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Abstract: As more mobile devices are equipped with multi-core CPUs and are required to execute 
many compute-intensive multimedia applications, it is important to optimize the systems, 
considering the underlying parallel hardware architecture. In this paper, we implement and 
optimize ray-tracing application tailored to a given mobile computing platform with multiple 
heterogeneous processing elements. In this paper, a lightweight ray-tracing application is specified 
and implemented in Kahn process network (KPN) model-of-computation, which is known to be 
suitable for the description of real-time applications. We take an open-source C/C++ 
implementation of ray-tracing and adapt it to KPN description in the Distributed Application Layer 
framework. Then, several possible configurations are evaluated in the target mobile computing 
platform (Exynos 5422), where eight heterogeneous ARM cores are integrated. We derive the 
optimal degree of parallelism and a suitable distribution of the replicated tasks tailored to the target 
architecture.      
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1. Introduction 

Multi-core CPUs are pervasively used in today’s 
mobile embedded systems, such as smartphones or tablets. 
In such platforms, it is a key design challenge to distribute 
the workload over multiple, and possibly heterogeneous, 
processing elements in an efficient way that satisfies a 
given performance constraint. A state-of-the-art mobile 
computing platform (Exynos 5422 0, for instance) includes 
eight general purpose microprocessors of two types, and a 
general purpose graphics processing unit (GPGPU) with 
two compute devices, as shown in Fig. 1. 

It is not trivial to program such heterogeneous multi-
core systems due to their heterogeneity. That is, there are 
many possible cases to distribute computational workloads 
onto such many executable processing elements. 
Determining how to divide the workload and to assign it to 
specific processing elements is called mapping. Finding 
the optimal mapping is known to be NP-hard, even when 
the application’s characteristics and the underlying 
architecture are known a priori. 

Several programming frameworks have been proposed 

for specifying and mapping multimedia applications that 
can be run in parallel on multiple cores. Traditional multi-
processor programming models like OpenMP [2] and MPI 
[3] were originally devised for cluster-level parallel 
computers, where multiple homogeneous CPUs 
collaborate in a single yet distributed system. Recently, 
Open Computing Language (OpenCL) [4] and the 
Compute Unified Device Architecture (CUDA) [5] have 
emerged as suitable programming models for 
heterogeneous multi-core systems. In particular, they 
target the graphics processing unit which, thanks to its 
inherently parallel structure, has been proven to offer 
better performance for data-parallel applications. However, 
none of the above-mentioned frameworks becomes 
mainstream in mobile embedded domains, as they are not 
suitable for guaranteeing predictable, possibly real-time, 
performance, which is crucial for multimedia systems. 

In order to address this issue, multimedia applications 
are often described in a formal model-of-computation 
(MoC). Distributed Application Layer (DAL) [6] is a 
programming framework based on Kahn Process Network 
(KPN) [7] MoC, which is capable of offering predictability 
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when realized on multi-core systems [8]. In this paper, we 
take the KPN implementation of ray-tracing in DAL from 
[9] and study how to optimize the workload distribution 
and mapping decision tailored to a given heterogeneous 
multi-core platform.  

The rest of this paper is organized as follows. In the 
next two sections, we first review the KPN implementation 
of the ray-tracing application and then its extension to an 
advanced process network model. Based on these, various 
mappings are evaluated for execution time in Section 4, 
targeting a state-of-the-art mobile computing platform, 
Exynos 5422. Finally, concluding remarks are drawn in 
Section 5. 

2. Preliminaries 

In this section, we first delineate the general Monte-
Carlo ray-tracing algorithm [11], which is commonly used 
in multi-core realization. Then, we describe the target 
heterogeneous embedded multi-processor system-on-chip, 
Exynos 5422 0. 

Ray-tracing is a computer graphics algorithm that 
renders extremely realistic images by tracing the path from 
an image plane to light sources. From each pixel of a two-
dimensional image, a ray is projected to the scene (in 
three-dimensional space) and the color information is 
determined by simulating the effects of reflections and 
refractions from the objects that the ray encounters. It is 
known to be effective for extremely realistic images at the 
cost of huge computation requirements, as well as 
considerable energy consumption. 

