Lymph Nodes of Differentiated Thyroid Cancer vol.11, pp.4, 2016, https://doi.org/10.3390/cancers11040487
  130. Diagnostic value of computed tomography combined with ultrasonography in detecting cervical recurrence in patients with thyroid cancer vol.41, pp.5, 2016, https://doi.org/10.1002/hed.25538
  131. Validation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination vol.64, pp.2, 2016, https://doi.org/10.1007/s12020-018-1817-8
  132. Successful radiofrequency ablation strategies for benign thyroid nodules vol.64, pp.2, 2019, https://doi.org/10.1007/s12020-018-1829-4
  133. Tumor Volume Doubling Time in Active Surveillance of Papillary Thyroid Carcinoma vol.29, pp.5, 2019, https://doi.org/10.1089/thy.2018.0609
  134. Effect of chronic lymphocytic thyroiditis on the efficacy and safety of ultrasound‐guided radiofrequency ablation for papillary thyroid microcarcinoma vol.8, pp.12, 2016, https://doi.org/10.1002/cam4.2406
  135. Echogenic foci in thyroid nodules: diagnostic performance with combination of TIRADS and echogenic foci vol.19, pp.None, 2016, https://doi.org/10.1186/s12880-019-0328-2
  136. Ultrasound guidelines for pediatric thyroid nodules: proceeding with caution vol.49, pp.7, 2016, https://doi.org/10.1007/s00247-019-04391-8
  137. Risk of Malignancy According to the Sub-classification of Atypia of Undetermined Significance and Suspicious Follicular Neoplasm Categories in Thyroid Core Needle Biopsies vol.30, pp.2, 2016, https://doi.org/10.1007/s12022-019-9577-4
  138. Degenerating Thyroid Nodules: Ultrasound Diagnosis, Clinical Significance, and Management vol.20, pp.6, 2016, https://doi.org/10.3348/kjr.2018.0599
  139. Digital Medicine in Thyroidology: A New Era of Managing Thyroid Disease vol.34, pp.2, 2016, https://doi.org/10.3803/enm.2019.34.2.124
  140. Validation of web‐based thyroid imaging reporting and data system in atypia or follicular lesion of undetermined significance thyroid nodules vol.41, pp.7, 2016, https://doi.org/10.1002/hed.25677
  141. TIRADS Interobserver Variability Among Indeterminate Thyroid Nodules: A Single‐Institution Study vol.38, pp.7, 2019, https://doi.org/10.1002/jum.14870
  142. Comprehensive analysis for diagnosis of preoperative non-invasive follicular thyroid neoplasm with papillary-like nuclear features vol.14, pp.7, 2016, https://doi.org/10.1371/journal.pone.0218046
  143. Diagnostic Performance Evaluation of a Computer-Assisted Imaging Analysis System for Ultrasound Risk Stratification of Thyroid Nodules vol.213, pp.1, 2019, https://doi.org/10.2214/ajr.18.20740
  144. Is thyroid nodule location associated with malignancy risk? vol.38, pp.3, 2016, https://doi.org/10.14366/usg.18050
  145. Prediction of follicular thyroid carcinoma associated with distant metastasis in the preoperative and postoperative model vol.41, pp.8, 2016, https://doi.org/10.1002/hed.25721
  146. Clinical practice guidelines on ultrasound-guided fine needle aspiration biopsy of thyroid nodules: a critical appraisal using AGREE II vol.65, pp.2, 2016, https://doi.org/10.1007/s12020-019-01898-w
  147. A multicentre validation study for the EU‐TIRADS using histological diagnosis as a gold standard vol.91, pp.2, 2016, https://doi.org/10.1111/cen.13997
  148. Similarities and Differences Between Thyroid Imaging Reporting and Data Systems vol.213, pp.2, 2016, https://doi.org/10.2214/ajr.18.20510
  149. Diagnostic Performance of Ultrasound Patterns by K-TIRADS and 2015 ATA Guidelines in Risk Stratification of Thyroid Nodules and Follicular Lesions of Undetermined Significance vol.213, pp.2, 2016, https://doi.org/10.2214/ajr.18.20961
  150. Answer to the readers of “Successful radiofrequency ablation strategies for benign thyroid nodules” vol.65, pp.3, 2019, https://doi.org/10.1007/s12020-019-02032-6
  151. TI-RADS und andere sonografische Klassifikationssystemefür Schilddrüsenknoten vol.42, pp.3, 2019, https://doi.org/10.1055/a-0871-8170
  152. Fine needle aspiration biopsy indications for thyroid nodules: compare a point-based risk stratification system with a pattern-based risk stratification system vol.29, pp.9, 2016, https://doi.org/10.1007/s00330-018-5992-z
  153. Diagnostic performance of CT in detection of metastatic cervical lymph nodes in patients with thyroid cancer: a systematic review and meta-analysis vol.29, pp.9, 2016, https://doi.org/10.1007/s00330-019-06036-8
