DOI QR코드

DOI QR Code

Intra-Individual, Inter-Vendor Comparison of Diffusion-Weighted MR Imaging of Upper Abdominal Organs at 3.0 Tesla with an Emphasis on the Value of Normalization with the Spleen

  • Song, Ji Soo (Department of Radiology, Chonbuk National University Medical School and Hospital) ;
  • Hwang, Seung Bae (Department of Radiology, Chonbuk National University Medical School and Hospital) ;
  • Chung, Gyung Ho (Department of Radiology, Chonbuk National University Medical School and Hospital) ;
  • Jin, Gong Yong (Department of Radiology, Chonbuk National University Medical School and Hospital)
  • Received : 2015.08.03
  • Accepted : 2016.01.13
  • Published : 2016.04.01

Abstract

Objective: To compare the apparent diffusion coefficient (ADC) values of upper abdominal organs with 2 different 3.0 tesla MR systems and to investigate the usefulness of normalization using the spleen. Materials and Methods: Forty-one patients were enrolled in this prospective study, of which, 35 patients (M:F, 27:8; mean $age{\pm}standard$ deviation, $62.3{\pm}12.3years$) were finally analyzed. In addition to the routine liver MR protocol, single-shot spin-echo echo-planar diffusion-weighted imaging using b values of 0, 50, 400, and $800s/mm^2$ in 2 different MR systems was performed. ADC values of the liver, spleen, pancreas, kidney and liver lesion (if present) were measured and analyzed. ADC values of the spleen were used for normalization. The Pearson correlation, Spearman correlation, paired sample t test, Wilcoxon signed rank test and Bland-Altman method were used for statistical analysis. Results: For all anatomical regions and liver lesions, both non-normalized and normalized ADC values from 2 different MR systems showed significant correlations (r = 0.5196-0.8488). Non-normalized ADC values of both MR systems differed significantly in all anatomical regions and liver lesions (p < 0.001). However, the normalized ADC of all anatomical regions and liver lesions did not differ significantly (p = 0.065-0.661), with significantly lower coefficient of variance than that of nonnormalized ADC (p < 0.009). Conclusion: Normalization of the abdominal ADC values using the spleen as a reference organ reduces differences between different MR systems, and could facilitate consistent use of ADC as an imaging biomarker for multi-center or longitudinal studies.