Generally, due to limited computation capability, it is 
intractable to track all the existing rays that contribute to 
the color value of each pixel. Thus, Monte-Carlo ray-
tracing [11] methods (a common solution to overcome this 
issue) render a scene by randomly tracing a subset of 
samples of all possible light paths. As the sampling count 
grows, the pixel value will eventually converge to the 
correct solution. Of course, increasing the number of 
sampling rays may require more computing capability and 
energy. In mobile embedded systems, which we are 
targeting, it is crucial to strike a proper balance in this 
trade-off. 

Monte-Carlo ray-tracing operates as follows: a set of 
ray samples that have slightly different injection angles are 
randomly chosen for each pixel. For each ray sample, the 
color information needs to be calculated. If a ray hits no 
object, it becomes black. Conversely, the color value is 
determined by a certain illumination algorithm with the 
material properties of the object and the angle of the ray, if 
one collides with an object (called intersection). If the 
surface of the object is reflective or translucent, more rays 
need to be injected into the scene to model the effects of 
reflection and refraction. Finally, the color information of 
a pixel is set to the average color of all sample rays. It is 
common for ray-tracing to be implemented in parallel 
programming, as it incorporates abundant parallelism by 
nature. That is, rays from different pixels can be handled 
simultaneously and independently by separate processing 
elements.  

Exynos series 0 (the target architecture in this paper) is 
a typical heterogeneous multi-core platform that 
incorporates multiple general purpose microprocessors (the 
ARM Cortex series) and embedded ARM Mali GPGPUs. 
Those processing elements are asymmetric in compute 
capabilities and power consumption behavior. In general, it 
is commonly used in mobile devices like smartphones, 
embedded devices, and so forth. Fig. 1 denotes the internal 
structure of Exynos 5422. The CPU is a heterogeneous 
mixture of four performant processors (Cortex A15) and 
four energy-efficient processors (Cortex A7), a so-called 
big.LITTLE architecture. On the GPU side, it incorporates 
the Mali T628 processor, which has eight shader cores 
inside. Note that we only utilize Cortex A15 and A7 
processors.  

3. Process Network Specification 

The ray-tracing application is structured as KPN in [9], 
where three processes are concurrently running as shown 
in Fig. 2. The first process, generator, takes the role of ray 
vector generations. As stated in the previous section, it 
generates a fixed number of rays from each pixel to the 
scene. The second process, intersect, is the most 
computationally hungry one, which is the main rendering 
function of the ray-tracing application. Lastly, the 
calculated color values from all the corresponding rays for 
a pixel are summed up and stored in the corresponding 
position in an image file in the third process: summation.  

Note that the first and third processes are associated 
with input/output operations. The generator process 
calculates all rays injected from a pixel and sends them 
over a first in, first out (FIFO) channel, C1_0, to the 
intersect process. Similarly, the rendering results of the 
second process are delivered through C2_0 in a FIFO 
manner to the summation process. The internal of intersect 
process is implemented in a recursive call. That is, for each 
ray delivered by generator, path tracing takes place in 
intersect by invoking Vec radiance(const Ray &r, int 
depth). Whenever a ray intersects an object, it recursively 

Fig. 1. Exynos 5422 application processor, a 
heterogeneous multi-core architecture. 

 

Fig. 2. Kahn Process Network implementation of the 
ray-tracing application. 
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calls itself until the newly generated ray hits the 
background, or the maximum number of recursive calls 
has been reached. The summation process calculates the 
color information of a pixel, determined as the average of 
the number of received color values. 

The basic KPN specification of the ray-tracing 
application described above can be modified or extended 
to have a proper degree of parallelism tailored to the 
underlying hardware architecture. In our specific 
application, several copies of the intersect process can be 
instantiated and parallelized over multiple cores to take 
advantage of multi-core platforms. The Expandable 
Process Networks (EPN) MoC [10] is a model extension to 
KPN that aims to increase the degree of parallelism by 
properly expanding the topology of the original graph by 
means of replication and unfolding. Replication simply 
replicates a process many times while automatically 
creating all necessary channels and ports equivalent to the 
ones that were present in the original KPN specification. 
On the other hand, unfolding is a hierarchical expansion of 
the process network. That is, a certain process of the 
original KPN is replaced with another KPN. 

