DOI QR코드

DOI QR Code

Heart Disease in Disorders of Muscle, Neuromuscular Transmission, and the Nerves

  • Received : 2015.10.01
  • Accepted : 2015.11.24
  • Published : 2016.03.30

Abstract

Little is known regarding cardiac involvement (CI) by neuromuscular disorders (NMDs). The purpose of this review is to summarise and discuss the major findings concerning the types, frequency, and severity of cardiac disorders in NMDs as well as their diagnosis, treatment, and overall outcome. CI in NMDs is characterized by pathologic involvement of the myocardium or cardiac conduction system. Less commonly, additional critical anatomic structures, such as the valves, coronary arteries, endocardium, pericardium, and even the aortic root may be involved. Involvement of the myocardium manifests most frequently as hypertrophic or dilated cardiomyopathy and less frequently as restrictive cardiomyopathy, non-compaction, arrhythmogenic right-ventricular dysplasia, or Takotsubo-syndrome. Cardiac conduction defects and supraventricular and ventricular arrhythmias are common cardiac manifestations of NMDs. Arrhythmias may evolve into life-threatening ventricular tachycardias, asystole, or even sudden cardiac death. CI is common and carries great prognostic significance on the outcome of dystrophinopathies, laminopathies, desminopathies, nemaline myopathy, myotonias, metabolic myopathies, Danon disease, and Barth-syndrome. The diagnosis and treatment of CI in NMDs follows established guidelines for the management of cardiac disease, but cardiotoxic medications should be avoided. CI in NMDs is relatively common and requires complete work-up following the establishment of a neurological diagnosis. Appropriate cardiac treatment significantly improves the overall long-term outcome of NMDs.

Keywords

References

  1. Rubin HJ, Lowbeer L. Progressive muscular dystrophy with involvement of heart muscle. Proc Staff Meet Tulsa Okla Hillcrest Meml Hosp 1947;4:141-56.
  2. Coelho E. Heart changes in the familial type of paramyloidosis with peripheral neuropathy. Z Kreislaufforsch 1963;52:1066-78.
  3. Hertzman PA, Maddoux GL, Sternberg EM, et al. Repeated coronary artery spasm in a young woman with the eosinophilia-myalgia syndrome. JAMA 1992;267:2932-4. https://doi.org/10.1001/jama.1992.03480210094039
  4. Rakocevic-Stojanovic V, Pavlovic S, Seferovic P, et al. Pathohistological changes in endomyocardial biopsy specimens in patients with myotonic dystrophy. Panminerva Med 1999;41:27-30.
  5. Palladino A, Passamano L, Taglia A, et al. Cardiac involvement in patients with spinal muscular atrophies. Acta Myol 2011;30:175-8.
  6. Yasuma F, Kuru S, Konagaya M. Dilated cardiomyopathy in Kugelberg-Welander disease: coexisting sleep disordered breathing and its treatment with continuous positive airway pressure. Intern Med 2004;43:951-4. https://doi.org/10.2169/internalmedicine.43.951
  7. Elkohen M, Vaksmann G, Elkohen MR, Francart C, Foucher C, Rey C. Cardiac involvement in Kugelberg-Welander disease. A prospective study of 8 cases. Arch Mal Coeur Vaiss 1996;89:611-7.
  8. Iwahara N, Hisahara S, Hayashi T, Kawamata J, Shimohama S. A novel lamin A/C gene mutation causing spinal muscular atrophy phenotype with cardiac involvement: report of one case. BMC Neurol 2015;15:13. https://doi.org/10.1186/s12883-015-0269-5
  9. Namazi MH, Khaheshi I, Haybar H, Esmaeeli S. Cardiac failure as an unusual presentation in a patient with history of amyotrophic lateral sclerosis. Case Rep Neurol Med 2014;2014:986139.
  10. Tanaka Y, Yamada M, Koumura A, et al. Cardiac sympathetic function in the patients with amyotrophic lateral sclerosis: analysis using cardiac [123I] MIBG scintigraphy. J Neurol 2013;260:2380-6. https://doi.org/10.1007/s00415-013-7005-0
  11. Shemisa K, Kaelber D, Parikh SA, Mackall JA. Autonomic etiology of heart block in amyotrophic lateral sclerosis: a case report. J Med Case Rep 2014;8:224. https://doi.org/10.1186/1752-1947-8-224
  12. Massari FM, Tonella T, Tarsia P, Kirani S, Blasi F, Magrini F. Tako-tsubo syndrome in a young man with amyotrophic lateral sclerosis. A case report. G Ital Cardiol (Rome) 2011;12:388-91.
  13. Araki A, Katsuno M, Suzuki K, et al. Brugada syndrome in spinal and bulbar muscular atrophy. Neurology 2014 20;82:1813-21. https://doi.org/10.1212/WNL.0000000000000434
  14. Sakpichaisakul K, Taeranawich P, Nitiapinyasakul A, Sirisopikun T. Identification of Sandhoff disease in a Thai family: clinical and biochemical characterization. J Med Assoc Thai 2010;93:1088-92.
  15. Carr AS, Pelayo-Negro AL, Jaunmuktane Z, et al. Transthyretin V122I amyloidosis with clinical and histological evidence of amyloid neuropathy and myopathy. Neuromuscul Disord 2015;25:511-5. https://doi.org/10.1016/j.nmd.2015.02.001
  16. Longhi S, Quarta CC, Milandri A, et al. Atrial fibrillation in amyloidotic cardiomyopathy: prevalence, incidence, risk factors and prognostic role. Amyloid 2015; 22:147-55. https://doi.org/10.3109/13506129.2015.1028616
  17. Klein CJ, Wu Y, Vogel P, et al. Ubiquitin ligase defect by DCAF8 mutation causes HMSN2 with giant axons. Neurology 2014;82:873-8. https://doi.org/10.1212/WNL.0000000000000206
  18. Uechi Y, Higa K. Recurrent takotsubo cardiomyopathy within a short span of time in a patient with hereditary motor and sensory neuropathy. Intern Med 2008;47:1609-13. https://doi.org/10.2169/internalmedicine.47.1186
  19. Corrado G, Checcarelli N, Santarone M, Stollberger C, Finsterer J. Left ventricular hypertrabeculation/noncompaction with PMP22 duplication-based Charcot-Marie-Tooth disease type 1A. Cardiology 2006;105:142-5. https://doi.org/10.1159/000091152
  20. Hofstad H, Ohm OJ, Mork SJ, Aarli JA. Heart disease in myasthenia gravis. Acta Neurol Scand 1984;70:176-84.
  21. Tanahashi N, Sato H, Nogawa S, Satoh T, Kawamura M, Shimoda M. A case report of giant cell myocarditis and myositis observed during the clinical course of invasive thymoma associated with myasthenia gravis. Keio J Med 2004;53:30-42.
