
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.4.274 274

IEIE Transactions on Smart Processing and Computing

Code Optimization Techniques to Reduce Energy
Consumption of Multimedia Applications in Hybrid
Memory

Thomas Haywood Dadzie, Seungpyo Cho, and Hyunok Oh

Department of Information Systems, Hanyang University, Seoul, South Korea
{ekowhaywood, seungpyo, hoh}@hanyang.ac.kr

* Corresponding Author: Hyunok Oh

Received July 6, 2016; Revised August 23, 2016; Accepted August 24, 2016; Published August 30, 2016

* Regular Paper

Abstract: This paper proposes code optimization techniques to reduce energy consumption of
complex multimedia applications in a hybrid memory system with volatile dynamic random access
memory (DRAM) and non-volatile spin-transfer torque magnetoresistive RAM (STT-MRAM). The
proposed approach analyzes read/write operations for variables in an application. Based on the
profile, variables with a high read operation are allocated to STT-MRAM, and variables with a high
write operation are allocated to DRAM to reduce energy consumption. In this paper, to optimize
code for real-life complicated applications, we develop a profiler, a code modifier, and
compiler/link scripts. The proposed techniques are applied to a Fast Forward Motion Picture
Experts Group (FFmpeg) application. The experiment reduces energy consumption by up to 22%.

Keywords: Compiler, Simulation, Hybrid memory, Energy consumption

1. Introduction

With the ongoing upsurge of mobile devices and
embedded devices in general, one of the main concerns is
to reduce the energy consumption of an entire system. A
lot of research has been conducted into reducing energy
consumed in many components of a system—the central
processing unit (CPU), random access memory (RAM),
storage, etc. Most research in recent years has been on
dynamic management of CPU power consumption. Hence,
we have CPU voltage/frequency scaling and multiple cores
on one die.

In the area of primary memory (RAM), we have widely
used dynamic RAM (DRAM). Recent research shows that
DRAM has significant energy consumption and accounts
for as much as 30% to 40% of energy consumed on a
system-on-chip (SoC) [4]. This is mainly due to its high
energy leakage and the need to refresh cells frequently.
DRAM is also expensive in terms of cost per megabyte
and due to its low density, which means it occupies a large
amount of space on a SoC. These shortfalls in DRAM have
presented an opportunity for non-volatile memories to
replace it. This has been an active research topic focusing

efforts on non-volatile memory, such as phase-change
RAM (PRAM), resistive RAM (RRAM), ferroelectric
RAM (FeRAM), and spin-transfer torque magnetoresistive
RAM (STT-MRAM), to replace DRAM due to the
commercial success of flash memory. These non-volatile
memories have the advantages of comparable read latency
with DRAM, low cost, high density, low energy for reads,
and low leakage power. However, for the write operation,
non-volatile RAM (NVRAM) requires long latency and
high energy consumption.

In this paper, we present variable read/write analysis of
the Fast Forward Motion Picture Experts Group (FFmpeg)
audio/video application. We demonstrate a technique with
a tool set developed for performing the analysis. We then
introduce a variable declaration keyword and a compiler-
level feature that enables variables to be assigned to an
NVRAM module of hybrid memory with a code modifier
helping to revise the code. Finally, we present a hybrid
memory-aware FFmpeg application that reduces energy
consumption by up to 22% for a set of frequently accessed
variables.

Section 2 briefly explains the NVRAM technology and
its read/write properties. Section 3 discusses related work

mailto:hoh%7d@hanyang.ac.kr

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

275

to adopt NVRAM as primary memory. In Section 4, we
present the motivation that drives our research, and in
Section 5, we define the problems tackled to ensure
maximum energy reduction. Section 6 proposes techniques
and tools developed to build a hybrid memory-aware
FFmpeg application. Finally, we show the experimental
results in Section 7 and offer a conclusion in Section 8.

2. Background

Static random access memory (SRAM) and DRAM
have been the dominant technologies for primary memory
for years. These technologies have improved over the
years to overcome or subdue their shortfalls, which are
high energy consumption and low density. These problems
can easily be ignored in PC and server environments.
However, in mobile devices, the problems are more
pronounced, as energy consumption becomes important
when designing mobile devices. A lot of work has been
done to reduce energy consumption in mobile devices, but
so far has been in the area of enhancing the CPU and other
co-processor designs to decrease the amount of energy
consumed during program execution. In addition,
processors have been enhanced greatly with the
introduction of the multi-core CPU, where a job is shared
among low-frequency multi-cores as opposed to one core
with a high frequency, which consumes great amounts of
energy. Aside from all these improvements, we still have a
major challenge, because SRAM and DRAM used in
mobile devices still account for about 30% to 40% of the
processing unit, and the basic technology for these two
memories has not changed much.