  154. Application of whole-lesion intravoxel incoherent motion analysis using iZOOM DWI to differentiate malignant from benign thyroid nodules vol.60, pp.9, 2016, https://doi.org/10.1177/0284185118813599
  155. Clinicopathological and Radiological Study of Thyroid Swelling vol.71, pp.suppl1, 2019, https://doi.org/10.1007/s12070-019-01616-y
  156. Ultrasound-Guided Core Needle Biopsy Techniques for Intermediate or Low Suspicion Thyroid Nodules: Which Method is Effective for Diagnosis? vol.20, pp.10, 2016, https://doi.org/10.3348/kjr.2018.0841
  157. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT vol.29, pp.10, 2016, https://doi.org/10.1007/s00330-019-06098-8
  158. Determining Whether Tumor Volume Doubling Time and Growth Rate Can Predict Malignancy After Delayed Diagnostic Surgery of Follicular Neoplasm vol.29, pp.10, 2019, https://doi.org/10.1089/thy.2019.0017
  159. ACR TI-RADS: Pitfalls, Solutions, and Future Directions vol.39, pp.7, 2016, https://doi.org/10.1148/rg.2019190026
  160. The Diagnostic Efficiency of Ultrasound Computer-Aided Diagnosis in Differentiating Thyroid Nodules: A Systematic Review and Narrative Synthesis vol.11, pp.11, 2019, https://doi.org/10.3390/cancers11111759
  161. Computed Tomography for Detecting Cervical Lymph Node Metastasis in Patients Who Have Papillary Thyroid Microcarcinoma with Tumor Characteristics Appropriate for Active Surveillance vol.29, pp.11, 2019, https://doi.org/10.1089/thy.2019.0100
  162. Value of Computer Software for Assisting Sonographers in the Diagnosis of Thyroid Imaging Reporting and Data System Grade 3 and 4 Thyroid Space‐Occupying Lesions vol.38, pp.12, 2016, https://doi.org/10.1002/jum.15065
  163. Diagnosis of Thyroid Nodules: Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists vol.9, pp.1, 2016, https://doi.org/10.1038/s41598-019-54434-1
  164. Evaluation of Five Ultrasound Risk-Stratification Systems for Choosing Thyroid Nodules for Fine-Needle Aspiration vol.31, pp.12, 2019, https://doi.org/10.1089/ct.2019;31.520-523
  165. The Incidence and Clinicopathologic Characteristics of Patients Who Had False-Positive Fine-Needle Aspiration Results for Papillary Thyroid Cancer vol.19, pp.4, 2016, https://doi.org/10.16956/jes.2019.19.4.136
  166. Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning-Based Radiomics vol.213, pp.6, 2016, https://doi.org/10.2214/ajr.19.21626
  167. Cervical Bronchogenic Cysts Mimicking Papillary Thyroid Carcinoma on Ultrasound vol.62, pp.12, 2016, https://doi.org/10.3342/kjorl-hns.2019.00080
  168. Revisiting Rupture of Benign Thyroid Nodules after Radiofrequency Ablation: Various Types and Imaging Features vol.34, pp.4, 2016, https://doi.org/10.3803/enm.2019.34.4.415
  169. Schwannoma of the thyroid bed : A case report and review of the literature vol.99, pp.5, 2020, https://doi.org/10.1097/md.0000000000018814
  170. The role of histogram analysis of grayscale sonograms to differentiate thyroid nodules identified by 18 F-FDG PET-CT vol.99, pp.48, 2020, https://doi.org/10.1097/md.0000000000023252
  171. Taller-Than-Wide Shape: A New Definition Improves the Specificity of TIRADS Systems vol.9, pp.2, 2016, https://doi.org/10.1159/000504219
  172. Evaluation of the Diagnostic Performance of EU-TIRADS in Discriminating Benign from Malignant Thyroid Nodules: A Prospective Study in One Referral Center vol.9, pp.6, 2020, https://doi.org/10.1159/000507575
  173. Visual Interpretability in Computer-Assisted Diagnosis of Thyroid Nodules Using Ultrasound Images vol.26, pp.None, 2020, https://doi.org/10.12659/msm.927007
  174. Concordance of Three International Guidelines for Thyroid Nodules Classified by Ultrasonography and Diagnostic Performance of Biopsy Criteria vol.21, pp.1, 2016, https://doi.org/10.3348/kjr.2019.0215
  175. Thyroid Nodules with Isolated Macrocalcifications: Malignancy Risk of Isolated Macrocalcifications and Postoperative Risk Stratification of Malignant Tumors Manifesting as Isolated Macrocalcifications vol.21, pp.None, 2020, https://doi.org/10.3348/kjr.2019.0523
  176. Long-Term Follow-Up Ultrasonographic Findings of Intrathyroidal Thymus in Children vol.21, pp.11, 2016, https://doi.org/10.3348/kjr.2019.0973