Keywords

References

  1. Thoeny HC, De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 2007;17:1385-1393 https://doi.org/10.1007/s00330-006-0547-0
  2. Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 2007;6:211-224 https://doi.org/10.2463/mrms.6.211
  3. Patterson DM, Padhani AR, Collins DJ. Technology insight: water diffusion MRI--a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 2008;5:220-233
  4. Koinuma M, Ohashi I, Hanafusa K, Shibuya H. Apparent diffusion coefficient measurements with diffusion-weighted magnetic resonance imaging for evaluation of hepatic fibrosis. J Magn Reson Imaging 2005;22:80-85 https://doi.org/10.1002/jmri.20344
  5. Lewin M, Poujol-Robert A, Boelle PY, Wendum D, Lasnier E, Viallon M, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology 2007;46:658-665 https://doi.org/10.1002/hep.21747
  6. Koh DM, Scurr E, Collins D, Kanber B, Norman A, Leach MO, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007;188:1001-1008 https://doi.org/10.2214/AJR.06.0601
  7. Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging 2007;25:848-858
  8. Parikh T, Drew SJ, Lee VS, Wong S, Hecht EM, Babb JS, et al. Focal liver lesion detection and characterization with diffusionweighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246:812-822 https://doi.org/10.1148/radiol.2463070432
  9. Bruegel M, Holzapfel K, Gaa J, Woertler K, Waldt S, Kiefer B, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusionweighted single-shot echo-planar MR imaging technique. Eur Radiol 2008;18:477-485 https://doi.org/10.1007/s00330-007-0785-9
  10. Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short-and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009;250:459-465 https://doi.org/10.1148/radiol.2502080849
  11. Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 2008;249:624-630 https://doi.org/10.1148/radiol.2492071681
  12. Koh DM, Blackledge M, Collins DJ, Padhani AR, Wallace T, Wilton B, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a twocentre phase I clinical trial. Eur Radiol 2009;19:2728-2738 https://doi.org/10.1007/s00330-009-1469-4
  13. Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B. Diffusionweighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging 2011;33:128-135 https://doi.org/10.1002/jmri.22395
  14. Zhang JL, Sigmund EE, Chandarana H, Rusinek H, Chen Q, Vivier PH, et al. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 2010;254:783-792 https://doi.org/10.1148/radiol.09090891
  15. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102-125 https://doi.org/10.1593/neo.81328
  16. Donati OF, Chong D, Nanz D, Boss A, Froehlich JM, Andres E, et al. Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2014;270:454-463 https://doi.org/10.1148/radiol.13130819
  17. Papanikolaou N, Gourtsoyianni S, Yarmenitis S, Maris T, Gourtsoyiannis N. Comparison between two-point and fourpoint methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. Value of normalization with spleen. Eur J Radiol 2010;73:305-309 https://doi.org/10.1016/j.ejrad.2008.10.023
  18. Outwater EK, Siegelman ES, Radecki PD, Piccoli CW, Mitchell DG. Distinction between benign and malignant adrenal masses: value of T1-weighted chemical-shift MR imaging. AJR Am J Roentgenol 1995;165:579-583 https://doi.org/10.2214/ajr.165.3.7645474
  19. Tsushima Y, Ishizaka H, Matsumoto M. Adrenal masses: differentiation with chemical shift, fast low-angle shot MR imaging. Radiology 1993;186:705-709 https://doi.org/10.1148/radiology.186.3.8430178
  20. Do RK, Chandarana H, Felker E, Hajdu CH, Babb JS, Kim D, et al. Diagnosis of liver fibrosis and cirrhosis with diffusionweighted imaging: value of normalized apparent diffusion coefficient using the spleen as reference organ. AJR Am J Roentgenol 2010;195:671-676 https://doi.org/10.2214/AJR.09.3448
  21. Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral sciences, 5th ed. Boston, MA: Houghton Mifflin, 2003
  22. Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-1022 https://doi.org/10.1002/hep.24199
  23. Kim SY, Lee SS, Park B, Kim N, Kim JK, Park SH, et al. Reproducibility of measurement of apparent diffusion coefficients of malignant hepatic tumors: effect of DWI techniques and calculation methods. J Magn Reson Imaging 2012;36:1131-1138 https://doi.org/10.1002/jmri.23744
  24. Corona-Villalobos CP, Pan L, Halappa VG, Bonekamp S, Lorenz CH, Eng J, et al. Agreement and reproducibility of apparent diffusion coefficient measurements of dual-b-value and multib-value diffusion-weighted magnetic resonance imaging at 1.5 Tesla in phantom and in soft tissues of the abdomen. J Comput Assist Tomogr 2013;37:46-51 https://doi.org/10.1097/RCT.0b013e3182720e07
  25. Miquel ME, Scott AD, Macdougall ND, Boubertakh R, Bharwani N, Rockall AG. In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol 2012;85:1507-1512 https://doi.org/10.1259/bjr/32269440
  26. Yoshikawa T, Kawamitsu H, Mitchell DG, Ohno Y, Ku Y, Seo Y, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006;187:1521-1530 https://doi.org/10.2214/AJR.05.0778
  27. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echoplanar MR imaging. Radiology 1999;210:617-623 https://doi.org/10.1148/radiology.210.3.r99fe17617
  28. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010;254:47-66 https://doi.org/10.1148/radiol.09090021
  29. Kakite S, Dyvorne H, Besa C, Cooper N, Facciuto M, Donnerhack C, et al. Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging 2015;41:149-156 https://doi.org/10.1002/jmri.24538
  30. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22:275-282
  31. Kwee TC, Takahara T, Koh DM, Nievelstein RA, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008;28:1141-1148 https://doi.org/10.1002/jmri.21569
  32. Chen X, Qin L, Pan D, Huang Y, Yan L, Wang G, et al. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. Radiology 2014;271:113-125 https://doi.org/10.1148/radiol.13131572
  33. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 1999;173:393-398 https://doi.org/10.2214/ajr.173.2.10430143
  34. Klasen J, Lanzman RS, Wittsack HJ, Kircheis G, Schek J, Quentin M, et al. Diffusion-weighted imaging (DWI) of the spleen in patients with liver cirrhosis and portal hypertension. Magn Reson Imaging 2013;31:1092-1096 https://doi.org/10.1016/j.mri.2013.01.003
  35. Kim SY, Lee SS, Byun JH, Park SH, Kim JK, Park B, et al. Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology 2010;255:815-823 https://doi.org/10.1148/radiol.10091706
  36. Kinner S, Umutlu L, Blex S, Maderwald S, Antoch G, Ertle J, et al. Diffusion weighted MR imaging in patients with HCC and liver cirrhosis after administration of different gadolinium contrast agents: is it still reliable? Eur J Radiol 2012;81:e625-e628 https://doi.org/10.1016/j.ejrad.2011.12.042
  37. Colagrande S, Mazzoni LN, Mazzoni E, Pradella S. Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver. J Magn Reson Imaging 2013;38:365-370 https://doi.org/10.1002/jmri.23978