RAM vendors propose alternative solutions to develop
non-volatile memory technology to replace conventional
SRAM and DRAM. That includes PRAM and STT-
MRAM, which are briefly explained in the following
subsections to denote their strengths and limitations

2.1 PRAM
PRAM uses a special material called phase-change

material to preserve a bit. The phase-change material
(Ge2Sb2Te5, or GST) can be in at least two different
structural states: amorphous or crystalline. These two
states represent a 0 or 1, since they have different
resistivity. In the amorphous state, the material has low
electrical conductivity, and in the crystalline state, high
electrical conductivity. The GST material is one type of
alloy that can switch between two states with the
application of heat. When heated above the crystallization
temperature of 300°C (but below the melting temperature
of 600°C) over time, GST changes to the crystalline state,
which corresponds to the SET state, or logic 1. When
heated above the melting point and quenched quickly, the
GST changes to the amorphous state, which corresponds to
the RESET state, or logic 0. The GST material’s state is
altered by injecting a large, but fast, current pulse for a few
hundred nanoseconds to heat up the GST active region, as
shown in Fig. 1. This means the write energy and latency
is high. To read a PRAM cell, the power needed is very

low, since no heating is involved. In addition, PRAM
needs no refresh energy and has a low standby power, as it
retains its state permanently. PRAM has limited write
endurance of 109−1012 cycles, which poses a reliability
problem.

2.2 STT-MRAM
STT-MRAM is a variant of magnetoresistive RAM

(MRAM). MRAM is a non-volatile memory technology
where a bit is stored by the magnetic orientation of the free
layer of a magnetic tunnel junction (MTJ). Applying a
small, fixed voltage to the MTJ results in a high or low
current, depending on whether the free layer is parallel or
anti-parallel to the magnetic orientation of the hard layer,
as shown in Figs. 2(a) and (b), respectively. Fig. 2(c)
shows the cell structure with a transistor. The different
orientations represent a 0 or a 1 bit.

It uses spin-transfer torque to re-orient the free layer by
passing a large and directional write current through the
MTJ. The switching process is regulated by a thermally
controlled stochastic process, which means that the free
layer could change state at any time. However, the MTJ
magnetic properties and sizing are selected to make this
unlikely. Performing a write operation requires holding the
write current for a sufficient amount of time, which we call
the MTJ write time, to ensure the free layer has changed
state. STT-MRAM presents a technology that is highly
efficient for read access, but poor with write access. As the
free layer needs no current to maintain its state, MTJs have
no intrinsic leakage power.

Fig. 1. PRAM cell.

Fig. 2. STT-MRAM cell.

Dadzie et al.: Code Optimization Techniques to Reduce Energy Consumption of Multimedia Applications in Hybrid Memory

276

2.3 Hybrid Volatile/Non-volatile RAM
The above-mentioned non-volatile memories have high

density, low energy for read operations, and low leakage
power. However, they exhibit obstacles from high energy
and high latency for write operations or changing the state
of the core material used in them. Table 1 shows a
comparison of the general characteristics of memory
technologies [13].

2.4 FFmpeg
FFmpeg is a popular open source audio/video codec

engine for conversion and streaming [6]. It is written in the
C language and compiled by the GNU GCC compiler. It is
capable of handling a wide range of video/audio codecs
and encapsulation. The capability is evident when
considering its code base of over 500,000 lines of code.
FFmpeg reads and writes a number of inputs and outputs,
which may be regular files, pipes, network streams,
audio/video grabbing devices, etc. It handles most of the
well-known audio/video codecs.