  177. Ultrasonographic Features, Nodule Size, Capsular Invasion, and Lymph Node Metastasis of Solitary Papillary Carcinoma of Thyroid Isthmus vol.10, pp.None, 2016, https://doi.org/10.3389/fonc.2020.558363
  178. Comparison of Multimodal Ultrasound Imaging with Conventional Ultrasound Risk Stratification Systems in Presurgical Risk Stratification of Thyroid Nodules vol.24, pp.6, 2020, https://doi.org/10.4103/ijem.ijem_675_20
  179. Effect of the location and size of thyroid nodules on the diagnostic performance of ultrasound elastography: A retrospective analysis vol.75, pp.None, 2016, https://doi.org/10.6061/clinics/2020/e1720
  180. CT-based quantitative evaluation of the efficacy after radiofrequency ablation in patients with benign thyroid nodules vol.37, pp.1, 2020, https://doi.org/10.1080/02656736.2020.1779358
  181. Comparison of ultrasonography and CT for preoperative nodal assessment of patients with papillary thyroid cancer: diagnostic performance according to primary tumor size vol.61, pp.1, 2016, https://doi.org/10.1177/0284185119847677
  182. Nodular Thyroid Disease in the Era of Precision Medicine vol.10, pp.None, 2016, https://doi.org/10.3389/fendo.2019.00907
  183. Comparison of Ultrasonography Features and K-TIRADS for Isthmic and Lobar Papillary Thyroid Carcinomas: A Single-Center Study vol.11, pp.None, 2016, https://doi.org/10.3389/fendo.2020.00328
  184. The Added Value of Operator's Judgement in Thyroid Nodule Ultrasound Classification Arising From Histologically Based Comparison of Different Risk Stratification Systems vol.11, pp.None, 2020, https://doi.org/10.3389/fendo.2020.00434
  185. American College of Radiology Thyroid Imaging Reporting and Data System standardises reporting of thyroid ultrasounds vol.24, pp.1, 2016, https://doi.org/10.4102/sajr.v24i1.1804
  186. Inter- and Intraobserver Agreement in the Assessment of Thyroid Nodule Ultrasound Features and Classification Systems: A Blinded Multicenter Study vol.30, pp.2, 2016, https://doi.org/10.1089/thy.2019.0360
  187. British Thyroid Association 2014 classification ultrasound scoring of thyroid nodules in predicting malignancy: Diagnostic performance and inter-observer agreement vol.28, pp.1, 2016, https://doi.org/10.1177/1742271x19865001
  188. Ultrasound malignancy risk stratification of thyroid nodules based on the degree of hypoechogenicity and echotexture vol.30, pp.3, 2020, https://doi.org/10.1007/s00330-019-06527-8
  189. Association of Screening by Thyroid Ultrasonography with Mortality in Thyroid Cancer: A Case-Control Study Using Data from Two National Surveys vol.30, pp.3, 2016, https://doi.org/10.1089/thy.2019.0460
  190. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Thyroid Disease in Adults : vol.271, pp.3, 2016, https://doi.org/10.1097/sla.0000000000003580
  191. The Thyroid Nodule Conundrum: Evaluate or Leave it Alone? vol.105, pp.3, 2016, https://doi.org/10.1210/clinem/dgz124
  192. TI-RADS und andere sonografische Klassifikationssysteme für Schilddrüsenknoten vol.13, pp.1, 2016, https://doi.org/10.1055/a-1008-1435
  193. Ultrasound Classification of Thyroid Nodules: A Systematic Review vol.12, pp.3, 2016, https://doi.org/10.7759/cureus.7239
  194. Validità dei sistemi di classificazione ecografica nell’identificare i noduli tiroidei da non sottoporre all’agoaspirato vol.21, pp.2, 2016, https://doi.org/10.1007/s40619-020-00681-8
  195. Radiomics Study of Thyroid Ultrasound for Predicting BRAF Mutation in Papillary Thyroid Carcinoma: Preliminary Results vol.41, pp.4, 2016, https://doi.org/10.3174/ajnr.a6505
  196. Differences in surgical resection rate and risk of malignancy in thyroid cytopathology practice between Western and Asian countries: A systematic review and meta‐analysis vol.128, pp.4, 2020, https://doi.org/10.1002/cncy.22228
  197. Can ultrasound systems for risk stratification of thyroid nodules identify follicular carcinoma? vol.128, pp.4, 2016, https://doi.org/10.1002/cncy.22235
  198. Quantitative Framework for Risk Stratification of Thyroid Nodules With Ultrasound: A Step Toward Automated Triage of Thyroid Cancer vol.214, pp.4, 2020, https://doi.org/10.2214/ajr.19.21350
  199. CT features of thyroid nodules with isolated macrocalcifications detected by ultrasonography vol.39, pp.2, 2016, https://doi.org/10.14366/usg.19045