  22. Thanaviratananich S, Katirji B, Alshekhlee A. Broken heart syndrome during myasthenic crisis. J Clin Neuromuscul Dis 2014;15:90-5. https://doi.org/10.1097/CND.0000000000000022
  23. Mayor-Gomez S, Lacruz F, Ezpeleta D. Myasthenic crisis and Takotsubo syndrome: a non-chance relationship. Rev Neurol 2012;55:725-8.
  24. Bansal V, Kansal MM, Rowin J. Broken heart syndrome in myasthenia gravis. Muscle Nerve 2011;44:990-3. https://doi.org/10.1002/mus.22220
  25. Beydoun SR, Wang J, Levine RL, Farvid A. Emotional stress as a trigger of myasthenic crisis and concomitant takotsubo cardiomyopathy: a case report. J Med Case Rep 2010;4:393. https://doi.org/10.1186/1752-1947-4-393
  26. Lang SM, Shugh S, Mazur W, et al. Myocardial fibrosis and left ventricular dysfunction in Duchenne muscular dystrophy carriers using cardiac magnetic resonance imaging. Pediatr Cardiol 2015;36:1495-501. https://doi.org/10.1007/s00246-015-1192-7
  27. Brunklaus A, Parish E, Muntoni F, et al. The value of cardiac MRI versus echocardiography in the pre-operative assessment of patients with Duchenne muscular dystrophy. Eur J Paediatr Neurol 2015;19:395-401. https://doi.org/10.1016/j.ejpn.2015.03.008
  28. Tandon A, Villa CR, Hor KN, et al. Myocardial fibrosis burden predicts left ventricular ejection fraction and is associated with age and steroid treatment duration in duchenne muscular dystrophy. J Am Heart Assoc 2015;4. pii:e001338.
  29. Finsterer J, Gelpi E, Stollberger C. Left ventricular hypertrabeculation/noncompaction as a cardiac manifestation of Duchenne muscular dystrophy under non-invasive positive-pressure ventilation. Acta Cardiol 2005;60:445-8. https://doi.org/10.2143/AC.60.4.2004996
  30. Florian A, Rosch S, Bietenbeck M, et al. Cardiac involvement in female Duchenne and Becker muscular dystrophy carriers in comparison to their first-degree male relatives: a comparative cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2015. [Epub ahead of print]
  31. Birnkrant DJ, Ararat E, Mhanna MJ. Cardiac phenotype determines survival in Duchenne muscular dystrophy. Pediatr Pulmonol 2015. [Epub ahead of print]
  32. Vidal-Perez R, Diaz-Villanueva J, Arzanauskaite M, Rojas R, Carreras F. Cardiac involvement in Becker muscular dystrophy: role of cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 2013;14:1038. https://doi.org/10.1093/ehjci/jet118
  33. Andrikopoulos G, Kourouklis S, Trika C, et al. Cardiac resynchronization therapy in becker muscular dystrophy. Hellenic J Cardiol 2013;54:227-9.
  34. Tsuda T, Fitzgerald K, Scavena M, et al. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27. J Hum Genet 2015;60:151-5. https://doi.org/10.1038/jhg.2014.112
  35. Guo X, Dai Y, Cui L, Fang Q. A novel dystrophin deletion mutation in a becker muscular dystrophy patient with early-onset dilated cardiomyopathy. Can J Cardiol 2014;30:956.e1-3. https://doi.org/10.1016/j.cjca.2014.05.002
  36. Petri H, Sveen ML, Thune JJ, et al. Progression of cardiac involvement in patients with limb-girdle type 2 and Becker muscular dystrophies: a 9-year follow-up study. Int J Cardiol 2015;182:403-11. https://doi.org/10.1016/j.ijcard.2014.12.090
  37. van den Bergen JC, Schade van Westrum SM, Dekker L, et al. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy. J Neurol Neurosurg Psychiatry 2014;85:92-8. https://doi.org/10.1136/jnnp-2012-304729
  38. Finsterer J, Stollberger C, Sehnal E, Rehder H, Laccone F. Dilated, arrhythmogenic cardiomyopathy in emery-dreifuss muscular dystrophy due to the emerin splice-site mutation c.449 + 1G>A. Cardiology 2015;130:48-51. https://doi.org/10.1159/000368222
  39. Pen AE, Nyegaard M, Fang M, et al. A novel single nucleotide splice site mutation in FHL1 confirms an Emery-Dreifuss plus phenotype with pulmonary artery hypoplasia and facial dysmorphology. Eur J Med Genet 2015;58:222-9. https://doi.org/10.1016/j.ejmg.2015.02.003
  40. Gossios TD, Lopes LR, Elliott PM. Left ventricular hypertrophy caused by a novel nonsense mutation in FHL1. Eur J Med Genet 2013;56:251-5. https://doi.org/10.1016/j.ejmg.2013.03.001
  41. Tiffin HR, Jenkins ZA, Gray MJ, et al. Dysregulation of FHL1 spliceforms due to an indel mutation produces an Emery-Dreifuss muscular dystrophy plus phenotype. Neurogenetics 2013;14:113-21. https://doi.org/10.1007/s10048-013-0359-8
  42. Wessely R, Seidl S, Schomig A. Cardiac involvement in Emery-Dreifuss muscular dystrophy. Clin Genet 2005;67:220-3. https://doi.org/10.1111/j.1399-0004.2004.00395.x
  43. Coutance G, Labombarda F, Cauderlier E, et al. Hypoplasia of the aorta in a patient diagnosed with LMNA gene mutation. Congenit Heart Dis 2013;8:E127-9. https://doi.org/10.1111/j.1747-0803.2012.00695.x
  44. Redondo-Verge L, Yaou RB, Fernandez-Recio M, Dinca L, Richard P, Bonne G. Cardioembolic stroke prompting diagnosis of LMNA-associated Emery-Dreifuss muscular dystrophy. Muscle Nerve 2011;44:587-9. https://doi.org/10.1002/mus.22179
  45. Maggi L, D'Amico A, Pini A, et al. LMNA-associated myopathies: the Italian experience in a large cohort of patients. Neurology 2014;83:1634-44. https://doi.org/10.1212/WNL.0000000000000934
  46. Sveen ML, Thune JJ, Kober L, Vissing J. Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and Becker muscular dystrophy. Arch Neurol 2008;65:1196-201.
