DOI QR코드

DOI QR Code

영상기반 방사성동위원소 흡수선량 평가

Image-based Absorbed Dosimetry of Radioisotope

  • 박용성 (한국원자력의학원 RI융합부) ;
  • 이용진 (한국원자력의학원 RI융합부) ;
  • 김욱 (한국원자력의학원 RI융합부) ;
  • 지영훈 (한국원자력의학원 방사선종양학과) ;
  • 김근배 (한국원자력의학원 방사선종양학과) ;
  • 강주현 (한국원자력의학원 RI융합부) ;
  • 임상무 (한국원자력의학원 RI융합부) ;
  • 우상근 (한국원자력의학원 RI융합부)
  • Park, Yong Sung (Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Yong Jin (Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Wook (Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences) ;
  • Ji, Young Hoon (Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Kum Bae (Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Kang, Joo Hyun (Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences) ;
  • Lim, Sang Moo (Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences) ;
  • Woo, Sang-Keun (Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences)
  • 투고 : 2016.05.30
  • 심사 : 2016.06.21
  • 발행 : 2016.06.30

초록

디지털 팬텀을 사용한 선량평가 방법은 일반화된 장기에 대해서만 평가가 가능하여 종양에 대한 선량평가가 불가능하다. 이에 본 연구에서는 몸통 팬텀에 방사성동위원소를 주입하고 실제 측정된 CT 영상을 기반으로 장기와 종양에 대하여 몬테카를로 시뮬레이션을 이용하여 S-value를 계산함으로써 장기와 종양에 대한 흡수선량을 평가하고자 하였다. 몸통 팬텀은 폐, 간, 척추, 실린더로 구성되어 있으며 구 모형 팬텀을 이용하여 종양을 모사하였다. 방사성동위원소의 실제 선량 측정은 방사성동위원소 Cu-64 73.85 MBq 주입된 몸통 팬텀에 유리선량계(glass dosimeter)를 삽입하여 방사성동위원소의 선량을 측정하였다. 몬테카를로 시뮬레이션을 위한 몸통 팬텀의 각 영역 정보는 Cu-64가 주입된 몸통 팬텀을 이용하여 PET/CT 영상을 획득하고 CT영상의 해부학적 정보를 우선으로 평균값과 매뉴얼로 각 장기 및 종양을 영역별로 분할하여 제공하였다. 방사성동위원소의 영역별 잔류시간은 PET 영상에서 분할된 영역을 기반으로 시간변화에 따라 Cu-64 방사능량을 측정하여 계산하였다. 각 영역의 S-value는 몬테카를로 시뮬레이션에 입력된 공간상의 좌표, 복셀 크기, 밀도정보를 사용하여 계산하였다. 흡수선량 평가는 몬테카를로 시뮬레이션을 이용하여 선량분포를 계산하였으며 각 영역별로 미치는 S-value와 잔류시간을 이용하여 계산하였다. 각 영역에서의 흡수선량은 간에서 4.52E-02 mGy/MBq, 종양1에서 4.61E-02 mGy/MBq, 그리고 종양2에서 5.98E-02 mGy/MBq으로 평가되었다. 유리선량계로 측정된 선량 값과 시뮬레이션을 통해 계산된 선량 값의 차이는 평균 12.3% 이내의 차이를 보였다. 본 연구결과는 다양한 크기와 위치에 대하여 영상기반 선량평가의 적용가능성을 제시하였다.

An absorbed dose calculation method using a digital phantom is implemented in normal organs. This method cannot be employed for calculating the absorbed dose of tumor. In this study, we measure the S-value for calculating the absorbed dose of each organ and tumor. We inject a radioisotope into a torso phantom and perform Monte Carlo simulation based on the CT data. The torso phantom has lung, liver, spinal, cylinder, and tumor simulated using a spherical phantom. The radioactivity of the actual absorbed dose is measured using the injected dose of the radioisotope, which is Cu-64 73.85 MBq, and detected using a glass dosimeter in the torso phantom. To perform the Monte Carlo simulation, the information on each organ and tumor acquired using the PET/CT and CT data provides anatomical information. The anatomical information is offered above mean value and manually segmented for each organ and tumor. The residence time of the radioisotope in each organ and tumor is calculated using the time activity curve of Cu-64 radioactivity. The S-values of each organ and tumor are calculated based on the Monte Carlo simulation data using the spatial coordinate, voxel size, and density information. The absorbed dose is evaluated using that obtained through the Monte Carlo simulation and the S-value and the residence time in each organ and tumor. The absorbed dose in liver, tumor1, and tumor2 is 4.52E-02, 4.61E-02, and 5.98E-02 mGy/MBq, respectively. The difference in the absorbed dose measured using the glass dosimeter and that obtained through the Monte Carlo simulation data is within 12.3%. The result of this study is that the absorbed dose obtained using an image can evaluate each difference region and size of a region of interest.