  200. Distribution and malignancy risk of six categories of the pathology reporting system for thyroid core-needle biopsy in 1,216 consecutive thyroid nodules vol.39, pp.2, 2020, https://doi.org/10.14366/usg.19056
  201. Ultrasound‐guided fine‐needle aspiration or core needle biopsy for diagnosing follicular thyroid carcinoma? vol.92, pp.5, 2016, https://doi.org/10.1111/cen.14167
  202. Reproducibility of Ablated Volume Measurement Is Higher with Contrast-Enhanced Ultrasound than with B-Mode Ultrasound after Benign Thyroid Nodule Radiofrequency Ablation—A Preliminary Study vol.9, pp.5, 2020, https://doi.org/10.3390/jcm9051504
  203. COMPARISON OF DIAGNOSTIC PERFORMANCE BETWEEN THE AMERICAN COLLEGE OF RADIOLOGY THYROID IMAGING REPORTING AND DATA SYSTEM AND AMERICAN THYROID ASSOCIATION GUIDELINES: A SYSTEMATIC REVIEW vol.26, pp.5, 2016, https://doi.org/10.4158/ep-2019-0237
  204. ABLATION OF CYSTIC THYROID NODULES WITH N-BUTYL CYANOACRYLATE: A PRELIMINARY STUDY vol.26, pp.5, 2016, https://doi.org/10.4158/ep-2019-0497
  205. The relationship of thyroid nodule size on malignancy risk according to histological type of thyroid cancer vol.61, pp.5, 2016, https://doi.org/10.1177/0284185119875642
  206. Performance of Five Ultrasound Risk Stratification Systems in Selecting Thyroid Nodules for FNA vol.105, pp.5, 2016, https://doi.org/10.1210/clinem/dgz170
  207. Interreader Concordance of the TI-RADS: Impact of Radiologist Experience vol.214, pp.5, 2016, https://doi.org/10.2214/ajr.19.21913
  208. Thyroid Radiology Practice: Diagnosis and Interventional Treatment of Patients with Thyroid Nodules vol.81, pp.3, 2016, https://doi.org/10.3348/jksr.2020.81.3.530
  209. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training vol.30, pp.6, 2016, https://doi.org/10.1007/s00330-019-06652-4
  210. False-Positive Malignant Diagnosis of Nodule Mimicking Lesions by Computer-Aided Thyroid Nodule Analysis in Clinical Ultrasonography Practice vol.10, pp.6, 2016, https://doi.org/10.3390/diagnostics10060378
  211. Computer-aided diagnostic system for thyroid nodule sonographic evaluation outperforms the specificity of less experienced examiners vol.23, pp.2, 2020, https://doi.org/10.1007/s40477-020-00453-y
  212. AIBx, Artificial Intelligence Model to Risk Stratify Thyroid Nodules vol.30, pp.6, 2016, https://doi.org/10.1089/thy.2019.0752
  213. Risk factor for contralateral occult carcinoma in patients with unilateral papillary thyroid carcinoma vol.16, pp.1, 2016, https://doi.org/10.14216/kjco.20006
  214. Pattern-based vs. score-based guidelines using ultrasound features have different strengths in risk stratification of thyroid nodules vol.30, pp.7, 2016, https://doi.org/10.1007/s00330-020-06722-y
  215. Diagnostic performance of MRI to detect metastatic cervical lymph nodes in patients with thyroid cancer: a systematic review and meta-analysis vol.75, pp.7, 2020, https://doi.org/10.1016/j.crad.2020.03.025
  216. Ultrasound systems for risk stratification of thyroid nodules prompt inappropriate biopsy in autonomously functioning thyroid nodules vol.93, pp.1, 2016, https://doi.org/10.1111/cen.14204
  217. Diagnostic Value of Six Thyroid Imaging Reporting and Data Systems (TIRADS) in Cytologically Equivocal Thyroid Nodules vol.9, pp.7, 2016, https://doi.org/10.3390/jcm9072281
  218. Diagnostic Performance of Neck Ultrasonography in the Preoperative Evaluation for Extrathyroidal Extension of Suspicious Thyroid Nodules vol.44, pp.8, 2020, https://doi.org/10.1007/s00268-020-05482-6
  219. Schilddrüsenknoten: ATA-Leitlinie aus europäischer Sicht vol.145, pp.17, 2020, https://doi.org/10.1055/a-1018-2767
  220. Diagnostic Efficacy and Safety of Core Needle Biopsy as a First-Line Diagnostic Method for Thyroid Nodules: A Prospective Cohort Study vol.30, pp.8, 2016, https://doi.org/10.1089/thy.2019.0444
  221. Diagnostic Performance of Four Ultrasound Risk Stratification Systems: A Systematic Review and Meta-Analysis vol.30, pp.8, 2016, https://doi.org/10.1089/thy.2019.0812
  222. Comparisons of ACR TI-RADS, ATA guidelines, Kwak TI-RADS, and KTA/KSThR guidelines in malignancy risk stratification of thyroid nodules vol.75, pp.2, 2020, https://doi.org/10.3233/ch-190778