In this work, we restrict ourselves to the replication of 
the intersect process in the EPN extension, since the 
workload of the process has abundant pixel-wise or ray-
wise data parallelism. While the hierarchical extension of 
the intersect process is also doable, it was reported as not 
comparable to the gain obtained from replication [9]. In 
replication of the intersect process, new channels and 
processes will be created automatically. Fig. 3 shows the 
modified EPN topology when the second process is 
replicated by four. It is worthwhile to mention that the 
modification of the graph topology is automated in the 
DAL [6] framework, and thus requires no modification of 
the user-specified code. In DAL, each vertex in KPN/EPN 
is synthesized as a POSIX thread, and inter-process 
communication is enabled by UNIX pipes. Thus, in the 
case illustrated in Fig. 3, six POSIX threads and eight 
pipes are generated. 

4. Evaluations 

In this section, we actually map the EPN processes on 
Exynos 5422 mobile computing platform and evaluate the 
performance. As a benchmark scene, we used the Cornell 
Box (http://www.kevinbeason.com/smallpt/) at a 
resolution of 100x100 pixels with 10 samples per pixel. 
The maximum recursion depth was set to 25. The number 

of sub-rows and sub-columns were both set to 2. The 
testing scene, as well as the source code of the ray-tracing 
application, is publicly accessible in the DAL1 package. 

4.1 Replication Degree 
Thanks to the EPN extension, it is possible to choose 

an arbitrary number of replication degree in the intersect 
process in our original KPN specification. In this 
subsection, we will first analyze what degree of replication 
is optimal for a given hardware platform, and we 
subsequently analyze how the hardware architecture 
affects the performance of the parallelized implementation 
of the ray-tracing application. 

We vary the replication degree, and measure the end-
to-end execution time for rendering a whole image on 
Exynos 5422 platform running Linux 3.10.96 operating 
system. We only utilized the CPU (four A15’s and four 
A7’s, in the total eight cores), and the Linux default 
scheduler was used for the experiment. Fig. 4 depicts the 
execution times measured for the various replication 
degrees of the intersect process, from 1 to 16. As shown in 
the figure, when the default Linux scheduler is used, the 
optimal performance is achieved when the main process is 
replicated by eight, which is identical to the number of 
physical cores in the target platform. Beyond this optimal 
degree, we observed that larger degrees of parallelism 
result in worse performance, as can be seen in the 
replication degrees of 12 and 16. If too many process 
instances are operating, the overhead, including scheduling 
and inter-process communication, nullifies the benefit of 
the enhanced parallelism. 

The optimal replication degree is highly dependent 
upon the underlying hardware platform. In order to 
confirm this, we conducted the same set of experiments on 
a different machine, a Linux workstation with two Intel 
Xeon E5-2620 processors, each of which integrates six 
physical cores. In total, 12 physical cores (24 logical cores 
powered by the Hyper-threading technique) exist on this 
platform. As shown in Fig. 5, the optimal performance is 
again achieved when the replication degree is the same as 

                                                 
1 Download available here: http://www.dal.ethz.ch/ 

Fig. 3. Illustration of the replication of the intersect
process in the EPN specification. 
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Fig. 4. Execution times using different numbers of 
Intersect processes in Exynos 5422. 
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the number of physical cores: 12. 
 

4.2 Workload Balancing 
In the previous experiments, we only varied the degree 

of parallelism. In other words, the number of generated 
processes was determined by EPN, but where to execute 
them remained undecided by the model and was 
completely driven by the Linux scheduler. This gives us 
considerable room for optimization, since the workload 
and amount of computing capability in the constituent 
cores are known at design time. We fixed the replication 
degree for intersect to 24, then varied the workload ratio of 
A15 cores to A7 cores by setting the affinity of the 
generated intersect processes to certain cores. When the 
ratio is three, for instance, six instances of intersect are 
executed on the A7 cores, while the A15 cores are 
responsible for the remaining 18.  

It was clearly observed that this judicious workload 
assignment complements the Linux scheduler in 
performance. With a replication degree of 24, the naïve 
Linux scheduler implementation took 363.98 sec, which is 
almost three times slower than the fastest one. The optimal 
performance was achieved when the workload ratio was 
11:1. 

5. Conclusion 

In this paper, we specify the ray-tracing application in 
the KPN/EPN programming model and optimize it in an 
embedded heterogeneous multi-core system. Finding the 
optimal degree of parallelism, as well as the process 
assignment to cores, was shown to be highly dependent 
upon the underlying hardware architecture. The optimal 
degree of replication of the main ray-tracing tends to be 
identical to the number of physical cores in the computing 
platform. By balancing the workload, considering the 
compute capability of the cores, better performance could 
be achieved. 
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