  47. Groh WJ. Arrhythmias in the muscular dystrophies. Heart Rhythm 2012;9:1890-5. https://doi.org/10.1016/j.hrthm.2012.06.038
  48. Volpi L, Ricci G, Passino C, et al. Prevalent cardiac phenotype resulting in heart transplantation in a novel LMNA gene duplication. Neuromuscul Disord 2010;20:512-6. https://doi.org/10.1016/j.nmd.2010.03.016
  49. Quick S, Schaefer J, Waessnig N, et al. Evaluation of heart involvement in calpainopathy (LGMD2A) using cardiovascular magnetic resonance. Muscle Nerve 2015;52:661-3. https://doi.org/10.1002/mus.24717
  50. Okere A, Reddy SS, Gupta S, Shinnar M. A cardiomyopathy in a patient with limb girdle muscular dystrophy type 2A. Circ Heart Fail 2013;6:e12-3. https://doi.org/10.1161/CIRCHEARTFAILURE.112.971424
  51. Nishikawa A, Mori-Yoshimura M, Segawa K, et al. Respiratory and cardiac function in Japanese patients with dysferlinopathy. Muscle Nerve 2015. [Epub ahead of print]
  52. Rosales XQ, Moser SJ, Tran T, et al. Cardiovascular magnetic resonance of cardiomyopathy in limb girdle muscular dystrophy 2B and 2I. J Cardiovasc Magn Reson 2011;13:39. https://doi.org/10.1186/1532-429X-13-39
  53. Takahashi T, Aoki M, Suzuki N, et al. Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B. J Neurol Neurosurg Psychiatry 2013;84:433-40. https://doi.org/10.1136/jnnp-2011-301339
  54. Kuru S, Yasuma F, Wakayama T, et al. A patient with limb girdle muscular dystrophy type 2B (LGMD2B) manifesting cardiomyopathy. Rinsho Shinkeigaku 2004;44:375-8.
  55. Calvo F, Teijeira S, Fernandez JM, et al. Evaluation of heart involvement in gamma-sarcoglycanopathy (LGMD2C). A study of ten patients. Neuromuscul Disord 2000;10:560-6. https://doi.org/10.1016/S0960-8966(00)00147-4
  56. Merlini L, Kaplan JC, Navarro C, et al. Homogeneous phenotype of the gypsy limb-girdle MD with the gamma-sarcoglycan C283Y mutation. Neurology 2000;54:1075-9. https://doi.org/10.1212/WNL.54.5.1075
  57. Semplicini C, Vissing J, Dahlqvist JR, et al. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E. Neurology 2015;84:1772-81. https://doi.org/10.1212/WNL.0000000000001519
  58. Fanin M, Melacini P, Boito C, Pegoraro E, Angelini C. LGMD2E patients risk developing dilated cardiomyopathy. Neuromuscul Disord 2003;13:303-9. https://doi.org/10.1016/S0960-8966(02)00280-8
  59. Wahbi K, Meune C, Hamouda el H, et al. Cardiac assessment of limb-girdle muscular dystrophy 2I patients: an echography, Holter ECG and magnetic resonance imaging study. Neuromuscul Disord 2008;18:650-5. https://doi.org/10.1016/j.nmd.2008.06.365
  60. Hollingsworth KG, Willis TA, Bates MG, et al. Subepicardial dysfunction leads to global left ventricular systolic impairment in patients with limb girdle muscular dystrophy 2I. Eur J Heart Fail 2013;15:986-94. https://doi.org/10.1093/eurjhf/hft057
  61. Gaul C, Deschauer M, Tempelmann C, et al. Cardiac involvement in limb-girdle muscular dystrophy 2I: conventional cardiac diagnostic and cardiovascular magnetic resonance. J Neurol 2006;253:1317-22. https://doi.org/10.1007/s00415-006-0213-0
  62. D'Amico A, Petrini S, Parisi F, et al. Heart transplantation in a child with LGMD2I presenting as isolated dilated cardiomyopathy. Neuromuscul Disord 2008;18:153-5. https://doi.org/10.1016/j.nmd.2007.09.013
  63. Schottlaender LV, Petzold A, Wood N, Houlden H. Diagnostic clues and manifesting carriers in fukutin-related protein (FKRP) limb-girdle muscular dystrophy. J Neurol Sci 2015;348:266-8. https://doi.org/10.1016/j.jns.2014.12.008
  64. Matsui M, Endo T, Matsumura T, Saito T, Fujimura H. A case of limb-girdle muscular dystrophy 2M diagnosed by the occurence of dilated cardiomyopathy. Rinsho Shinkeigaku 2015;55-585-8. https://doi.org/10.5692/clinicalneurol.cn-000686
  65. Schade van Westrum SM, Dekker LR, de Voogt WG, et al. Cardiac involvement in Dutch patients with sarcoglycanopathy: a cross-sectional cohort and follow-up study. Muscle Nerve 2014;50:909-13. https://doi.org/10.1002/mus.24233
  66. Dincer P, Bonnemann CG, Erdir Aker O, et al. A homozygous nonsense mutation in delta-sarcoglycan exon 3 in a case of LGMD2F. Neuromuscul Disord 2000;10:247-50. https://doi.org/10.1016/S0960-8966(00)00100-0
  67. Tsubata S, Bowles KR, Vatta M, et al. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 2000;106:655-62. https://doi.org/10.1172/JCI9224
  68. Finsterer J, Stollberger C, Gatterer E, Jakubiczka S. Intermittent pre-excitation-syndrome in facio-scapulo-humeral muscular dystrophy. Korean Circ J 2014;44:348-50. https://doi.org/10.4070/kcj.2014.44.5.348
  69. Nakayama T, Komiya T, Tyou E, Watanabe S, Kawai M. Cardiac deformity and dysfunction in facioscapulohumeral dystrophy--electrocardiogram, ECG gate cardiac MRI studies. Rinsho Shinkeigaku 1999;39:610-4.
  70. Faustmann PM, Farahati J, Rupilius B, Dux R, Koch MC, Reiners C. Cardiac involvement in facio-scapulo-humeral muscular dystrophy: a family study using Thallium-201 single-photon-emission-computed tomography. J Neurol Sci 1996;144:59-63. https://doi.org/10.1016/S0022-510X(96)00145-1
  71. Della Marca G, Frusciante R, Scatena M, et al. Heart rate variability in facioscapulohumeral muscular dystrophy. Funct Neurol 2010;25:211-6.