  223. Strategy to reduce unnecessary surgeries in thyroid nodules with cytology of Bethesda category III (AUS/FLUS): a retrospective analysis of 667 patients diagnosed by surgery vol.69, pp.3, 2016, https://doi.org/10.1007/s12020-020-02300-w
  224. Sonographic Risk Stratification Systems for Thyroid Nodules as Rule-Out Tests in Older Adults vol.12, pp.9, 2020, https://doi.org/10.3390/cancers12092458
  225. Contemporary Thyroid Nodule Evaluation and Management vol.105, pp.9, 2016, https://doi.org/10.1210/clinem/dgaa322
  226. Preoperative Prediction of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma via Conventional and CONTRAST‐ENHANCED Ultrasound vol.39, pp.10, 2020, https://doi.org/10.1002/jum.15315
  227. Accuracy of thyroid imaging reporting and data system category 4 or 5 for diagnosing malignancy: a systematic review and meta-analysis vol.30, pp.10, 2016, https://doi.org/10.1007/s00330-020-06875-w
  228. Ultrasonographic Thyroid Nodule Classification Using a Deep Convolutional Neural Network with Surgical Pathology vol.33, pp.5, 2016, https://doi.org/10.1007/s10278-020-00362-w
  229. The Value of Microvascular Imaging for Triaging Indeterminate Cervical Lymph Nodes in Patients with Papillary Thyroid Carcinoma vol.12, pp.10, 2020, https://doi.org/10.3390/cancers12102839
  230. Clinical applications of Doppler ultrasonography for thyroid disease: consensus statement by the Korean Society of Thyroid Radiology vol.39, pp.4, 2016, https://doi.org/10.14366/usg.20072
  231. FNA indication according to ACR-TIRADS, EU-TIRADS and K-TIRADS in thyroid incidentalomas at 18F-FDG PET/CT vol.43, pp.11, 2020, https://doi.org/10.1007/s40618-020-01244-2
  232. Usability of EU-TIRADS in the Diagnostics of Hürthle Cell Thyroid Nodules with Equivocal Cytology vol.9, pp.11, 2016, https://doi.org/10.3390/jcm9113410
  233. Ultrasound-Guided Thyroid Fine Needle Aspiration Biopsy: Basic Techniques for Clinicians vol.5, pp.2, 2016, https://doi.org/10.18525/cu.2020.5.2.42
  234. Comparison Between Fine Needle Aspiration and Core Needle Biopsy for the Diagnosis of Thyroid Nodules: Effective Indications According to US Findings vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-60872-z
  235. Reoperations for structurally persistent or recurrent disease after thyroidectomy: analysis via preoperative CT vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-69398-w
  236. Development and validation of a Web‐based malignancy risk‐stratification system of thyroid nodules vol.93, pp.6, 2016, https://doi.org/10.1111/cen.14255
  237. Roles of contrast-enhanced ultrasonography in identifying volume change of benign thyroid nodule and optical time of secondary radiofrequency ablation vol.20, pp.1, 2016, https://doi.org/10.1186/s12880-020-00476-1
  238. Elastography for the diagnosis of high-suspicion thyroid nodules based on the 2015 American Thyroid Association guidelines: a multicenter study vol.20, pp.1, 2016, https://doi.org/10.1186/s12902-020-0520-y
  239. Long-Term Follow-Up Results of Ultrasound-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: More Than 5-Year Follow-Up for 84 Tumors vol.30, pp.12, 2016, https://doi.org/10.1089/thy.2020.0106
  240. SWE combined with ACR TI-RADS categories for malignancy risk stratification of thyroid nodules with indeterminate FNA cytology vol.76, pp.3, 2020, https://doi.org/10.3233/ch-200893
  241. Comparison of Efficiencies Between Shear Wave Elastography, Fine-Needle Aspiration Biopsy and American College of Radiology Thyroid Imaging Reporting and Data System Scoring System in Determining the vol.37, pp.2, 2016, https://doi.org/10.1097/ruq.0000000000000531
  242. Reconfirmation of the accuracy of the taller-than-wide sign in multicenter collaborative research in Japan vol.68, pp.8, 2016, https://doi.org/10.1507/endocrj.ej20-0379
  243. A Framework (SOCRATex) for Hierarchical Annotation of Unstructured Electronic Health Records and Integration Into a Standardized Medical Database: Development and Usability Study vol.9, pp.3, 2016, https://doi.org/10.2196/23983
  244. Malignancy Risk Stratification of Thyroid Nodules with Macrocalcification and Rim Calcification Based on Ultrasound Patterns vol.22, pp.4, 2016, https://doi.org/10.3348/kjr.2020.0381
