
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.4.289 289

IEIE Transactions on Smart Processing and Computing

Efficient Process Network Implementation of Ray-Tracing
Application on Heterogeneous Multi-Core Systems

Hyeonseok Jung and Hoeseok Yang

Department of Electrical and Computer Engineering, Ajou University / Suwon, Republic of Korea
{hyunsukdn, hyang}@ajou.ac.kr

* Corresponding Author: Hoeseok Yang

Received July 21, 2016; Accepted July 29, 2016; Published August 30, 2016

* Short Paper

Abstract: As more mobile devices are equipped with multi-core CPUs and are required to execute
many compute-intensive multimedia applications, it is important to optimize the systems,
considering the underlying parallel hardware architecture. In this paper, we implement and
optimize ray-tracing application tailored to a given mobile computing platform with multiple
heterogeneous processing elements. In this paper, a lightweight ray-tracing application is specified
and implemented in Kahn process network (KPN) model-of-computation, which is known to be
suitable for the description of real-time applications. We take an open-source C/C++
implementation of ray-tracing and adapt it to KPN description in the Distributed Application Layer
framework. Then, several possible configurations are evaluated in the target mobile computing
platform (Exynos 5422), where eight heterogeneous ARM cores are integrated. We derive the
optimal degree of parallelism and a suitable distribution of the replicated tasks tailored to the target
architecture.

Keywords: Ray tracing, Multi-core, Process network

1. Introduction

Multi-core CPUs are pervasively used in today’s
mobile embedded systems, such as smartphones or tablets.
In such platforms, it is a key design challenge to distribute
the workload over multiple, and possibly heterogeneous,
processing elements in an efficient way that satisfies a
given performance constraint. A state-of-the-art mobile
computing platform (Exynos 5422 0, for instance) includes
eight general purpose microprocessors of two types, and a
general purpose graphics processing unit (GPGPU) with
two compute devices, as shown in Fig. 1.

It is not trivial to program such heterogeneous multi-
core systems due to their heterogeneity. That is, there are
many possible cases to distribute computational workloads
onto such many executable processing elements.
Determining how to divide the workload and to assign it to
specific processing elements is called mapping. Finding
the optimal mapping is known to be NP-hard, even when
the application’s characteristics and the underlying
architecture are known a priori.

Several programming frameworks have been proposed

for specifying and mapping multimedia applications that
can be run in parallel on multiple cores. Traditional multi-
processor programming models like OpenMP [2] and MPI
[3] were originally devised for cluster-level parallel
computers, where multiple homogeneous CPUs
collaborate in a single yet distributed system. Recently,
Open Computing Language (OpenCL) [4] and the
Compute Unified Device Architecture (CUDA) [5] have
emerged as suitable programming models for
heterogeneous multi-core systems. In particular, they
target the graphics processing unit which, thanks to its
inherently parallel structure, has been proven to offer
better performance for data-parallel applications. However,
none of the above-mentioned frameworks becomes
mainstream in mobile embedded domains, as they are not
suitable for guaranteeing predictable, possibly real-time,
performance, which is crucial for multimedia systems.

In order to address this issue, multimedia applications
are often described in a formal model-of-computation
(MoC). Distributed Application Layer (DAL) [6] is a
programming framework based on Kahn Process Network
(KPN) [7] MoC, which is capable of offering predictability

mailto:hyang%7D@ajou.ac.kr

Jung et al.: Efficient Process Network Implementation of Ray-Tracing Application on Heterogeneous Multi-Core Systems

290

when realized on multi-core systems [8]. In this paper, we
take the KPN implementation of ray-tracing in DAL from
[9] and study how to optimize the workload distribution
and mapping decision tailored to a given heterogeneous
multi-core platform.

The rest of this paper is organized as follows. In the
next two sections, we first review the KPN implementation
of the ray-tracing application and then its extension to an
advanced process network model. Based on these, various
mappings are evaluated for execution time in Section 4,
targeting a state-of-the-art mobile computing platform,
Exynos 5422. Finally, concluding remarks are drawn in
Section 5.

2. Preliminaries

In this section, we first delineate the general Monte-
Carlo ray-tracing algorithm [11], which is commonly used
in multi-core realization. Then, we describe the target
heterogeneous embedded multi-processor system-on-chip,
Exynos 5422 0.