3. Related Work

Based on the attractive advantages of non-volatile
memory, there have been several proposals for, and a lot of
research into, using it as primary memory. Dhiman et al.
proposed hybrid DRAM/PRAM by attaching DRAM and
PRAM to utilize the high performance in read and write
operations from DRAM and the low standby energy
consumption from PRAM [10]. Another study specified
computation replication to reduce communication
overhead in multiprocessor systems [4]. Other research
proposed an architecture where each processor core has an
NVRAM in addition to the traditional scratchpad memory
(SRAM) and introduced a runtime memory manager for
efficient sharing of distributed scratchpad memories
(SPM) and NVRAM [20]. Several studies tried using
hybrid SRAM/PRAM or DRAM/STT-MRAM that
addresses the allocation of data to volatile RAM or non-
volatile RAM.

Stancu et al. [21] proposed an annotation-based
approach to reduce write-energy consumption. In their
approach, a multimedia application is profiled to obtain the
data access patterns and is used to minimize write
operations. However, their approach determines the
mapping onto DRAM and PRAM dynamically when a
virtual page is mapped to a physical page. Therefore, if
variables with high read frequencies and high write
frequencies are placed in a page, then the mapping of the
page into the memory module does not improve the
performance. Since our approach is to decide the mapping
of variables onto memory modules statically, it can divide
variables based on the read/write frequencies. However,
sometimes it is necessary to split structure-type variables,
which makes the problem difficult.

4. Motivation

In a hybrid primary memory architecture, data that is
strictly write-once (or a few times) but that is read-
intensive is placed in a non-volatile module, like STT-
MRAM, and other data may be conveniently placed in a
volatile module, such as DRAM. In today’s matured and
highly complex software, certain portions of software can
easily be identified as suitable for non-volatile RAM. Such
read-intensive data could be constants, variables, and
instruction code, which hardly ever changes. With this
simple approach, a reasonable amount of energy is saved
as write energy is minimized. In this case, the work
involved is only a simple compiler-level modification.

But the bulk constituent of software data is its non-
constant variable data, and the standard compilers will not
be able to predict the runtime read/write access pattern to
make any energy-saving decisions. For this reason, if a
strategy is developed that assists the compiler by attaching
information about read/write patterns of non-constant
variables, then a huge amount of energy will be saved.

Multimedia-enabled embedded devices can now play,
capture, and transcode audio/video content, and it is a
widely used feature. This comes with high energy
consumption from DRAM due to its large data footprint in
memory, both in complex instruction code and data.
FFmpeg is at the center of this feature, where several
graphic user interface (GUI) applications employ it as the
back-end for audio/video processing. If devices employ the
hybrid memory approach, a huge energy reduction is
achievable with energy-aware FFmpeg.

5. Problem Formulation

In a hybrid DRAM/STT-MRAM memory architecture,
there is varying energy consumption for read/write
operations. The main challenge is to construct a runtime
read/write access pattern of non-constant variables, and
subsequently develop an allocation strategy to minimize
energy consumption.

The energy requirement for each variable when placed
in a hybrid DRAM/STT-MRAM memory architecture, as

Table 1. Comparison of different memory technologies.

Feature SRAM DRAM
STT-

MRAM PRAM

Density Low High High Very high
Fast read Slow read

Speed Very Fast Fast Slow
write

Very slow
write

Low read Medium
read Dynamic

Power Low Medium
High
write High write

Leak Power High Medium Low Low
Non-volatility No No Yes Yes

Scalability Yes Yes Yes Yes

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

277

opposed to a DRAM-only memory architecture, is
formulated as follows:

EV = (CDR*DynDr) + (CDW*DynDw) + (CSR*DynSr) +

 (CSW*DynSw)

where
EV = energy per variable
CDR = variable read count from DRAM
CDW = variable write count from DRAM
CSR = variable read count from STT-MRAM
CSW = variable write count from STT-MRAM
DynDr = dynamic energy per read operation in DRAM
DynDw = dynamic energy per write operation in DRAM
DynSr = dynamic energy per read operation in STT-
MRAM, and
DynSw = dynamic energy per write operation in STT-
MRAM

Suppose there is a variable with 100 and 10 runtime

read and write accesses, respectively. The proposed
formulae show that when this variable is placed in STT-
MRAM, the energy consumption becomes 63.00nJ, as
opposed to 79.20nJ when placed in a DRAM-only memory
architecture.

6. Proposed Approach

Considering the highly complex and mature nature of
the FFmpeg software, re-engineering the source code may
unknowingly break continuity and contributions from
other developers. For this reason, focus is placed on
making compiler-level modifications. Current compilers
can easily identify and separate instruction code as well as
constant variables. In this case, the modification will be
making the compiler allocate such variables to a non-
volatile module, which mostly happens once during the
loading stage of program execution.

