DOI QR코드

DOI QR Code

The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser

분광분석을 활용한 고에너지 레이저 환경에서의 알루미늄-산소 화학반응 연구

  • Kim, Chang-hwan (Defense Industry Technology Center, Agency for Defense Development)
  • Received : 2016.07.10
  • Accepted : 2016.08.30
  • Published : 2016.09.01

Abstract

Laser-induced combustions and explosions generated by high laser irradiances were explored by Laser-Induced Breakdown Spectroscopy (LIBS). The laser used for target ablation is a Q-switched Nd:YAG laser with 7 ns pulse duration at wavelength of 1064 nm laser energies from 40 mJ to 2500 mJ ($6.88{\times}10^{10}-6.53{\times}10^{11}W/cm^2$). The plasma light source from aluminum detected by the echelle grating spectrometer and coupled to the gated ICCD(a resolution (${\lambda}/{\Delta}{\lambda}$) of 5000). This spectroscopic study has been investigated for obtaining both the atomic/molecular signals of aluminum-oxygen and the calculated ambient condition such as plasma temperature and electron density. The essence of the paper is observing specific electron density ratio which can support the processes of chemical reaction and combustion between ablated aluminum plume and oxygen from air by inducing high laser energy.

이차 추진제로 많이 쓰이는 알루미늄을 고출력 레이저를 조사하여 공기 중의 산소와 반응시켜 발생되는 알루미늄과 산소의 화학 반응을 레이저 분광분석법을 이용하여 연구를 수행 하였다. 7ns의 펄스 주기와 1064nm의 주파수를 가진 Q-switched Nd:YAG 레이저로 40 - 2500mJ($6.88{\times}10^{10}-6.53{\times}10^{11}W/cm^2$)의 에너지가 공급되었으며, 플라즈마 빛은 echelle 회절 분광기와 ICCD 카메라로 감지하였다. 분광분석을 통하여 알루미늄과 산소의 원자/분자 신호 분석과 현상이 일어나는 플라즈마 환경의 특성 연구를 위해 들뜸 온도(2200K~6600K) 및 전자밀도($3.15{\times}10^{15}{\sim}2.38{\times}10^{16}cm^{-3}$) 계산, 그리고 알루미늄 표면의 크레이터(Crater) 분석을 수행하였다. 본 연구는 고 레이저 복사 조도 환경하에서 발생되는 화학 반응과 플라즈마의 특성을 파악하는 방법을 제시하고 있다.

Keywords

References

  1. Russo, R. E., "Laser ablation," Appl. Spectrosc., Vol. 49, 1995, 14A
  2. Glassman, I., "Metal Combustion Processes," American Rocket Society Preprint 938-59, New York, 1959
  3. Brzustowski T. A., Glassman I., "Spectroscopic Investigation of Metal Combustion," Heterogeneous Combustion, Academic Press, New York, 1964, pp 41-74
  4. Price, E. W., "Combustion of Metalized Propellants, Fundamentals of Solid-Propellant Combustion," Progress in Astronautics and Aeronautics, Vol. 90, 1984, pp. 479-514
  5. Trunov ] M. A., Zhu X., Dreizin E. L., "Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders," Combustion and Flame, Vol. 140, 2005, pp. 310-318 https://doi.org/10.1016/j.combustflame.2004.10.010
  6. Beckstead M. W., "Correlating Aluminum Burning Times," Combustion, Explosion, and Shock Waves, Vol. 41, No. 5, 2005, pp. 533-546 https://doi.org/10.1007/s10573-005-0067-2
  7. Risha G. A., Son S. F. , Yetter R. A., Yang V., Tappan B. C., "Combustion of nano-aluminum and liquid water," Proceedings of the Combustion Institute, Vol. 31, 2007, pp. 2029-2036
  8. Zhang F., Gerrard K., Ripley R. C., "Reaction Mechanism of Aluminum-Particle- Air Detonation," J. Propul. Power, Vol. 25, No. 4, 2009, pp. 845 https://doi.org/10.2514/1.41707
  9. Kim C., Gojani A. B., Yoh J. J., "Surface chemical reaction of laser ablated aluminum sample for detonation initiation," J. Appl. Physics, Vol. 109, Issue. 9, 2011, pp. 3510-3515
  10. Miziolek, A. W., Palleschi, V., Schechter, I., "Laser Induced Breakdown Spectroscopy," Cambridge university press, 2006, pp. 1-40
  11. Choi S. J., Yoh J. I., "Characteristics of Laser-Induced Breakdown Spectroscopy (LIBS) at Space Environment for Space Resources Exploration," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 40, Issue. 4, 2012, pp. 346-353 https://doi.org/10.5139/JKSAS.2012.40.4.346
  12. Amir Hossein R., Mohammad Hossein K., Masoud Kavosh T., Seyyed Mohammad R. D., Amir Hossein F., Seyyed Jabbar M., and Ali M., "Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy," Applied Optics, Vol. 55, Issue 12, 2016, pp. 3233-3240 https://doi.org/10.1364/AO.55.003233
  13. Cremers D. A., Radziemski L. J., "Handbook of Laser-induced Breakdown Spectroscopy," John Wiley & Sons Ltd, 2006, pp. 31-36
  14. Singh J. P., Thakur S. N., "Laser-induced Breakdown Spectroscopy," 1st, ELSEVIER, 2007, pp. 83-108
  15. Zhang Y., Zhao Z., Xu T., Niu G.H., Liu Y., Duan Y., "Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma," Journal of Applied Optics, Vol. 55, Issue 10, 2016, pp. 2741-2747 https://doi.org/10.1364/AO.55.002741
  16. Griem H.R., "Plasma Spectroscopy," McGraw-Hill, New York, 1964, pp. 1-250
  17. Sarandaev E. V., Salakhov M. K. H., "Regularities in the Stark widths and shifts of spectral lines of singly-ionized aluminum," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 56, Issue 3, 1996, pp. 399-407 https://doi.org/10.1016/0022-4073(96)84529-8
  18. Harilal S. S., O'Shay B., Tillack M. S., Mathew M. V., "Spectroscopic characterization of laser-induced tin plasma," Journal of Applied Physics, Vol. 98, Issue 1, 2005, pp. 3306-3312