  245. Korean Thyroid Imaging Reporting and Data System: Current Status, Challenges, and Future Perspectives vol.22, pp.9, 2016, https://doi.org/10.3348/kjr.2021.0106
  246. Diagnostic Performance of the Modified Korean Thyroid Imaging Reporting and Data System for Thyroid Malignancy: A Multicenter Validation Study vol.22, pp.9, 2016, https://doi.org/10.3348/kjr.2021.0230
  247. 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations vol.22, pp.None, 2021, https://doi.org/10.3348/kjr.2021.0713
  248. Thyroid dysfunction following radiofrequency ablation for benign thyroid nodules: more likely to occur within one-week and in high-risk population vol.38, pp.1, 2016, https://doi.org/10.1080/02656736.2021.1950849
  249. A study on the efficacy of microwave ablation for benign thyroid nodules and related influencing factors vol.38, pp.1, 2016, https://doi.org/10.1080/02656736.2021.1988151
  250. EU-TIRADS-Based Omission of Fine-Needle Aspiration and Cytology from Thyroid Nodules Overlooks a Substantial Number of Follicular Thyroid Cancers vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/9924041
  251. Thyroid Nodules Located in the Lower Pole Have a Higher Risk of Malignancy than Located in the Isthmus: A Single-Center Experience vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/9940995
  252. Diagnostic performance evaluation of different TI-RADS using ultrasound computer-aided diagnosis of thyroid nodules: An experience with adjusted settings vol.16, pp.1, 2016, https://doi.org/10.1371/journal.pone.0245617
  253. Diagnostic Performance of American College of Radiology TI-RADS: A Systematic Review and Meta-Analysis vol.216, pp.1, 2016, https://doi.org/10.2214/ajr.19.22691
  254. Support Vector Machine Parameter Optimization for Positron Emission Tomography Images for Estimation of Recurrent Laryngeal Nerve Injury with Thyroid Nodules vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/2553244
  255. Edge Segmentation Algorithm‐Based Prevention of Recurrent Laryngeal Nerve Injury in Treatment of Thyroid Nodules Using Ultrasound Images vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6583110
  256. A Control Study on the Value of the Ultrasound Grayscale Ratio for the Differential Diagnosis of Thyroid Micropapillary Carcinoma and Micronodular Goiter in Two Medical Centers vol.10, pp.None, 2021, https://doi.org/10.3389/fonc.2020.625238
  257. Joint Detection of Tap and CEA Based on Deep Learning Medical Image Segmentation: Risk Prediction of Thyroid Cancer vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5920035
  258. Malignancy risk of thyroid nodules with nonshadowing echogenic foci vol.40, pp.1, 2016, https://doi.org/10.14366/usg.20012
  259. Whirling technique for thyroid fine needle aspiration biopsy: a preliminary study of effectiveness and safety vol.40, pp.1, 2016, https://doi.org/10.14366/usg.20031
  260. Applications of machine learning and deep learning to thyroid imaging: where do we stand? vol.40, pp.1, 2021, https://doi.org/10.14366/usg.20068
  261. Diagnostic Value of Sonographic Features in Distinguishing Malignant Partially Cystic Thyroid Nodules: A Systematic Review and Meta-Analysis vol.12, pp.None, 2021, https://doi.org/10.3389/fendo.2021.624409
  262. Explore the Diagnostic Efficiency of Chinese Thyroid Imaging Reporting and Data Systems by Comparing With the Other Four Systems (ACR TI-RADS, Kwak-TIRADS, KSThR-TIRADS, and EU-TIRADS): A Single-Cente vol.12, pp.None, 2016, https://doi.org/10.3389/fendo.2021.763897
  263. Thyroid Parenchyma Microcalcifications on Ultrasound for Predicting Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Prospective Multicenter Study in China vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.609075
  264. Using Deep Neural Network to Diagnose Thyroid Nodules on Ultrasound in Patients With Hashimoto’s Thyroiditis vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.614172
  265. Exploring the Value of Radiomics Features Based on B-Mode and Contrast-Enhanced Ultrasound in Discriminating the Nature of Thyroid Nodules vol.11, pp.None, 2016, https://doi.org/10.3389/fonc.2021.738909
  266. Diagnostic performance of core needle biopsy as a first‐line diagnostic tool for thyroid nodules according to ultrasound patterns: Comparison with fine needle aspiration using propensity score m vol.94, pp.3, 2016, https://doi.org/10.1111/cen.14321