For other variables, we need to develop techniques and
tools to determine the allocation of the dynamic variables
to memory modules in order to reduce power consumption.
In this paper, we develop a read/write profiler based on the
Qemu emulator, a data structure revision editor, and a
compiler supporting placement of a variable into a specific
memory module, and introduction of a keyword (e.g.
persist) to a variable declaration syntax. These proposed
tools are utilized together to produce a hybrid memory-
aware application. The overall flow is shown in Fig. 3. In
Step (a), we first use the Qemu emulator to collect the
runtime access count for variables of interest. Based on the
results, we determine which variable is placed in either of
the memory modules. In Step (b), we revise data structures
using the code editor. In Step (c), we declare the separated
members of the revised data structure with the persist
keyword. In Step (d), the compiler compiles the source
code into an object file and passes it to the linker, along
with the link script. For the final Step (e), a hybrid
memory-aware FFmpeg application is constructed.

Secondly, we have to analyze the usage of data
structures in the FFmpeg application. The data structures

and control flow built into FFmpeg is centered on
decoding one macroblock (MB) at a time. The decoder
maintains a tree of elements and structures rooted in a data
structure (MPEGContext), which holds the current state of
the decoder, including modes and data associated with the
current MB, arrays for accessing information about
neighboring MBs, references to the current output picture,
any reference pictures, etc. This structure is passed from
one function to the next, conveying the state of the decoder
and the MB. The MPEGContext structure is made up of
about 250 members.

With such a highly complex application, it is almost
impossible to obtain read/write access patterns of the
MPEGContext structure members, since the application
includes 500,000 lines, and some members are accessed by
pointer variables declared outside the structure. A runtime
analysis is the only approach to log all access to members
of this structure. With the read/write access analysis
information, read-intensive members are mapped into the
non-volatile module of the hybrid memory architecture.

6.1 Read/write Access Pattern Extraction
The Qemu emulator is a module-based application, and

is a good environment in which to run all kinds of software
analysis at any level for ARM processors. The Qemu
project integrates the well-known GDB debugger stub,
which enables all sorts of debugging capabilities, such as
setting breakpoints. The emulated machine can be paused,
resumed, and stopped manually and automatically if a
condition is met. In this environment, we can set and
trigger a breakpoint when the CPU accesses specific
variables or memory regions registered in the Qemu
emulator. Although setting breakpoints is supported in
Qemu with its integrated GDB debugger stub, there is
some difficulty as to which variables should trigger the
break event. And when the emulated machine pauses, there
will be the need for a manual recording of the event and
issuing a command to resume execution. This is practically
impossible, since there are too many variables in FFmpeg,
and the CPU touches each variable more than 150,000

Fig. 3. The overall technique for creating a hybrid
memory-aware application.

Dadzie et al.: Code Optimization Techniques to Reduce Energy Consumption of Multimedia Applications in Hybrid Memory

278

times, on average, when 30 video frames are decoded.
We extended the Qemu emulator to overcome the

above-mentioned difficulty. Fig. 4 shows our modified
Qemu with the mechanism for achieving the automated
profiling of read/write accesses and simulation of hybrid
memory. Qemu includes an integrated monitor console for
interacting with a running virtual machine instance. The
monitor exhibits several commands for controlling and
reviewing the state of the virtual machine instance. We
append new commands for hybrid memory simulation.
The new commands allow the setting of breakpoints,
logging processes, and reviewing the collected log data.
The following procedures are implemented in the extended
Qemu.

1. Create a virtual NVRAM region on the quest
memory. All CPU accesses to the region are trapped
and logged automatically without halting the virtual
machine. Fig. 5 shows the Qemu monitor console
displaying the collected log data for energy
consumption analysis.

2. Watch and automatically log the CPU read/write
accesses to variable memory locations of interest
without halting the emulated machine. The gathered
data are displayed on the monitor console in a
human-readable format, and each variable is
displayed with its read and write count. Fig. 6 shows
the Qemu monitor console displaying the read/write
count for each variable. This example shows
collected data for three variables. For cases where
the number of variables is huge, a command is
provided to export the data to a text file in CSV
format.