  72. Pasqualin LM, Reed UC, Costa TV, et al. Congenital muscular dystrophy with dropped head linked to the LMNA gene in a Brazilian cohort. Pediatr Neurol 2014;50:400-6. https://doi.org/10.1016/j.pediatrneurol.2013.11.010
  73. Flock A, Kornblum C, Hammerstingl C, Claeys KG, Gembruch U, Merz WM. Progressive cardiac dysfunction in Bethlem myopathy during pregnancy. Obstet Gynecol 2014;123(2 Pt 2 Suppl 2):436-8. https://doi.org/10.1097/AOG.0000000000000101
  74. Plonka C, Wearden PD, Morell VO, Miller SA, Webber SA, Feingold B. Successful heart transplantation from a donor with Ullrich congenital muscular dystrophy. Am J Transplant 2013;13:1915-7. https://doi.org/10.1111/ajt.12246
  75. Martinez HR, Craigen WJ, Ummat M, Adesina AM, Lotze TE, Jefferies JL. Novel cardiovascular findings in association with a POMT2 mutation: three siblings with ${\alpha}$-dystroglycanopathy. Eur J Hum Genet 2014;22:486-91. https://doi.org/10.1038/ejhg.2013.165
  76. Haliloglu G, Talim B, Sel CG, Topaloglu H. Clinical characteristics of megaconial congenital muscular dystrophy due to choline kinase beta gene defects in a series of 15 patients. J Inherit Metab Dis 2015;38:1099-108. https://doi.org/10.1007/s10545-015-9856-2
  77. Marques J, Duarte ST, Costa S, et al. Atypical phenotype in two patients with LAMA2 mutations. Neuromuscul Disord 2014;24:419-24. https://doi.org/10.1016/j.nmd.2014.01.004
  78. Carboni N, Marrosu G, Porcu M, et al. Dilated cardiomyopathy with conduction defects in a patient with partial merosin deficiency due to mutations in the laminin-${\alpha}2$-chain gene: a chance association or a novel phenotype? Muscle Nerve 2011;44:826-8. https://doi.org/10.1002/mus.22228
  79. Matsuda H, Arai M, Okamoto H. Total intravenous anesthesia for a patient with Fukuyama congenital muscular dystrophy undergoing scoliosis surgery. Masui 2014;63:650-3.
  80. Pane M, Messina S, Vasco G, et al. Respiratory and cardiac function in congenital muscular dystrophies with alpha dystroglycan deficiency. Neuromuscul Disord 2012;22:685-9. https://doi.org/10.1016/j.nmd.2012.05.006
  81. Ceviz N, Alehan F, Alehan D, et al. Assessment of left ventricular systolic and diastolic functions in children with merosin-positive congenital muscular dystrophy. Int J Cardiol 2003;87:129-33; discussion 133-4. https://doi.org/10.1016/S0167-5273(02)00320-0
  82. Vattemi G, Neri M, Piffer S, et al. Clinical, morphological and genetic studies in a cohort of 21 patients with myofibrillar myopathy. Acta Myol 2011;30:121-6.
  83. Konersman CG, Bordini BJ, Scharer G, et al. BAG3 myofibrillar myopathy presenting with cardiomyopathy. Neuromuscul Disord 2015;25:418-22. https://doi.org/10.1016/j.nmd.2015.01.009
  84. Lee HC, Cherk SW, Chan SK, et al. BAG3-related myofibrillar myopathy in a Chinese family. Clin Genet 2012;81:394-8. https://doi.org/10.1111/j.1399-0004.2011.01659.x
  85. Liewluck T, Kintarak J, Sangruchi T, Selcen D, Kulkantrakorn K. Myofibrillar myopathy with limb-girdle phenotype in a Thai patient. J Med Assoc Thai 2009;92:290-5.
  86. Pinol-Ripoll G, Shatunov A, Cabello A, et al. Severe infantile-onset cardiomyopathy associated with a homozygous deletion in desmin. Neuromuscul Disord 2009;19:418-22. https://doi.org/10.1016/j.nmd.2009.04.004
  87. Zheng M, Cheng H, Li X, et al. Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet 2009;18:701-13. https://doi.org/10.1093/hmg/ddn400
  88. Stollberger C, Gatterer E, Finsterer J, Kuck KH, Tilz RR. Repeated radiofrequency ablation of atrial tachycardia in restrictive cardiomyopathy secondary to myofibrillar myopathy. J Cardiovasc Electrophysiol 2014;25:905-7. https://doi.org/10.1111/jce.12436
  89. El-Menyar AA, Al-Suwaidi J, Gehani AA, Bener A. Clinical and histologic studies of a Qatari family with myofibrillar myopathy. Saudi Med J 2004;25:1723-6.
  90. Chauveau C, Bonnemann CG, Julien C, et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum Mol Genet 2014;23:980-91. https://doi.org/10.1093/hmg/ddt494
  91. Simsek Z, Acar G, Akcakoyun M, Esen O, Emiroglu Y, Esen AM. Left ventricular noncompaction in a patient with multiminicore disease. J Cardiovasc Med (Hagerstown) 2012;13:660-2. https://doi.org/10.2459/JCM.0b013e32833cdcd0
  92. Cullup T, Lamont PJ, Cirak S, et al. Mutations in MYH7 cause Multi-minicore Disease (MmD) with variable cardiac involvement. Neuromuscul Disord 2012;22:1096-104. https://doi.org/10.1016/j.nmd.2012.06.007
  93. Hachenberg T, Brussel T, Lawin P, Konertz W, Scheld HH. Heart transplantation in a patient with central core disease. J Cardiothorac Vasc Anesth 1992;6:386-7. https://doi.org/10.1016/1053-0770(92)90183-8
  94. Gal A, Inczedy-Farkas G, Pal E, et al. The coexistence of dynamin 2 mutation and multiple mitochondrial DNA (mtDNA) deletions in the background of severe cardiomyopathy and centronuclear myopathy. Clin Neuropathol 2015;34:89-95. https://doi.org/10.5414/NP300789
  95. Al-Ruwaishid A, Vajsar J, Tein I, Benson L, Jay V. Centronuclear myopathy and cardiomyopathy requiring heart transplant. Brain Dev 2003;25:62-6. https://doi.org/10.1016/s0387-7604(02)00151-1
  96. Hikita T, Wakita S, Mori Y, et al. Severe infantile myotubular myopathy with complete atrioventricular block. Pediatr Int 2008;50:698-700. https://doi.org/10.1111/j.1442-200X.2008.02719.x
  97. Fujita K, Nakano S, Yamamoto H, Ito H, Ito H, Goto Y, Kusaka H. An adult case of congenital fiber type disproportion (CFTD) with cardiomyopathy. Rinsho Shinkeigaku 2005;45:380-2.
