'되먹임 기반' 사구 역학 모형의 호환 가능성에 대한 이론적 고찰 - 플럭스, 사면조정, 바람그늘 문제를 중심으로 -

Theoretical Investigations on Compatibility of Feedback-Based Cellular Models for Dune Dynamics : Sand Fluxes, Avalanches, and Wind Shadow

  • 류호상 (전북대학교 사범대학 지리교육과)
  • RHEW, Hosahng (Department of Geography Education, Chonbuk National University)
  • 투고 : 2016.08.11
  • 심사 : 2016.08.25
  • 발행 : 2016.08.31

초록

풍성사구는 바람, 모래 지면, 식생 간 상호작용의 결과로 발달하는 지형이다. 되먹임 기반 사구역학 모형은 풍성사구가 자기조직 현상에 의해 생성된다는 데 초점을 맞춘다. 풍속장의 정확한 재현에 초점을 맞추는 외력 기반 모형과는 달리 되먹임 기반 모형은 지형발달 과정에서 도출한 현상학적 규칙을 이용해 지형 역학을 분석한다. 되먹임 기반 모형은 성공적으로 사구형성 과정을 재현하지만, 규칙 설정의 융통성 수준에 대한 이해를 요구한다. 이 연구는 사구의 패턴을 재현하는 데 성공적이라고 평가되는 '모래판 모형(sand slab models)', 'Nishimori 모형', 'de Castro 모형'을 비교하여 알고리듬간 호환 가능성을 분석하였다. 주요 결과는 다음과 같다. 첫째, 모래이동 플럭스의 관점에서 모래판 모형과 de Castro 모형은 호환이 용이하지만 Nishimori 모형은 조정인자를 고려해야 한다. 둘째, 사면조정에 관한 Nishimori 모형의 알고리듬은 다른 모형이 채택하고 있는 안식각 기준을 손쉽게 이식할 수 있다. 셋째, 모래판 모형과 de Castro 모형이 채택하는 바람그늘 규칙은 사구 성장 및 발달에 필수 요인은 아닐 수 있으며, 사구열 수준의 상호작용에서 보다 중요한 역할을 할 것으로 보인다. 모래판 모형과 de Castro 모형, Nishimori 모형은 대체로 호환 가능한 구조를 갖추고 있다고 판단되나 호환 가능성의 수준을 판단하려면 보다 체계적인 검토가 필요하다.

Two different modelling approaches to dune dynamics have been established thus far; continuous models that emphasize the precise representation of wind field, and feedback-based models that focus on the interactions between dunes, rather than aerodynamics. Though feedback-based models have proven their capability to capture the essence of dune dynamics, the compatibility issues on these models have less been addressed. This research investigated, mostly from the theoretical point of view, the algorithmic compatibility of three feedback-based dune models: sand slab models, Nishimori model, and de Castro model. Major findings are as follows. First, sand slab models and de Castro model are both compatible in terms of flux perspectives, whereas Nishimori model needs a tuning factor. Second, the algorithm of avalanching can be easily implemented via repetitive spatial smoothing, showing high compatibility between models. Finally, the wind shadow rule might not be a necessary component to reproduce dune patterns unlike the interpretation or assumption of previous studies. The wind shadow rule, rather, might be more important in understanding bedform-level interactions. Overall, three models show high compatibility between them, or seem to require relatively small modification, though more thorough investigation is needed.