3. Automatically register variable memory addresses of

interest to be watched, as most applications will have
many variables. Registering a large number of
variables in the Qemu emulator through the monitor
console manually can be extremely tedious. For this
reason, we provide an automation technique. We
provide functions that can be integrated into a
subject application’s source code. These functions
are intended to enable the subject application to
communicate with the Qemu emulator. The extended
Qemu emulator is designed to receive
communication from the subject application. The
subject application calls the function with the
variables to watch as a parameter.

4. Simulate the non-volatility capability of NVRAM.
One of the promising advantages of NVRAM is the
ability to retain its data between power off and
power on, which allows the design of new operating
systems for the hybrid memory system. We
implement this feature by dumping the content of the
region in the virtual machine memory into a file in
the host file system. Then, the virtual machine can
be powered off. The next important stage is when a
new instance of the virtual machine is started; the
data in the file will be reloaded into memory during
initialization of the virtual machine instance. This
process will complete before the guest operating
system is loaded and started. Fig. 7 shows the
simulation technique

6.2 Data Structure Editor
A data structure editor revises the source code utilizing

a search-and-replace functionality. After gathering the

Fig. 4. Extended Qemu emulator for profiling read/write
operations.

Fig. 5. The Qemu monitor console displaying read/write
information of simulated NVRAM.

Fig. 6. The Qemu monitor console displaying read/write
information of individual variables in an application.

Fig. 7. The modified Qemu with the non-volatility
simulation mechanism.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

279

profiling information, we determine the mapping of
variables to memory modules. To realize the mapping in
the code, we may need to change the structure of the code.
The data structure editor accelerates the code changes. In
the revision of the source code, variables may be re-
declared in a different way, or renamed to enable the
compiler to assign it to NVRAM. Also, in some cases,
variables may be a member of a structure datatype, and not
all members will be suitable for NVRAM assignment. In
such a situation, we cannot achieve the desired result, since
structure datatype members are stored in memory in a
continuous format. To solve the continuity problem, some
structures should be split, and variables suitable for
NVRAM will be contained in a second data structure. This
modification requires the revision of the entire source code
accessing the original structure. Making such a large-scale
modification to source code can be aided with the code
editor. Fig. 8 shows the code editor interface and FFmpeg
application source under modification.

6.3 Persistent Keyword
In order to map variables to a specific memory module,

we introduce a persistent keyword that is integrated into
the compiler syntax. This keyword informs the compiler
whether the variable declared is a read-intensive variable
and suitable for NVRAM module assignment. To use the
keyword in an application, it is necessary to include header
file “persist.h” in the application. This header file contains
the implementation mechanism for making the compiler

aware of the new keyword. The implementation
mechanism places variables in a “persist” section using
the #define keyword, which is applicable to only global
variables. Then, the compiler assigns the variables to the
“persist” section, and a linker maps the section to the
memory address for NVRAM using a link script developed
in this paper. The link script controls the memory layout
using the “MEMORY” command. The command indicates
the location and the size of the memory blocks for each
memory module. The memory area is defined by the
“>region” command, and places memory sections into
specific memory areas. For example, if there is a memory
area named “persist”, the “>persist” command will place
variables in that area.

6.4 Case Study: Hybrid Memory-aware
FFmpeg Application

We applied the techniques mentioned in the previous
subsections to revise the FFmpeg application by assigning
read-intensive or NVRAM-suitable variables to the
NVRAM module. The read/write access pattern profiler
collects the read/write frequency for each variable in
FFmpeg. In FFmpeg, the MPEGContext structure is the
main structure, and the profiling concentrates on analyzing
this structure. The structure includes members for the main
components: status information, previous and current
frame being decoded, etc. Its member count is more than
250, with different data types and arrays of different sizes.
Therefore, the profiling examines the memory access for
all members in the structure. Results shows that some
members are read-intensive and others, write-intensive. So,
we split the structure and create a second structure; all
read-intensive members are moved to the second structure,
which the intern mapped into the NVRAM memory region.
After this structure-splitting modification, all instructions
in the entire source code referencing members that have
been moved to the second structure need to be updated.
The code editor is employed to aid in this task. Fig. 11
shows the divided MPEGContext structure, and Fig. 12
shows the modification of a code line with reference to a
member in the second structure, which will be mapped into
NVRAM (STT-MRAM). Fig. 13 shows the Qemu
emulator running FFmpeg with the modified
MPEGContext structure.

Fig. 8. The code editor GUI helping with the search and
renaming of suitable NVRAM variables.