Ray-tracing is a computer graphics algorithm that
renders extremely realistic images by tracing the path from
an image plane to light sources. From each pixel of a two-
dimensional image, a ray is projected to the scene (in
three-dimensional space) and the color information is
determined by simulating the effects of reflections and
refractions from the objects that the ray encounters. It is
known to be effective for extremely realistic images at the
cost of huge computation requirements, as well as
considerable energy consumption.

Generally, due to limited computation capability, it is
intractable to track all the existing rays that contribute to
the color value of each pixel. Thus, Monte-Carlo ray-
tracing [11] methods (a common solution to overcome this
issue) render a scene by randomly tracing a subset of
samples of all possible light paths. As the sampling count
grows, the pixel value will eventually converge to the
correct solution. Of course, increasing the number of
sampling rays may require more computing capability and
energy. In mobile embedded systems, which we are
targeting, it is crucial to strike a proper balance in this
trade-off.

Monte-Carlo ray-tracing operates as follows: a set of
ray samples that have slightly different injection angles are
randomly chosen for each pixel. For each ray sample, the
color information needs to be calculated. If a ray hits no
object, it becomes black. Conversely, the color value is
determined by a certain illumination algorithm with the
material properties of the object and the angle of the ray, if
one collides with an object (called intersection). If the
surface of the object is reflective or translucent, more rays
need to be injected into the scene to model the effects of
reflection and refraction. Finally, the color information of
a pixel is set to the average color of all sample rays. It is
common for ray-tracing to be implemented in parallel
programming, as it incorporates abundant parallelism by
nature. That is, rays from different pixels can be handled
simultaneously and independently by separate processing
elements.

Exynos series 0 (the target architecture in this paper) is
a typical heterogeneous multi-core platform that
incorporates multiple general purpose microprocessors (the
ARM Cortex series) and embedded ARM Mali GPGPUs.
Those processing elements are asymmetric in compute
capabilities and power consumption behavior. In general, it
is commonly used in mobile devices like smartphones,
embedded devices, and so forth. Fig. 1 denotes the internal
structure of Exynos 5422. The CPU is a heterogeneous
mixture of four performant processors (Cortex A15) and
four energy-efficient processors (Cortex A7), a so-called
big.LITTLE architecture. On the GPU side, it incorporates
the Mali T628 processor, which has eight shader cores
inside. Note that we only utilize Cortex A15 and A7
processors.

3. Process Network Specification

The ray-tracing application is structured as KPN in [9],
where three processes are concurrently running as shown
in Fig. 2. The first process, generator, takes the role of ray
vector generations. As stated in the previous section, it
generates a fixed number of rays from each pixel to the
scene. The second process, intersect, is the most
computationally hungry one, which is the main rendering
function of the ray-tracing application. Lastly, the
calculated color values from all the corresponding rays for
a pixel are summed up and stored in the corresponding
position in an image file in the third process: summation.

Note that the first and third processes are associated
with input/output operations. The generator process
calculates all rays injected from a pixel and sends them
over a first in, first out (FIFO) channel, C1_0, to the
intersect process. Similarly, the rendering results of the
second process are delivered through C2_0 in a FIFO
manner to the summation process. The internal of intersect
process is implemented in a recursive call. That is, for each
ray delivered by generator, path tracing takes place in
intersect by invoking Vec radiance(const Ray &r, int
depth). Whenever a ray intersects an object, it recursively

Fig. 1. Exynos 5422 application processor, a
heterogeneous multi-core architecture.

Fig. 2. Kahn Process Network implementation of the
ray-tracing application.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

291

calls itself until the newly generated ray hits the
background, or the maximum number of recursive calls
has been reached. The summation process calculates the
color information of a pixel, determined as the average of
the number of received color values.