키워드

참고문헌

  1. Baas, A.C.W. and Nield, J.M., 2007, Modelling vegetated dune landscapes, Geophysical Research Letters, 34, L06405, doi:10.1029/2006GL029152.
  2. Baas, A.C.W., 2007, Complex systems in aeolian geomorphology, Geomorphology, 91, 311-331. https://doi.org/10.1016/j.geomorph.2007.04.012
  3. Bishop, S.R., Momiji, H., Carrentero-Gonzalez and Warren, A., 2002, Modelling Desert Dune Fields Based on Discrete Dynamics, Discrete Dynamics in Nature and Society, 7(1), 7-17. https://doi.org/10.1080/10260220290013462
  4. Coco, G. and Murray, A.B., 2007, Patterns in the sand: From forcing templates to selforganization, Geomorphology, 91, 271-290. https://doi.org/10.1016/j.geomorph.2007.04.023
  5. de Castro, F., 1995, Computer simulation of the dynamics of a dune system, Ecological Modelling, 78, 205-217. https://doi.org/10.1016/0304-3800(93)E0090-P
  6. Duran, O., Parteli, E.J.R. and Herrmann, H.J., 2010, A continous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields, Earth Surface Processes and Landforms, 35, 1591-1600. https://doi.org/10.1002/esp.2070
  7. Jackson, D.W.T., Beyers, J.H.M., Lynch, K., Cooper, J.A.G., Baas, A.C.W. and Delgado-Fernandez, I., 2011, Investigation of threedimensional wind flow behaviour over coastal dune morphology under offshore winds using computational fluid dynamics (CFD) and ultrasonic anemometry, Earth Surface Processes and Landforms, 36, 1113-1124. https://doi.org/10.1002/esp.2139
  8. Jackson, P.S. and Hunt, J.C.R., 1975, Turbulent wind flow over a low hill, Quarterly Journal of the Royal Meteorological Society, 101, 929-955. https://doi.org/10.1002/qj.49710143015
  9. Katsuki, A., Nishimori, H., Endo, N. and Tankguchi, K., 2005, Collision Dynamics of Two Barchan Dunes Simulated Using a Simple Model, Journal of the Physical Society of Japan, 74(2), 538-541. https://doi.org/10.1143/JPSJ.74.538
  10. Kocurek, G., Ewing, R.C. and Mohrig, D., 2010, How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions, Earth Surface Processes and Landforms, 35, 51-63. https://doi.org/10.1002/esp.1913
  11. Kroy, K., Sauermann, G. and Herrmann, H.J., 2002a Minimal model for sand dunes, Physical Review Letters, 88(5), DOI:10.1103/PhysRevLett.88.054301.
  12. Kroy, K., Sauermann, G. and Herrmann, H.J., 2002b, Minimal model for aeolian sand dunes, Physical Review, E, 66, 031302, DOI:10.1103/PhysRevE.66.031302.
  13. Lima, A.R., Sauermann, G., Herrmann, H.J. and Kroy, K., 2002, Modelling a dune field, Physica, A, 310, 487-500. https://doi.org/10.1016/S0378-4371(02)00546-0
  14. Maun, M.A., 2009, The Biology of Coastal Sand Dunes, Oxford University Press.
  15. Momiji, H., Carretero-Gonzalez, R., Bishop, S.R. and Warren, A., 2000, Simulation of the effect of wind speedup in the formation of transverse dune fields, Earth Surface Processes and Landforms, 25, 905-918. https://doi.org/10.1002/1096-9837(200008)25:8<905::AID-ESP112>3.0.CO;2-Z
  16. Nield, J.M. and Baas, A.C.W., 2008a, Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach, Earth Surface Processes and Landforms, 33, 724-740. https://doi.org/10.1002/esp.1571
  17. Nield, J.M. and Baas, A.C.W., 2008b, The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response, Global and Planetary Change, 64, 76-92. https://doi.org/10.1016/j.gloplacha.2008.10.002
  18. Nishimori, H. and Ouchi, N., 1993, Formation of Ripple Patterns and Dunes by Wind-blown Sand, Physical Reveiw Letters, 71(1), 197-200. https://doi.org/10.1103/PhysRevLett.71.197
  19. Nishimori, H. and Tanaka, H., 2001, A simple model for the formation of vegetated dunes, Earth Surface Processes and Landforms, 26, 1143-1150. https://doi.org/10.1002/esp.258
  20. Nishimori, H., 2015, Dynamics of Sand Ripples and Dunes, Forma, 30, S91-S94.
  21. Nishimori, H., Yamasaki, M. and Andersen, K.H., 1998, A simple model for the various pattern dynamics of dunes, International Journal of Modern Physics, B, 12(3), 257-272. https://doi.org/10.1142/S021797929800020X
  22. Ortiz, P. and Smolarkiewicz, P.K., 2006, Numerical simulation of sand dune evolution in severe winds, International Journal for Numerical Methods in Fluids, 50, 1229-1246. https://doi.org/10.1002/fld.1138
  23. Parsons, D.R., Walker, I.J. and Wiggs, G.F.S., 2004, Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry, Geomorphology, 59, 149-164. https://doi.org/10.1016/j.geomorph.2003.09.012
  24. Parteli, E.J.R. and Herrmann, H.J., 2003, A simple model for a transverse dune field, Physica, A, 327, 554-562. https://doi.org/10.1016/S0378-4371(03)00512-0
  25. Pelletier, J.D., Mitasova, H., Harmon, R.S. and Overton, M., 2009, The effects of interdune vegetation changes on eolian dune field evolution: a numerical modeling case study at Jockey's Ridge, North Carolina, USA, Earth Surface Processes and Landforms, 34, 1245-1254. https://doi.org/10.1002/esp.1809
  26. Pethick, J., 1984, An Introduction to Coastal Geomorphology, Routledge.
  27. Sauermann, G., Kroy, K. and Herrmann, H.J., 2001, Continuum saltation model for sand dunes, Physical Review, E, 64, 031305, DOI:10.1103/PhysRevE.64.031305.
  28. Smyth, T.A.G., Jackson, D.W.T. and Cooper, J.A.G., 2011, Computational Fluid Dynamic modelling of Three-Dimensional airflow over dune blowouts, Journal of Coastal Research, SI64, 314-318.
  29. Stallins, J.A. and Parker, 2003, The Influence of Complex Systems Interactions on Barrier Island Dune Vegetation Pattern and Process, Annals of the Association of American Geographers, 93(1), 13-29. https://doi.org/10.1111/1467-8306.93102
  30. Stallins, J.A., 2005, Stablity domains in barrier island dune systems, Ecological Complexity, 2, 410-430. https://doi.org/10.1016/j.ecocom.2005.04.011
  31. van Boxel, J.H., Arens, S.M. and van Dijk, P.M., 1999, Aeolian processes across transverse dunes I: modelling the air flow, Earth Surface Processes and Landforms, 24, 255-270. https://doi.org/10.1002/(SICI)1096-9837(199903)24:3<255::AID-ESP962>3.0.CO;2-3
  32. Weng, W.S., Hunt, J.C.R., Carruthers, D.J., Warren, A., Wiggs, G.F.S., Livingston, I. and Castro, I., 1991, Air flow and sand transport over sand-dunes, Acta Mechanica (Suppl.), 2, 1-22.
  33. Werner, B.T. and Kocurek, G., 1997, Bed-form dynamics: does the tail wag the dog? Geology, 25, 771-774. https://doi.org/10.1130/0091-7613(1997)025<0771:BFDDTT>2.3.CO;2
  34. Werner, B.T. and Kocurek, G., 1999, Bedform spacing from defect dynamics, Geology, 27, 727-730. https://doi.org/10.1130/0091-7613(1999)027<0727:BSFDD>2.3.CO;2
  35. Werner, B.T., 1995, Eolian dunes: computer simulations and attractor interpretation, Geology, 23(12), 1107-1110. https://doi.org/10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2
  36. Wiggs, G.F.S., 2001, Desert dune processes and dynamics, Progress in Physical Geography, 25(1), 53-79. https://doi.org/10.1177/030913330102500103