Fig. 9. An example declaration with persist keyword.

Fig. 10. Persist keyword support mechanism.

Dadzie et al.: Code Optimization Techniques to Reduce Energy Consumption of Multimedia Applications in Hybrid Memory

280

7. Experiment

In this paper, we analyze the read/write access patterns
of members in the MPEGContext structure found in the
FFmpeg application. The structure is at the core of the
FFmpeg internal decoding process. FFmpeg is executed in
a virtual machine environment by the extended Qemu
emulator. We decode frames for 12 video sequences
shown in Table 4. During execution, every CPU access to
members of the MPEGContext structure is automatically

trapped and logged. Table 2 represents the virtual machine
environment. To compute the energy consumption, we use
the energy properties from Wu et al. [13], as shown in
Table 3.

Table 4 shows the experimental results and compares a
DRAM-only architecture to the proposed hybrid memory
architecture for the 12 video sequences. The read-energy
consumption in the hybrid memory system is much less
than the DRAM-only system, while the write-energy in
hybrid memory is slightly larger. On average, the proposed
hybrid memory saves 21.89% in total energy consumption,
compared with the DRAM-only architecture.

For most of the video sequences, energy reduction is
always attained by the proposed hybrid memory system.

8. Conclusion

This paper proposes optimal memory allocation in a
hybrid DRAM/STT-MRAM main memory architecture.
Memory is allocated through a compiler modification, in
which data is placed in STT-MRAM in an orderly way:
instruction code, constant variables, and then variables
with the “persist” declaration keyword. The widely used
FFmpeg audio/video library is analyzed to extract read-
intensive variables that are best suited to STT-MRAM
memory allocation. And we present a modified FFmpeg
version (without any added complexity) that is aware of
hybrid memory by declaring read-intensive variables
separately. Our experiment shows an average 21.89%
reduction in energy consumption.

Our future work aims to bring automation to all steps in
migrating existing applications to be hybrid memory–
aware. We aim to fully automate the revision of
application code at the compiler level, rather than the
source code level. Our work involves leveraging flexibility
found in the LLVM compiler framework. We will develop
a compiler pass for altering applications in the
intermediate format. This will take care of data structure
splitting, variable redefinition, assigning the appropriate
memory segment attribute to variables, etc.

Fig. 11. Split of structure data in FFmpeg.

Fig. 12. Modification of code referring to the revised
data structure in FFmpeg.

Fig. 13. Execution of FFmpeg decoding video frames.

Table 2. Experiment Environment.

Emulator R/W extraction-enabled Qemu Emulator
Emulated Board ARM Versatile/PB (ARM926EJ-S)

CPU Architecture ARMv5 (L1 cache 32K,L2 cache 128K)
RAM 256MB

Operating System Linux (Debian)

Table 3. Parameters of memory technologies (45nm)
[13].

RAM
Technology

Latency
(cycles)

Dynamic
Energy (nJ)

Static Power
(W)

SRAM 8 0.388 1.36
DRAM 24 0.72 0.4
MRAM

(STT-MRAM)
Read: 20
Write: 60

Read: 0.4
Write: 2.3 0.15

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

281

Acknowledgement

This work was supported by Basic Science Research
Programs through the National Research Foundation of
Korea(NRF) funded by the MSIP (2013R1A1A1013384)
and by IT R&D program MKE/KEIT (No. 10041608,
Embedded system Software for New-memory based Smart
Device).

References

[1] M. H. Kryder, C. S. Kim, "After Hard Drives—What

Comes Next? ", IEEE Transactions on Magnetics,
vol. 45, no. 10, pp. 3406- 3413, Oct. 2009. Article
(CrossRef Link)

[2] P. Mangalagiri, A. Yanamandra Y. Xie, N.
Vijaykrishnan, M. J. Irwin, K. Sarpatwari, O. O. A.
Karim, "A Low-Power Phase Change Memory Based
Hybrid Cache Architecture", GLSVLSI 08, May
2008. Article (CrossRef Link)

[3] K. Lee, A. Orailoglu, "Application specific non-
volatile primary memory for embedded systems",
CODES+ISSS 08, pp 31-36. Article (CrossRef Link)

[4] M. Kandemir, G. Chen, F. Li, I. Demirkiran, "Using
data replication to reduce communication energy on
chip multiprocessors", ASP-DAC 05, pp.769-772.
Article (CrossRef Link)

[5] J.Hu, C. J. Xue, W. Tseng, Y. He, M. Qiu, E.H.-M.
Sha, "Reducing Write Activities on Non-volatile
Memories in Embedded CMPs via Data Migration
and Recomputation", DAC 10, June 2010. Article
(CrossRef Link)

[6] The FFmpeg website. http://ffmpeg.org/. Article
(CrossRef Link)

[7] Video Sequence. http://trace.eas.asu.edu/yuv//.
Article (CrossRef Link)

[8] Video Sequence. http://media.xiph.org/video/derf//.

