Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Abhilash, S. and Jeffrey, M.F. (2014), "Non-Gaussian analysis methods for planing craft motion", Ocean Syst. Eng., 4(4), 293-308. https://doi.org/10.12989/ose.2014.4.4.293
- Akdag, S.A., Bagiorgas, H.S. and Mihalakakou, G. (2010), "Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean", Appl. Energ., 87(8), 2566-2573 https://doi.org/10.1016/j.apenergy.2010.02.033
- Bordes, L., Mottelet, S. and Vandekerkhove, P. (2006). "Semiparametric estimation of a two-component mixture model", Ann. Stat., 34(3), 1204-1232. https://doi.org/10.1214/009053606000000353
- Butt, U., Jehring, L. and Egbers, C. (2014), "Mechanism of drag reduction for circular cylinders with patterned surface", Int. J. Heat. Fluid. Fl., 45, 128-134. https://doi.org/10.1016/j.ijheatfluidflow.2013.10.008
- Chen, X. (2014), "Extreme value distribution and peak factor of crosswind response of flexible structures with nonlinear aeroelastic effect", J. Struct. Eng., DOI: 10.1061/(ASCE)ST.1943-541X.0001017, 04014091.
- Choi, M. and Sweetman, B. (2010), "The Hermite moment model for highly skewed response with application to tension leg platforms", J. Offshore. Mech. Arct., 132, 021602. https://doi.org/10.1115/1.4000398
- DeCarlo, L.T. (1997), "On the meaning and use of kurtosis", Psychol. Methods., 2(3), 292-307. https://doi.org/10.1037/1082-989X.2.3.292
- Ding, J. and Chen, X. (2014), "Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples", Eng. Struct., 80, 75-88. https://doi.org/10.1016/j.engstruct.2014.08.041
- Filliben, J.J. (1975), "The probability plot correlation coefficient test for normality", Technometrics, 17(1), 111-117 https://doi.org/10.1080/00401706.1975.10489279
- Harris, I. (2005), "Generalised Pareto methods for wind extremes: usefull tool or mathematical mirage?", J. Wind. Eng. Ind. Aerod., 93, 341-360. https://doi.org/10.1016/j.jweia.2005.02.004
- Hastie, T., Tibshirani, R. and Friedman, J.H. (2009), The elements of statistical learning, (2nd Ed.), Springer, New York.
- Huang, M.F., Lou, W.J., Chan, C.M. et al. (2013), "Peak distributions and peak factors of wind-induced pressure processes on tall buildings", J. Eng. Mech.- ASCE, 139(12), 1744-1756. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000616
- Huang, M.F., Lou, W.J., Pan, X.T. et al. (2014), "Hermite extreme value estimation of non-Gaussian wind load process on a long-span roof structure", J. Struct. Eng.- ASCE.
- Jiang, Y., Tao, J. and Wang, D. (2014), "Simulation of non-Gaussian stochastic processes by amplitude modulation and phase reconstruction", Wind Struct.,18(6), 693-715. https://doi.org/10.12989/was.2014.18.6.693
- Kareem, A. and Zhao, J. (1994), "Analysis of non-gaussian surge response of tension leg platforms under wind loads", J. Offshore. Mech. Arct. Eng., 116, 137-144. https://doi.org/10.1115/1.2920142
- Kwon, D. and Kareem, A. (2011), "Peak factors for non-Gaussian load effects revisited", J. Struct. Eng. - ASCE, 137(12), 1611-1619. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000412
- MacDonald, A., Scarrott, C.J. and Lee, D.S. (2011b), Boundary correction, consistency and robustness of kernel densities using extreme value theory. Available from: http://www.math.canterbury.ac.nz/ c.scarrott.
- MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011a), "A flexible extreme value mixture model", Comp. Statist. Data. Anal., 55, 2137-2157. https://doi.org/10.1016/j.csda.2011.01.005
- National Stanadrd of China (2012), Load code for the design of building structures. GB 50009-2012. (in chinese).
- Peng, X., Yang, L., Gavanski, E. et al. (2014), "A comparison of methods to estimate peak wind loads on buildings", J. Wind Eng. Ind. Aerod., 126, 11-23. https://doi.org/10.1016/j.jweia.2013.12.013
- Sadek, F. and Simiu, E. (2002), "Peak non-Gaussian wind effects for database-assisted low-rise building design", J. Eng. Mech.- ASCE, 128, 530-539. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(530)
- Tieleman, H.W., Elsayed, M.A.K. and Hajj, M.R. (2006), "Peak wind load comparison: theoretical estimates and ASCE 7", J. Struct. Eng. - ASCE, 132(7), 1150-1157. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:7(1150)
- Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1995), Statistical analysis of finite mixture distributions, (2nd Ed.), New York, Wiley.
- Winterstein, S.R. (1988), "Nonlinear vibration models for extremes and fatigue", J. Eng. Mech. - ASCE, 114, 1772-1790. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1772)
- Winterstein, S.R. and Kashef, T. (2000), "Moment-based load and response models with wind engineering applications", J. Sol. Energy Eng. T- ASME, 122(3), 122-128. https://doi.org/10.1115/1.1288028
- Winterstein, S.R. and MacKenzie, C.A. (2012), "Extremes of nonlinear vibration: models based on moments, L-moments, and maximum entropy", J.Offshore.Mech. Arct., 135(2), 021602.
- Yang, L., Gurley, K.R. and Prevatt, D.O. (2013). "Probabilistic modeling of wind pressure on low-rise buildings", J. Wind Eng. Ind. Aerod., 114, 18-26. https://doi.org/10.1016/j.jweia.2012.12.014
- Zheng, H., Huang, G. and Liu, X. (2014), "Mixture probability distributions of wind pressure on low-rise buildings", Proceedings of the 2014 World Congress on Advances in Civil, Environmental and Materials Research (ACEM14), Busan, Korea, August 24-28.
Cited by
- Non-stationary and non-Gaussian characteristics of wind speeds vol.24, pp.1, 2016, https://doi.org/10.12989/was.2017.24.1.059
- On the Use of the Cubic Translation to Model Bimodal Wind Pressures vol.15, pp.2, 2016, https://doi.org/10.2478/mmce-2019-0006
- Investigation of the Time Dependence of Wind-Induced Aeroelastic Response on a Scale Model of a High-Rise Building vol.11, pp.8, 2016, https://doi.org/10.3390/app11083315
- Extreme estimation of wind pressure with unimodal and bimodal probability density function characteristics: A maximum entropy model based on fractional moments vol.214, pp.None, 2016, https://doi.org/10.1016/j.jweia.2021.104663