  98. Kajino S, Ishihara K, Goto K, et al. Congenital fiber type disproportion myopathy caused by LMNA mutations. J Neurol Sci 2014;340:94-8. https://doi.org/10.1016/j.jns.2014.02.036
  99. Gatayama R, Ueno K, Nakamura H, et al. Nemaline myopathy with dilated cardiomyopathy in childhood. Pediatrics 2013;131:e1986-90. https://doi.org/10.1542/peds.2012-1139
  100. Sarullo FM, Vitale G, Di Franco A, et al. Nemaline myopathy and heart failure: role of ivabradine; a case report. BMC Cardiovasc Disord 2015;15:5. https://doi.org/10.1186/1471-2261-15-5
  101. Mir A, Lemler M, Ramaciotti C, Blalock S, Ikemba C. Hypertrophic cardiomyopathy in a neonate associated with nemaline myopathy. Congenit Heart Dis 2012;7:E37-41. https://doi.org/10.1111/j.1747-0803.2011.00588.x
  102. Muller TJ, Kraya T, Stoltenburg-Didinger G, et al. Phenotype of matrin-3-related distal myopathy in 16 German patients. Ann Neurol 2014;76:669-80. https://doi.org/10.1002/ana.24255
  103. Naddaf E, Waclawik AJ. Two families with MYH7 distal myopathy associated with cardiomyopathy and core formations. J Clin Neuromuscul Dis 2015;16:164-9. https://doi.org/10.1097/CND.0000000000000069
  104. Lefter S, Hardiman O, McLaughlin RL, Murphy SM, Farrell M, Ryan AM. A novel MYH7 Leu1453pro mutation resulting in Laing distal myopathy in an Irish family. Neuromuscul Disord 2015;25:155-60. https://doi.org/10.1016/j.nmd.2014.09.007
  105. Finsterer J, Stollberger C, Brandau O, Laccone F, Bichler K, Laing NG. Novel MYH7 mutation associated with mild myopathy but life-threatening ventricular arrhythmias and noncompaction. Int J Cardiol 2014;173:532-5. https://doi.org/10.1016/j.ijcard.2014.03.025
  106. D'Arcy C, Kanellakis V, Forbes R, et al. X-linked recessive distal myopathy with hypertrophic cardiomyopathy caused by a novel mutation in the FHL1 gene. J Child Neurol 2015;30:1211-7. https://doi.org/10.1177/0883073814549807
  107. Kayman-Kurekci G, Talim B, Korkusuz P, et al. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscul Disord 2014;24:624-33. https://doi.org/10.1016/j.nmd.2014.04.007
  108. Nalini A, Gayathri N, Richard P, Cobo AM, Urtizberea JA. New mutation of the desmin gene identified in an extended Indian pedigree presenting with distal myopathy and cardiac disease. Neurol India 2013;61:622-6. https://doi.org/10.4103/0028-3886.125269
  109. Nishino I, Noguchi S, Murayama K, et al. Molecular pathomechanism of distal myopathy with rimmed vacuoles. Rinsho Shinkeigaku 2005;45:943-5.
  110. Ishiwata S, Nishiyama S, Seki A, Kojima S. Restrictive cardiomyopathy with complete atrioventricular block and distal myopathy with rimmed vacuoles. Jpn Circ J 1993;57:928-33. https://doi.org/10.1253/jcj.57.928
  111. Kimpara T, Imamura T, Tsuda T, Sato K, Tsuburaya K. Distal myopathy with rimmed vacuoles and sudden death--report of two siblings. Rinsho Shinkeigaku 1993;33:886-90.
  112. Krendel DA, Gilchrist JM, Bossen EH. Distal vacuolar myopathy with complete heart block. Arch Neurol 1988;45:698-9. https://doi.org/10.1001/archneur.1988.00520300118032
  113. Maffe S, Signorotti F, Perucca A, et al. Atypical arrhythmic complications in familial hypokalemic periodic paralysis. J Cardiovasc Med (Hagerstown) 2009;10:68-71. https://doi.org/10.2459/JCM.0b013e3283189564
  114. Green DS, Hayward LJ, George AL Jr, Cannon SC. A proposed mutation, Val781Ile, associated with hyperkalemic periodic paralysis and cardiac dysrhythmia is a benign polymorphism. Ann Neurol 1997;42:253-6. https://doi.org/10.1002/ana.410420219
  115. Stunnenberg BC, Deinum J, Links TP, Wilde AA, Franssen H, Drost G. Cardiac arrhythmias in hypokalemic periodic paralysis: Hypokalemia as only cause? Muscle Nerve 2014;50:327-32. https://doi.org/10.1002/mus.24225
  116. Caballero PE. Becker myotonia congenita associated with Wolff-Parkinson-White syndrome. Neurologist 2011;17:38-40. https://doi.org/10.1097/NRL.0b013e3181d35c93
  117. Benhayon D, Lugo R, Patel R, Carballeira L, Elman L, Cooper JM. Long-term arrhythmia follow-up of patients with myotonic dystrophy. J Cardiovasc Electrophysiol 2015;26:305-10. https://doi.org/10.1111/jce.12604
  118. Brembilla-Perrot B, Schwartz J, Huttin O, et al. Atrial flutter or fibrillation is the most frequent and life-threatening arrhythmia in myotonic dystrophy. Pacing Clin Electrophysiol 2014;37:329-35. https://doi.org/10.1111/pace.12260
  119. Pambrun T, Bortone A, Bois P, et al. Unmasked Brugada pattern by ajmaline challenge in patients with myotonic dystrophy type 1. Ann Noninvasive Electrocardiol 2015;20:28-36. https://doi.org/10.1111/anec.12168
  120. Russo V, Di Meo F, Rago A, et al. Paroxysmal atrial fibrillation in myotonic dystrophy type 1 patients: P wave duration and dispersion analysis. Eur Rev Med Pharmacol Sci 2015;19:1241-8.