The basic KPN specification of the ray-tracing
application described above can be modified or extended
to have a proper degree of parallelism tailored to the
underlying hardware architecture. In our specific
application, several copies of the intersect process can be
instantiated and parallelized over multiple cores to take
advantage of multi-core platforms. The Expandable
Process Networks (EPN) MoC [10] is a model extension to
KPN that aims to increase the degree of parallelism by
properly expanding the topology of the original graph by
means of replication and unfolding. Replication simply
replicates a process many times while automatically
creating all necessary channels and ports equivalent to the
ones that were present in the original KPN specification.
On the other hand, unfolding is a hierarchical expansion of
the process network. That is, a certain process of the
original KPN is replaced with another KPN.

In this work, we restrict ourselves to the replication of
the intersect process in the EPN extension, since the
workload of the process has abundant pixel-wise or ray-
wise data parallelism. While the hierarchical extension of
the intersect process is also doable, it was reported as not
comparable to the gain obtained from replication [9]. In
replication of the intersect process, new channels and
processes will be created automatically. Fig. 3 shows the
modified EPN topology when the second process is
replicated by four. It is worthwhile to mention that the
modification of the graph topology is automated in the
DAL [6] framework, and thus requires no modification of
the user-specified code. In DAL, each vertex in KPN/EPN
is synthesized as a POSIX thread, and inter-process
communication is enabled by UNIX pipes. Thus, in the
case illustrated in Fig. 3, six POSIX threads and eight
pipes are generated.

4. Evaluations

In this section, we actually map the EPN processes on
Exynos 5422 mobile computing platform and evaluate the
performance. As a benchmark scene, we used the Cornell
Box (http://www.kevinbeason.com/smallpt/) at a
resolution of 100x100 pixels with 10 samples per pixel.
The maximum recursion depth was set to 25. The number

of sub-rows and sub-columns were both set to 2. The
testing scene, as well as the source code of the ray-tracing
application, is publicly accessible in the DAL1 package.

4.1 Replication Degree
Thanks to the EPN extension, it is possible to choose

an arbitrary number of replication degree in the intersect
process in our original KPN specification. In this
subsection, we will first analyze what degree of replication
is optimal for a given hardware platform, and we
subsequently analyze how the hardware architecture
affects the performance of the parallelized implementation
of the ray-tracing application.

We vary the replication degree, and measure the end-
to-end execution time for rendering a whole image on
Exynos 5422 platform running Linux 3.10.96 operating
system. We only utilized the CPU (four A15’s and four
A7’s, in the total eight cores), and the Linux default
scheduler was used for the experiment. Fig. 4 depicts the
execution times measured for the various replication
degrees of the intersect process, from 1 to 16. As shown in
the figure, when the default Linux scheduler is used, the
optimal performance is achieved when the main process is
replicated by eight, which is identical to the number of
physical cores in the target platform. Beyond this optimal
degree, we observed that larger degrees of parallelism
result in worse performance, as can be seen in the
replication degrees of 12 and 16. If too many process
instances are operating, the overhead, including scheduling
and inter-process communication, nullifies the benefit of
the enhanced parallelism.

The optimal replication degree is highly dependent
upon the underlying hardware platform. In order to
confirm this, we conducted the same set of experiments on
a different machine, a Linux workstation with two Intel
Xeon E5-2620 processors, each of which integrates six
physical cores. In total, 12 physical cores (24 logical cores
powered by the Hyper-threading technique) exist on this
platform. As shown in Fig. 5, the optimal performance is
again achieved when the replication degree is the same as

1 Download available here: http://www.dal.ethz.ch/

Fig. 3. Illustration of the replication of the intersect
process in the EPN specification.

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18

End-To-End Execution Time in Exynos 5422 (sec)

Replication degree

Fig. 4. Execution times using different numbers of
Intersect processes in Exynos 5422.

Jung et al.: Efficient Process Network Implementation of Ray-Tracing Application on Heterogeneous Multi-Core Systems

292

the number of physical cores: 12.

4.2 Workload Balancing
In the previous experiments, we only varied the degree

of parallelism. In other words, the number of generated
processes was determined by EPN, but where to execute
them remained undecided by the model and was
completely driven by the Linux scheduler. This gives us
considerable room for optimization, since the workload
and amount of computing capability in the constituent
cores are known at design time. We fixed the replication
degree for intersect to 24, then varied the workload ratio of
A15 cores to A7 cores by setting the affinity of the
generated intersect processes to certain cores. When the
ratio is three, for instance, six instances of intersect are
executed on the A7 cores, while the A15 cores are
responsible for the remaining 18.