Article (CrossRef Link)
[9] The Qemu website. http://wiki.qemu.org/Main_Page.

Article (CrossRef Link)
[10] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A

hybrid PRAM and DRAM main memory system” In
Proceedings of the 46th Annu-al Design Automation
Conference (DAC09), 2009. Article (CrossRef Link)

[11] Hyunsun Park, Sungjoo Yoo, Sunggu Lee, “Power
Management of Hybrid DRAM/PRAM-Based Main
Memory” In Proceedings of the 48th Design
Automation Conference (DAC2011), 2011. Article
(CrossRef Link)

[12] Hyunchul Seok, Youngwoo Park, Kyu Ho Park
“Migration Based Page Caching Algorithm for a
Hybrid Main Memory of DRAM and PRAM” In
Proceedings of the 2011 ACM Symposium on
Applied Computing (SAC 2011), 2011. Article
(CrossRef Link)

[13] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram
Rajamony, Yuan Xie “Hybrid Cache Architecture with
Disparate Memory Technologies“ In Proceedings of
the 36th annual international sym-posium on
Computer architecture (ISCA 2009), 2009. Article
(CrossRef Link)

[14] R. F. Freitas and W. W. Wilcke, "Storage-class
memory: The next storage system technology," IBM
Journal of Research and Development, vol.52, no.4/5,
pp.439-447,2008. Article (CrossRef Link)

[15] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam,K. G.,
and R.S. Shenoy, "Overview of candidate device
technologies for storage-class memory," IBM Journal
of Research and Development, vol.52, no.4/5,
pp.449-464, 2008. Article (CrossRef Link)

[16] Clinton W. Smullen, IV, Vidyabhushan Mohan,
Anurag Nigam, Sudhanva Gurumurthi , Mircea R.
Stan. Relaxing Non-Volatility for Fast and Energy-
Efficient STT-RAMCaches. Department of Computer

Table 4. Experiment results.

 Read Energy Write Energy Total Energy
Consumption

Sequence Name Format Size Frames DRAM Hybrid DRAM Hybrid DRAM Hybrid
Akiyo H.264 lossless 352x288 300 4098.88 3443.64 111.91 115.86 4210.79 3559.50
Akiyo Mpeg2video 352x288 300 4362.78 3843.13 482.72 494.49 4846.50 4337.63

Foreman X264, high
profile 352x288 300 4534.16 3817.07 301.78 345.49 4835.94 4162.56

Foreman H.264 lossless 352x288 300 4275.63 3617.51 11.91 115.86 4387.54 3733.37
BigBuckBunny Xvid (Mpeg4) 352x288 2160 46751.84 40763.16 3874.03 3908.95 50625.87 44672.11

BigBuckBunny X264, high
profile 352x288 2160 33807.85 28611.88 2201.10 2621.18 26008.69 31233.05

Pedestrian_area Xvid (Mpeg4) 640x360 375 19379.35 16951.07 1441.16 1447.27 20820.51 18398.33

Pedestrian_area X264, high
profile 352x288 300 13139.92 11098.20 865.41 1051.24 14005.33 12149.44

Crowd_run Xvid (Mpeg4) 1920x1080 300 19379.35 17249.30 1441.16 1443.70 20820.51 18693.01
Mother_daughter lossless H.264 352x288 300 4098.88 3442.86 111.91 116.34 4210.79 3559.20