  267. Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes vol.42, pp.3, 2016, https://doi.org/10.3174/ajnr.a6922
  268. Diagnostic Algorithm for Metastatic Lymph Nodes of Differentiated Thyroid Carcinoma vol.13, pp.6, 2016, https://doi.org/10.3390/cancers13061338
  269. Interobserver Reproducibility in Sonographic Measurement of Diameter and Volume of Papillary Thyroid Microcarcinoma vol.31, pp.3, 2016, https://doi.org/10.1089/thy.2020.0317
  270. Update on ACR TI-RADS: Successes, Challenges, and Future Directions, From the AJR Special Series on Radiology Reporting and Data Systems vol.216, pp.3, 2021, https://doi.org/10.2214/ajr.20.24608
  271. Comparison of Four Ultrasonography-Based Risk Stratification Systems in Thyroid Nodules with Nondiagnostic/Unsatisfactory Cytology: A Real-World Study vol.13, pp.8, 2016, https://doi.org/10.3390/cancers13081948
  272. Atypia of undetermined significance/follicular lesions of undetermined significance: What radiologists need to know vol.34, pp.2, 2021, https://doi.org/10.1177/1971400920983566
  273. Assessing the diagnostic performance of thyroid biopsy with recommendations for appropriate interpretation vol.40, pp.2, 2016, https://doi.org/10.14366/usg.19099
  274. Clinical Outcome of Fine Needle Aspiration Cytology and Washout Thyroglobulin in Suspicious Lymph Nodes in Differentiated Thyroid Carcinoma: Discordant Results in Real-World Practice vol.14, pp.1, 2021, https://doi.org/10.11106/ijt.2021.14.1.18
  275. Inter-Reader Agreement of ATA Sonographic Risk in Thyroid Nodules with Bethesda Category III Indeterminate Cytology vol.2, pp.2, 2021, https://doi.org/10.3390/endocrines2020009
  276. Comparison of diagnostic performance of the ACR and Kwak TIRADS applying the ACR TIRADS’ size thresholds for FNA vol.31, pp.7, 2016, https://doi.org/10.1007/s00330-020-07591-1
  277. Thyroid “claw sign” a useful diagnostic marker in the outsized lesions of isthmus: A large colloid cyst. vol.16, pp.7, 2021, https://doi.org/10.1016/j.radcr.2021.04.012
  278. Ultrasonographic echogenicity of normal salivary glands in adults: comparison of submandibular and parotid glands vol.40, pp.3, 2016, https://doi.org/10.14366/usg.20070
  279. Update on the Evaluation of Thyroid Nodules vol.62, pp.suppl2, 2021, https://doi.org/10.2967/jnumed.120.246025
  280. Overview of the Ultrasound Classification Systems in the Field of Thyroid Cytology vol.13, pp.13, 2021, https://doi.org/10.3390/cancers13133133
  281. Comparison of ACR TI-RADS, Kwak TI-RADS, ATA guidelines and KTA/KSThR guidelines in combination with SWE in the diagnosis of thyroid nodules vol.78, pp.2, 2021, https://doi.org/10.3233/ch-201021
  282. Choosing the best algorithm among five thyroid nodule ultrasound scores: from performance to cytology sparing-a single-center retrospective study in a large cohort vol.31, pp.8, 2021, https://doi.org/10.1007/s00330-021-07703-5
  283. Thyroid Nodule Characterization: How to Assess the Malignancy Risk. Update of the Literature vol.11, pp.8, 2021, https://doi.org/10.3390/diagnostics11081374
  284. 미만성 갑상샘 질환에서 GLCM을 이용한 초음파 영상 분석 vol.15, pp.4, 2021, https://doi.org/10.7742/jksr.2021.15.4.473
  285. TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance? vol.126, pp.9, 2016, https://doi.org/10.1007/s11547-021-01349-5
  286. Presence of TERT ± BRAF V600E mutation is not a risk factor for the clinical management of patients with papillary thyroid microcarcinoma vol.170, pp.3, 2016, https://doi.org/10.1016/j.surg.2021.03.056
  287. The New Era of TIRADSs to Stratify the Risk of Malignancy of Thyroid Nodules: Strengths, Weaknesses and Pitfalls vol.13, pp.17, 2021, https://doi.org/10.3390/cancers13174316
  288. Diagnostic Performance of Kwak, EU, ACR, and Korean TIRADS as Well as ATA Guidelines for the Ultrasound Risk Stratification of Non-Autonomously Functioning Thyroid Nodules in a Region with Long Histor vol.13, pp.17, 2021, https://doi.org/10.3390/cancers13174467
  289. Most ″Nonclassifiable″ Thyroid Nodules Can Be Classified on Ultrasonography if Macrocalcifications Are Ignored vol.33, pp.9, 2016, https://doi.org/10.1089/ct.2021;33.391-393