It was clearly observed that this judicious workload
assignment complements the Linux scheduler in
performance. With a replication degree of 24, the naïve
Linux scheduler implementation took 363.98 sec, which is
almost three times slower than the fastest one. The optimal
performance was achieved when the workload ratio was
11:1.

5. Conclusion

In this paper, we specify the ray-tracing application in
the KPN/EPN programming model and optimize it in an
embedded heterogeneous multi-core system. Finding the
optimal degree of parallelism, as well as the process
assignment to cores, was shown to be highly dependent
upon the underlying hardware architecture. The optimal
degree of replication of the main ray-tracing tends to be
identical to the number of physical cores in the computing
platform. By balancing the workload, considering the
compute capability of the cores, better performance could
be achieved.

References

[1] Exynos, Samsung. "Octa 5422." (2015).
[2] Dagum, Leonardo, and Ramesh Menon, "OpenMP:

an industry standard API for shared-memory
programming." IEEE computational science and
engineering 5.1 (1998): 46-55. Article (CrossRef Link)

[3] Gropp, William, et al. "A high-performance, portable
implementation of the MPI message passing interface
standard." Parallel computing 22.6 (1996): 789-828.
Article (CrossRef Link)

[4] Munshi, Aaftab, "The opencl specification." 2009
IEEE Hot Chips 21 Symposium (HCS). IEEE, 2009.
Article (CrossRef Link)

[5] Nvidia, C. U. D. A. "Compute unified device
architecture programming guide." (2007).

[6] Schor, Lars, et al. "Euretile design flow: Dynamic
and fault tolerant mapping of multiple applications
onto many-tile systems." 2014 IEEE International
Symposium on Parallel and Distributed Processing
with Applications. IEEE, 2014. Article (CrossRef Link)

[7] Gilles, Kahn. "The semantics of a simple language
for parallel programming." In Information Processing
74 (1974): 471-475.

[8] Schor, Lars, et al. "Scenario-based design flow for
mapping streaming applications onto on-chip many-
core systems." Proceedings of the 2012 international
conference on Compilers, architectures and synthesis
for embedded systems. ACM, 2012. Article (CrossRef
Link)

[9] Sheikh, Suhel, “Efficient Process Network
Specification of Ray-Tracing Application,” Master
Thesis, ETH Zurich, 2012.

[10] Schor, Lars, et al. "Expandable process networks to
efficiently specify and explore task, data, and
pipeline parallelism." Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2013
International Conference on. IEEE, 2013. Article
(CrossRef Link)

[11] Jensen, Henrik Wann, et al. "Monte Carlo ray
tracing." ACM SIGGRAPH. 2003.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

End-To-End Execution Time in Linux Workstation (sec)

Replication degree

Fig. 5. Execution times using different numbers of
Intersect processes in a Linux workstation.

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

End-To-End Execution Time in Exynos 5422 (sec)

A15 workload Ratio to A7

Fig. 6. Execution times of different workload ratios in
Exynos 5422.

http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/0167-8191(96)00024-5
http://dx.doi.org/10.1109/hotchips.2009.7478342
http://dx.doi.org/10.1109/ISPA.2014.32
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1145/2380403.2380422

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

293

Hyeonsuk Jung is an undergraduate
student in the department of Electrical
and Computer Engineering at Ajou
University. His research interests
include the design, analysis, and
optimization of embedded systems in
heterogeneous MPSoCs.

Hoeseok Yang received the B.S.
degree in computer science and
engineering and the Ph.D. degree in
electrical engineering and computer
science from Seoul National
University, Seoul, Korea, in 2003 and
2010, respectively. He is currently
assistant professor at Ajou University,

Korea. Before joining Ajou University, he was with D-
ITET, ETH Zurich, Switzerland as a postdoctoral
researcher. He received the best paper award at
international conference on Compilers, Architectures and
Synthesis of Embedded Systems (CASES) in 2012. His
research interests include HW/SW codesign, design
methodologies of MPSoC, and temperature-aware MPSoC
design.

Copyrights © 2016 The Institute of Electronics and Information Engineers