Crowd_run lossless H.264 640x360 500 19379.35 16598.64 1441.16 1462.18 20820.51 18060.83
Elephants_dreams lossless H.264 352x288 1065 46751.84 40565.35 3874.03 3912.37 50625.87 44477.72

http://dx.doi.org/10.1109/TMAG.2009.2024163
http://dx.doi.org/10.1109/TMAG.2009.2024163
http://dx.doi.org/10.1145/1366110.1366204
http://dx.doi.org/10.1145/1450135.1450144
http://dx.doi.org/10.1145/1120725.1121013
http://dx.doi.org/10.1145/1837274.1837363
http://dx.doi.org/10.1145/1837274.1837363
http://ffmpeg.org/
http://ffmpeg.org/
http://trace.eas.asu.edu/yuv/
http://media.xiph.org/video/derf/
http://wiki.qemu.org/Main_Page
http://dx.doi.org/10.1145/1629911.1630086
http://dx.doi.org/10.1145/2024724.2024738
http://dx.doi.org/10.1145/2024724.2024738
http://dx.doi.org/10.1145/1982185.1982312
http://dx.doi.org/10.1145/1982185.1982312
http://dx.doi.org/10.1145/1555754.1555761
http://dx.doi.org/10.1145/1555754.1555761
http://dx.doi.org/10.1147/rd.524.0439
http://dx.doi.org/10.1147/rd.524.0449

Dadzie et al.: Code Optimization Techniques to Reduce Energy Consumption of Multimedia Applications in Hybrid Memory

282

Science and Department of Electrical and Computer
Engineering University of Virginia. cws3k@cs.virginia.
edu, vm9u@virginia.edu, an2z@virginia.edu, gurumurthi
@virginia.edu, mrs8n@virginia.edu. Article (CrossRef
Link)

[17] Radu Cornea, Alex Nicolau, Nikil Dutt. “Video Stream
Annotations for Energy Trade-offs in Multimedia
Applications” In Proceedings of The Fifth International
Symposium on Parallel and Distributed Computing
(ISPDC'06). Article (CrossRef Link)

[18] Radu Cornea, Alex Nicolau, Nikil Dutt. “Software
Annotations for Power Optimization on Mobile
Devices” In Proceedings of the con-ference on
Design, automation and test in Europe, 2006. Article
(CrossRef Link)

[19] Tiantian Liu, Yingchao Zhao, Chun Jason Xue,
Minming Li” Power-Aware Variable Partitioning for
DSPs with Hybrid PRAM and DRAM Main
Memory” Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE. Article (CrossRef
Link)

[20] Luis Angel Bathen, Nikil Dutt ” HaVOC: A Hybrid
Memory-aware Virtualization Layer for On-Chip
Distributed ScratchPad and Non-Volatile Memories”
DAC 2012 June 3-7, 2012, San Francisco, Cali-fornia,
USA. Article (CrossRef Link)

[21] C. Stancu, L. Bathen, N. Dutt, A. Nicolau, "AVid:
Annotation Driven Video Decoding for Hybrid
Memories", ESTImedia, 2012. Article (CrossRef
Link)

Thomas Haywood Dadzie received a
B.S. degree in Computer Science from
Wisconsin University, Ghana in
December 2006, and received his M.S.
in Information Systems from Hanyang
University, Seoul, South Korea, in
December 2013. He is currently
pursuing a Ph.D. in Information

Systems at Hanyang University.

Seungpyo Cho received the B.S.
degree in Computer Engineering in
2011 and the M.S. in Information
Systems from Hanyang University,
Seoul, South Korea, in 2013. He is
currently pursuing a Ph.D. in
Information Systems at Hanyang
University.

Hyunok Oh received the M.S. and
B.S. degree in Computer Engineering
from Seoul National University, Korea,
in 1998 and 1996, respectively. and He
received the Ph.D. degree in Electrical
Engineering and Computer Science
from Seoul National University, Korea,
2003. He is currently an associate

professor in Hanyang University. His research interests
include Cryptography, Non-volatile memory, Dataflow
model and Real-time analysis.

Copyrights © 2016 The Institute of Electronics and Information Engineers

http://dl.acm.org/citation.cfm?id=2014895
http://dl.acm.org/citation.cfm?id=2014895
http://dx.doi.org/10.1109/ispdc.2006.55
http://dl.acm.org/citation.cfm?id=1131674
http://dl.acm.org/citation.cfm?id=1131674
http://dx.doi.org/10.1145/2024724.2024819
http://dx.doi.org/10.1145/2024724.2024819
http://dx.doi.org/10.1145/2228360.2228438
http://dx.doi.org/10.1109/ESTIMedia.2012.6507022
http://dx.doi.org/10.1109/ESTIMedia.2012.6507022