키워드

참고문헌

  1. Bar-Shalom R, Yefremov N, Guralnik L, et al: Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44(8): 1200-1209 (2003)
  2. Antoch G, Saoudi N, Kuehl H, et al: Accuracy of wholebody dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22(21): 4357-4368 (2004) https://doi.org/10.1200/JCO.2004.08.120
  3. Mack A, Scheib SG, Major J, et al: Precision dosimetry for narrow photon beams used in radiosurgery Determination of Gamma Knife output factors. Med Phys 29:2080-2089 (2002) https://doi.org/10.1118/1.1501138
  4. Huang SY, Bolch WE, Lee C, et al: Patient-specific dosimetry using pretherapy [$^{124}I$]m-iodobenzylguanidine ([$^{124}I$]mIBG) dynamic PET/CT imaging before [$^{131}I$]mIBG targeted radionuclide therapy for neuroblastoma. Mol Imaging Biol 17(2):284-294 (2015) https://doi.org/10.1007/s11307-014-0783-7
  5. Neto VL, Vieira JW, Lima FR: Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images. Radiol Bras. Set 47:275-282 (2014) https://doi.org/10.1590/0100-3984.2013.1744
  6. Miller G, Martz HF, Little TT, et al: Bayesian internal dosimetry calculations using Markov Chain Monte Carlo. Radiation Protection Dosimetry 98:191-198 (2002) https://doi.org/10.1093/oxfordjournals.rpd.a006709
  7. Berger MJ: MIRD Pamphlet No. 7: distribution of absorbed doses around point sources of electrons and beta particles in water and other media. J Nucl Med 12:5-23 (1971)
  8. Snyder WS, Ford MR, Warner GG, et al: MIRD Pamphlet No. 11: 'S', Absorbed dose per unit cumulated activity for selected radionuclides and organs, The Society of Nuclear Medicine, New York (1975)
  9. Stabin MG: MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538-546 (1996)
  10. Caon M: Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys 42:229-235 (2004) https://doi.org/10.1007/s00411-003-0221-8
  11. Stabin MG; Richard B. Sparks, Eric Crowe: OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine. THE JOURNAL OF NUCLEAR MEDICINE 46:1023-1027 (2005)
  12. Thomas SR, Stabin MG, Chen CT, et al: MIRD Pamphlet No. 14: A Dynamic Urinary Bladder Model for Radiation Dose Calculations. The Journal of Nuclear Medicine 33:783-802 (1992)
  13. Koepfli P, Hany TF, Wyss CA, et al: CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med. 45(4):537-542 (2004)
  14. Stabin MG, Flux GD: Internal dosimetry as a tool for radiation protection of the patient in nuclear medicine. Biomed Imaging Interv J 3(2)e28:1-11 (2007)
  15. Treyer V, Streffer J, Ametamey SM, et al: Radiation dosimetry and biodistribution of 11C-ABP688 measured in healthy volunteers. Eur J Nucl Med Mol Imaging 35:766-770 (2008) https://doi.org/10.1007/s00259-007-0638-4
  16. Stabin MG, Yoriyaz H: Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 82:21-44 (2002) https://doi.org/10.1097/00004032-200201000-00005
  17. Stabin MG: Nuclear medicine dosimetry. Phys Med Biol 51:R187-R202 (2006) https://doi.org/10.1088/0031-9155/51/13/R12
  18. Loevinger R, Budinger T, Watson E: MIRD Primer for Absorbed Dose Calculations, Society of Nuclear Medicine, New York (1988)

피인용 문헌

  1. Evaluation of absorbed dose in monkey and mouse using 18F-FDG PET and CT density information vol.3, pp.1, 2016, https://doi.org/10.22643/jrmp.2017.3.1.18
  2. Development of 64Cu-NOTA-Trastuzumab for HER2 Targeting: A Radiopharmaceutical with Improved Pharmacokinetics for Human Studies vol.60, pp.1, 2019, https://doi.org/10.2967/jnumed.118.210294