  121. Finsterer J, Stollberger C, Gencik M, Hoftberger R, Rahimi J, Mokocki J. Syncope and hyperCKemia as minimal manifestations of short CTG repeat expansions in myotonic dystrophy type 1. Rev Port Cardiol 2015;34:361.e1-4.
  122. Finsterer J, Rudnik-Schoneborn S. Myotonic dystrophies: clinical presentation, pathogenesis, diagnostics and therapy. Fortschr Neurol Psychiatr 2015;83:9-17. https://doi.org/10.1055/s-0034-1385734
  123. Kilic T, Vural A, Ural D, et al. Cardiac resynchronization therapy in a case of myotonic dystrophy (Steinert's disease) and dilated cardiomyopathy. Pacing Clin Electrophysiol 2007;30:916-20. https://doi.org/10.1111/j.1540-8159.2007.00782.x
  124. Finsterer J, Stolberger C, Kopsa W. Noncompaction in myotonic dystrophy type 1 on cardiac MRI. Cardiology 2005;103:167-8. https://doi.org/10.1159/000084588
  125. Petri H, Ahtarovski KA, Vejlstrup N, et al. Myocardial fibrosis in patients with myotonic dystrophy type 1: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16:59. https://doi.org/10.1186/s12968-014-0059-z
  126. Petri H, Witting N, Ersboll MK, et al. High prevalence of cardiac involvement in patients with myotonic dystrophy type 1: a cross-sectional study. Int J Cardiol 2014;174:31-6. https://doi.org/10.1016/j.ijcard.2014.03.088
  127. Bu'Lock FA, Sood M, De Giovanni JV, Green SH. Left ventricular diastolic function in congenital myotonic dystrophy. Arch Dis Child 1999;80:267-70. https://doi.org/10.1136/adc.80.3.267
  128. Viitasalo MT, Kala R, Karli P, Eisalo A. Ambulatory electrocardiographic recording in mild or moderate myotonic dystrophy and myotonia congenita (Thomsen's disease). J Neurol Sci 1983;62:181-90. https://doi.org/10.1016/0022-510X(83)90198-3
  129. Kim HN, Cho YK, Cho JH, Yang EM, Song ES, Choi YY. Transient complete atrioventricular block in a preterm neonate with congenital myotonic dystrophy: case report. J Korean Med Sci 2014;29:879-83. https://doi.org/10.3346/jkms.2014.29.6.879
  130. Rudnik-Schoneborn S, Schaupp M, Lindner A, et al. Brugada-like cardiac disease in myotonic dystrophy type 2: report of two unrelated patients. Eur J Neurol 2011;18:191-4. https://doi.org/10.1111/j.1468-1331.2010.03077.x
  131. Lee TM, Maurer MS, Karbassi I, Braastad C, Batish SD, Chung WK. Severe dilated cardiomyopathy in a patient with myotonic dystrophy type 2 and homozygous repeat expansion in ZNF9. Congest Heart Fail 2012;18:183-6. https://doi.org/10.1111/j.1751-7133.2011.00265.x
  132. Wahbi K, Meune C, Bassez G, et al. Left ventricular non-compaction in a patient with myotonic dystrophy type 2. Neuromuscul Disord 2008;18:331-3. https://doi.org/10.1016/j.nmd.2007.11.012
  133. Brunetti-Pierri N, Pignatelli R, Fouladi N, et al. Dilation of the aortic root in mitochondrial disease patients. Mol Genet Metab 2011;103:167-70. https://doi.org/10.1016/j.ymgme.2011.02.007
  134. Finsterer J. Is atherosclerosis a mitochondrial disorder? Vasa 2007;36:229-40. https://doi.org/10.1024/0301-1526.36.4.229
  135. Dominic EA, Ramezani A, Anker SD, Verma M, Mehta N, Rao M. Mitochondrial cytopathies and cardiovascular disease. Heart 2014;100:611-8. https://doi.org/10.1136/heartjnl-2013-304657
  136. Yajima N, Yazaki Y, Yoshida K, et al. A case of mitochondrial cardiomyopathy with pericardial effusion evaluated by (99m)Tc-MIBI myocardial scintigraphy. J Nucl Cardiol 2009;16:989-94. https://doi.org/10.1007/s12350-009-9149-y
  137. Barisic N, Kleiner IM, Malcic I, Papa J, Boranic M. Spinal dysraphism associated with congenital heart disorder in a girl with MELAS syndrome and point mutation at mitochondrial DNA nucleotide 3271. Croat Med J 2002;43:37-41.
  138. Barragan-Campos HM, Barrera-Ramirez CF, Iturralde Torres P, et al. Kearns-Sayre syndromes an absolute indication for prophylactic implantation of definitive pacemaker? Arch Inst Cardiol Mex 1999;69:559-65.
  139. Aimo A, Giannoni A, Piepoli MF, et al. Myocardial damage in a mitochondrial myopathy patient with increased ergoreceptor sensitivity and sympatho-vagal imbalance. Int J Cardiol 2014;176:1396-8. https://doi.org/10.1016/j.ijcard.2014.08.022
  140. Brecht M, Richardson M, Taranath A, Grist S, Thorburn D, Bratkovic D. Leigh syndrome daused by the MT-ND5 m.13513G>A mutation: a case presenting with WPW-like conduction defect, cardiomyopathy, hypertension and hyponatraemia. JIMD Rep 2015;19:95-100.
  141. Limongelli G, Tome-Esteban M, Dejthevaporn C, Rahman S, Hanna MG, Elliott PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail 2010;12:114-21. https://doi.org/10.1093/eurjhf/hfp186
  142. Watanabe Y, Odaka M, Hirata K. Case of Leber's hereditary optic neuropathy with mitochondrial DNA 11778 mutation exhibiting cerebellar ataxia, dilated cardiomyopathy and peripheral neuropathy. Brain Nerve 2009;61:309-12.