  290. Multiparametric Photoacoustic Analysis of Human Thyroid Cancers In Vivo vol.81, pp.18, 2021, https://doi.org/10.1158/0008-5472.can-20-3334
  291. Lidocaine‐induced systemic toxicity complicating radiofrequency ablation of benign thyroid nodule procedure: A case report and review of literature vol.9, pp.10, 2016, https://doi.org/10.1002/ccr3.4910
  292. The role of ultrasound measurements and cosmetic scoring in evaluating the effectiveness of ethanol ablation in cystic thyroid nodules vol.75, pp.10, 2016, https://doi.org/10.1111/ijcp.14573
  293. Validation of Four Thyroid Ultrasound Risk Stratification Systems in Patients with Hashimoto’s Thyroiditis; Impact of Changes in the Threshold for Nodule’s Shape Criterion vol.13, pp.19, 2016, https://doi.org/10.3390/cancers13194900
  294. Clinicopathological Characteristics and Disease-Free Survival in Patients with Hürthle Cell Carcinoma: A Multicenter Cohort Study in South Korea vol.36, pp.5, 2016, https://doi.org/10.3803/enm.2021.1151
  295. Comparison of Korean vs. American Thyroid Imaging Reporting and Data System in Malignancy Risk Assessment of Indeterminate Thyroid Nodules vol.36, pp.5, 2016, https://doi.org/10.3803/enm.2021.1208
  296. Comparison of Thyroid Imaging Reporting and Data Systems in Malignancy Risk Stratification of Indeterminate Thyroid Nodules vol.36, pp.5, 2016, https://doi.org/10.3803/enm.2021.1287
  297. Comparing ultrasound assessment of thyroid nodules using BTA U classification and ACR TIRADS measured against histopathological diagnosis vol.46, pp.6, 2016, https://doi.org/10.1111/coa.13831
  298. A practical approach for the management of small thyroid nodules referred for biopsy vol.75, pp.11, 2016, https://doi.org/10.1111/ijcp.14757
  299. Bilateral thyroid adenomas in an alpaca vol.35, pp.6, 2016, https://doi.org/10.1111/jvim.16285
  300. Exploring the Performance of Ultrasound Risk Stratification Systems in Thyroid Nodules of Pediatric Patients vol.13, pp.21, 2021, https://doi.org/10.3390/cancers13215304
  301. Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives vol.13, pp.21, 2016, https://doi.org/10.3390/cancers13215469
  302. Impact of the Hypoechogenicity Criteria on Thyroid Nodule Malignancy Risk Stratification Performance by Different TIRADS Systems vol.13, pp.21, 2016, https://doi.org/10.3390/cancers13215581
  303. Novel Inhibitor-Based Therapies for Thyroid Cancer-An Update vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111829
  304. Comparative Analysis of Computer-Aided Diagnosis and Computer-Assisted Subjective Assessment in Thyroid Ultrasound vol.11, pp.11, 2016, https://doi.org/10.3390/life11111148
  305. Long-Term Efficacy of Ultrasound-Guided Laser Ablation for Papillary Thyroid Microcarcinoma: Results of a 10-Year Retrospective Study vol.31, pp.11, 2016, https://doi.org/10.1089/thy.2021.0151
  306. Metastatic Clear Cell Renal Carcinoma with Benign Ultrasonographic Findings in the Thyroid Gland vol.6, pp.2, 2021, https://doi.org/10.18525/cu.2021.6.2.63
  307. Combination of ultrasound and molecular testing in malignancy risk estimate of Bethesda category IV thyroid nodules: results from a single-institution prospective study vol.44, pp.12, 2016, https://doi.org/10.1007/s40618-021-01571-y
  308. Comparison of Thyroid Risk Categorization Systems and Fine-Needle Aspiration Recommendations in a Multi-Institutional Thyroid Ultrasound Registry vol.18, pp.12, 2016, https://doi.org/10.1016/j.jacr.2021.07.019
  309. Conspicuousness and recurrence related factors of ultrasound-guided microwave ablation in the treatment of benign thyroid nodules vol.21, pp.1, 2021, https://doi.org/10.1186/s12893-021-01312-1
  310. Preoperative assessment of cervical lymph node metastases in patients with papillary thyroid carcinoma: Incremental diagnostic value of dual-energy CT combined with ultrasound vol.16, pp.12, 2021, https://doi.org/10.1371/journal.pone.0261233
  311. The value of contrast‐enhanced ultrasound for the diagnosis of metastatic cervical lymph nodes of papillary thyroid carcinoma: A systematic review and meta‐analysis vol.50, pp.1, 2022, https://doi.org/10.1002/jcu.23073
  312. Histopathological correlation of punctate echogenic foci on ultrasonography in papillary thyroid carcinoma vol.50, pp.1, 2022, https://doi.org/10.1002/jcu.23107