Cited by

  1. Selection and Reporting of Statistical Methods to Assess Reliability of a Diagnostic Test: Conformity to Recommended Methods in a Peer-Reviewed Journal vol.18, pp.6, 2017, https://doi.org/10.3348/kjr.2017.18.6.888
  2. Usefulness of SMS Diffusion Technique for Quantification of Upper Abdominal Organs vol.27, pp.1, 2017, https://doi.org/10.31159/ksmrt.2017.27.1.5
  3. Diffusion‐weighted MR imaging of upper abdominal organs at different time points: Apparent diffusion coefficient normalization using a reference organ vol.45, pp.5, 2016, https://doi.org/10.1002/jmri.25456
  4. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? vol.48, pp.1, 2016, https://doi.org/10.1007/s00247-017-3984-9
  5. Apparent diffusion coefficient for prediction of parametrial invasion in cervical cancer: a critical evaluation based on stratification to a Likert scale using T2-weighted imaging vol.123, pp.3, 2016, https://doi.org/10.1007/s11547-017-0823-x
  6. Diffusion-Weighted Imaging of Upper Abdominal Organs Acquired with Multiple B-Value Combinations: Value of Normalization Using Spleen as the Reference Organ vol.19, pp.3, 2016, https://doi.org/10.3348/kjr.2018.19.3.389
  7. Imaging Findings of Pancreatic Solid Pseudopapillary Neoplasm with High-Grade Malignant Transformation: Focusing on Diffusion-Weighted Imaging and Normalized Apparent Diffusion Coefficient Values vol.78, pp.3, 2016, https://doi.org/10.3348/jksr.2018.78.3.163
  8. Perfusion-weighted and diffusion-weighted magnetic resonance imaging of the liver, spleen, and kidneys of healthy adult male cats vol.80, pp.2, 2019, https://doi.org/10.2460/ajvr.80.2.159
  9. Intra-individual comparison of conventional and simultaneous multislice-accelerated diffusion-weighted imaging in upper abdominal solid organs: value of ADC normalization using the spleen as a referen vol.44, pp.5, 2019, https://doi.org/10.1007/s00261-019-01924-5
  10. Prediction of hepatocellular carcinoma response to 90 Yttrium radioembolization using volumetric ADC histogram quantification: preliminary results vol.19, pp.None, 2016, https://doi.org/10.1186/s40644-019-0216-6
  11. Usefulness of diffusion-weighted MRI in the initial assessment of osseous sarcomas in children and adolescents vol.49, pp.9, 2016, https://doi.org/10.1007/s00247-019-04436-y