  143. Florian A, Ludwig A, Stubbe-Drager B, et al. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. J Cardiovasc Magn Reson 2015;17:40. https://doi.org/10.1186/s12968-015-0145-x
  144. Brea-Calvo G, Haack TB, Karall D, et al. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet 2015;96:309-17. https://doi.org/10.1016/j.ajhg.2014.12.023
  145. Kopajtich R, Nicholls TJ, Rorbach J, et al. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 2014;95:708-20. https://doi.org/10.1016/j.ajhg.2014.10.017
  146. Distelmaier F, Haack TB, Catarino CB, et al. MRPL44 mutations cause a slowly progressive multisystem disease with childhood-onset hypertrophic cardiomyopathy. Neurogenetics 2015;16:319-23. https://doi.org/10.1007/s10048-015-0444-2
  147. Brisca G, Fiorillo C, Nesti C, et al. Early onset cardiomyopathy associated with the mitochondrial tRNALeu((UUR)) 3271T>C MELAS mutation. Biochem Biophys Res Commun 2015;458:601-4. https://doi.org/10.1016/j.bbrc.2015.01.157
  148. Wortmann SB, Champion MP, van den Heuvel L, et al. Mitochondrial DNA m.3242G > A mutation, an under diagnosed cause of hypertrophic cardiomyopathy and renal tubular dysfunction? Eur J Med Genet 2012;55:552-6. https://doi.org/10.1016/j.ejmg.2012.06.002
  149. Wang SB, Weng WC, Lee NC, Hwu WL, Fan PC, Lee WT. Mutation of mitochondrial DNA G13513A presenting with Leigh syndrome, Wolff-Parkinson-White syndrome and cardiomyopathy. Pediatr Neonatol 2008;49:145-9. https://doi.org/10.1016/S1875-9572(08)60030-3
  150. Menotti F, Brega A, Diegoli M, Grasso M, Modena MG, Arbustini E. A novel mtDNA point mutation in tRNA(Val) is associated with hypertrophic cardiomyopathy and MELAS. Ital Heart J 2004;5:460-5.
  151. Homan DJ, Niyazov DM, Fisher PW, et al. Heart transplantation for a patient with Kearns-Sayre syndrome and end-stage heart failure. Congest Heart Fail 2011;17:102-4.
  152. Malfatti E, Laforet P, Jardel C, et al. High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology 2013;80:100-5. https://doi.org/10.1212/WNL.0b013e31827b1a2f
  153. Finsterer J, Stollberger C, Sehnal E, Valentin A, Huber J, Schmiedel J. Apical ballooning (Takotsubo syndrome) in mitochondrial disorder during mechanical ventilation. J Cardiovasc Med (Hagerstown) 2007;8:859-63. https://doi.org/10.2459/JCM.0b013e3280103d1b
  154. Sacconi S, Wahbi K, Theodore G, et al. Atrio-ventricular block requiring pacemaker in patients with late onset Pompe disease. Neuromuscul Disord 2014;24:648-50. https://doi.org/10.1016/j.nmd.2014.04.005
  155. Mogahed EA, Girgis MY, Sobhy R, Elhabashy H, Abdelaziz OM, El-Karaksy H. Skeletal and cardiac muscle involvement in children with glycogen storage disease type III. Eur J Pediatr 2015;174:1545-8. https://doi.org/10.1007/s00431-015-2546-0
  156. Sentner CP, Caliskan K, Vletter WB, Smit GP. Heart failure due to severe hypertrophic cardiomyopathy reversed by low calorie, high protein dietary adjustments in a glycogen storage disease type IIIa patient. JIMD Rep 2012;5:13-6.
  157. Austin SL, Proia AD, Spencer-Manzon MJ, Butany J, Wechsler SB, Kishnani PS. Cardiac pathology in glycogen storage disease type III. JIMD Rep 2012;6:65-72.
  158. LaBarbera M, Milechman G, Dulbecco F. Premature coronary artery disease in a patient with glycogen storage disease III. J Invasive Cardiol 2010;22:E156-8.
  159. Magoulas PL, El-Hattab AW. Glycogen Storage Disease Type IV. 2013 Jan 03. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. GeneReviews$^{(R)}$ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015. Available from http://www.ncbi.nlm.nih.gov/books/NBK115333/.
  160. Moustafa S, Patton DJ, Connelly MS. Unforeseen cardiac involvement in McArdle's disease. Heart Lung Circ 2013;22:769-71. https://doi.org/10.1016/j.hlc.2012.12.004
  161. Amit R, Bashan N, Abarbanel JM, Shapira Y, Sofer S, Moses S. Fatal familial infantile glycogen storage disease: multisystem phosphofructokinase deficiency. Muscle Nerve 1992;15:455-8. https://doi.org/10.1002/mus.880150406
  162. Schoser B, Bruno C, Schneider HC, et al. Unclassified polysaccharidosis of the heart and skeletal muscle in siblings. Mol Genet Metab 2008;95:52-8. https://doi.org/10.1016/j.ymgme.2008.07.005
  163. Baruteau J, Sachs P, Broue P, et al. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis 2013;36:795-803. https://doi.org/10.1007/s10545-012-9542-6
  164. Ojala T, Nupponen I, Saloranta C, et al. Fetal left ventricular noncompaction cardiomyopathy and fatal outcome due to complete deficiency of mitochondrial trifunctional protein. Eur J Pediatr 2015;174:1689-92. https://doi.org/10.1007/s00431-015-2574-9
  165. Zhang RN, Li YF, Qiu WJ, et al. Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency. World J Pediatr 2014;10:119-25. https://doi.org/10.1007/s12519-014-0480-2
  166. Eminoglu TF, Tumer L, Okur I, Ezgu FS, Biberoglu G, Hasanoglu A. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide. Forensic Sci Int 2011;210:e1-3. https://doi.org/10.1016/j.forsciint.2011.04.003
  167. Missaglia S, Tasca E, Angelini C, Moro L, Tavian D. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings. Mol Genet Metab 2015;115:110-7. https://doi.org/10.1016/j.ymgme.2015.05.001
  168. Kaneko K, Kuroda H, Izumi R, et al. A novel mutation in PNPLA2 causes neutral lipid storage disease with myopathy and triglyceride deposit cardiomyovasculopathy: a case report and literature review. Neuromuscul Disord 2014;24:634-41. https://doi.org/10.1016/j.nmd.2014.04.001
  169. Iacobazzi V, Invernizzi F, Baratta S, et al. Molecular and functional analysis of SLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency. Hum Mutat 2004;24:312-20. https://doi.org/10.1002/humu.20085
  170. Yilmaz BS, Kor D, Mungan NO, Erdem S, Ceylaner S. Primary systemic carnitine deficiency: a Turkish case with a novel homozygous SLC22A5 mutation and 14 years follow-up. J Pediatr Endocrinol Metab 2015;28:1179-81.
  171. Ronvelia D, Greenwood J, Platt J, Hakim S, Zaragoza MV. Intrafamilial variability for novel TAZ gene mutation: barth syndrome with dilated cardiomyopathy and heart failure in an infant and left ventricular noncompaction in his great-uncle. Mol Genet Metab 2012;107:428-32. https://doi.org/10.1016/j.ymgme.2012.09.013
  172. Van Der Starre P, Deuse T, Pritts C, Brun C, Vogel H, Oyer P. Late profound muscle weakness following heart transplantation due to Danon disease. Muscle Nerve 2013;47:135-7. https://doi.org/10.1002/mus.23517
  173. Miani D, Taylor M, Mestroni L, et al. Sudden death associated with danon disease in women. Am J Cardiol 2012;109:406-11. https://doi.org/10.1016/j.amjcard.2011.09.024
  174. Oliveira J, Negrao L, Fineza I, et al. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J Hum Genet 2015;60:305-12. https://doi.org/10.1038/jhg.2015.20
  175. Dittrich S, Tuerk M, Haaker G, et al. Cardiomyopathy in duchenne muscular dystrophy: current value of clinical, electrophysiological and imaging findings in children and teenagers. Klin Padiatr 2015;227:225-231. https://doi.org/10.1055/s-0034-1398689
  176. van Westering TL, Betts CA, Wood MJ. Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 2015;20:8823-55. https://doi.org/10.3390/molecules20058823
  177. Wochna K, Jurczyk AP, Krajewski W, Berent J. Sudden death due to malignant hyperthermia during general anesthesia. Arch Med Sadowej Kryminol 2013;63:11-4, 7-10.
  178. Finsterer J, Cripe L. Treatment of dystrophin cardiomyopathies. Nat Rev Cardiol 2014;11:168-79. https://doi.org/10.1038/nrcardio.2013.213
  179. Dec GW. Steroid therapy effectively delays Duchenne's cardiomyopathy. J Am Coll Cardiol 2013;61:955-6. https://doi.org/10.1016/j.jacc.2012.12.011
  180. But WM, Lee SH, Chan AO, Lau GT. Enzyme replacement therapy for infantile Pompe disease during the critical period and identification of a novel mutation. Hong Kong Med J 2009;15:474-7.
  181. Prater SN, Banugaria SG, DeArmey SM, et al. The emerging phenotype of long-term survivors with infantile Pompe disease. Genet Med 2012;14:800-10. https://doi.org/10.1038/gim.2012.44
  182. Yoda M, Tanabe H, Nishino I, Suma H. Left ventriculoplasty for dilated cardiomyopathy in Fukuyama-type muscular dystrophy. Eur J Cardiothorac Surg 2011;40:514-6.
  183. Jefferies JL, Wilkinson JD, Sleeper LA, et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the pediatric cardiomyopathy registry. J Card Fail 2015;21:877-84. https://doi.org/10.1016/j.cardfail.2015.06.381
  184. Authors/Task Force members, Elliott PM, Anastasakis A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2733-79. https://doi.org/10.1093/eurheartj/ehu284
  185. Gdynia HJ, Kurt A, Endruhn S, Ludolph AC, Sperfeld AD. Cardiomyopathy in motor neuron diseases. J Neurol Neurosurg Psychiatry 2006;77:671-3. https://doi.org/10.1136/jnnp.2005.078600
  186. Hattori T, Ikeda S, Yoshida K, Yanagisawa N, Furihata K, Yoshida K. A patient with Kennedy-Alter-Sung syndrome showing cardiomyopathy. Rinsho Shinkeigaku 1995;35:1246-9.
  187. Al-Thihli K, Ebrahim H, Hughes DA, et al. A variant of unknown significance in the GLA gene causing diagnostic uncertainty in a young female with isolated hypertrophic cardiomyopathy. Gene 2012;497:320-2. https://doi.org/10.1016/j.gene.2012.01.056
  188. Nussinovitch U, Katz U, Nussinovitch M, Nussinovitch N. Beat-to-beat QT interval dynamics and variability in familial dysautonomia. Pediatr Cardiol 2010;31:80-4. https://doi.org/10.1007/s00246-009-9575-2
  189. Ergul Y, Ekici B, Keskin S. Cardiac arrest after anesthetic management in a patient with hereditary sensory autonomic neuropathy type IV. Saudi J Anaesth 2011;5:93-5. https://doi.org/10.4103/1658-354X.76486
  190. Losito L, De Rinaldis M, Gennaro L, et al. Charcot-Marie-Tooth type 1a in a child with Long QT syndrome. Eur J Paediatr Neurol 2009;13:459-62. https://doi.org/10.1016/j.ejpn.2008.07.011
  191. Millaire A, Warembourg A, Leys D, et al. Refsum's disease. Apropos of 2 cases disclosed by myocardiopathy. Ann Cardiol Angeiol (Paris) 1990;39:173-8.
  192. Nakagawa H, Okayama S, Kamon D, et al. Refractory high output heart failure in a patient with primary mitochondrial respiratory chain disease. Intern Med 2014;53:315-9. https://doi.org/10.2169/internalmedicine.53.1386
  193. Palecek T, Tesarova M, Kuchynka P, et al. Hypertrophic cardiomyopathy due to the mitochondrial DNA mutation m.3303C>T diagnosed in an adult male. Int Heart J 2012;53:383-7. https://doi.org/10.1536/ihj.53.383

Cited by

  1. Managing dystrophinopathic cardiomyopathy vol.4, pp.11, 2016, https://doi.org/10.1080/21678707.2016.1234373
  2. Anesthetic consideration for neuromuscular diseases vol.30, pp.3, 2016, https://doi.org/10.1097/aco.0000000000000466
  3. Neuromuscular Disorders and the Role of the Clinical Electrophysiologist vol.3, pp.10, 2016, https://doi.org/10.1016/j.jacep.2017.04.023
  4. Neurohumoral treatment for cardiac disease in dystrophinopathies and mitochondrial disorders vol.24, pp.16, 2016, https://doi.org/10.1177/2047487317731165
  5. 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Fo vol.140, pp.8, 2016, https://doi.org/10.1161/cir.0000000000000628
  6. Subclinical Cardiomyopathy in Miyoshi Myopathy Detected by Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging : A Case for Routine Cardiac Screening? vol.62, pp.1, 2016, https://doi.org/10.1536/ihj.20-354
  7. Non-compaction cardiomyopathy, Becker muscular dystrophy, neuropathy and recurrent syncope vol.14, pp.11, 2016, https://doi.org/10.1136/bcr-2021-244745
  8. Progressive myocardial injury in myotonic dystrophy type II and facioscapulohumeral muscular dystrophy 1: a cardiovascular magnetic resonance follow-up study vol.23, pp.1, 2021, https://doi.org/10.1186/s12968-021-00812-6